Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (4) : 575-584    https://doi.org/10.1007/s11684-020-0816-3
REVIEW
Advances in tissue state recognition in spinal surgery: a review
Hao Qu, Yu Zhao()
Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
 Download: PDF(1021 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spinal disease is an important cause of cervical discomfort, low back pain, radiating pain in the limbs, and neurogenic intermittent claudication, and its incidence is increasing annually. From the etiological viewpoint, these symptoms are directly caused by the compression of the spinal cord, nerve roots, and blood vessels and are most effectively treated with surgery. Spinal surgeries are primarily performed using two different techniques: spinal canal decompression and internal fixation. In the past, tactile sensation was the primary method used by surgeons to understand the state of the tissue within the operating area. However, this method has several disadvantages because of its subjectivity. Therefore, it has become the focus of spinal surgery research so as to strengthen the objectivity of tissue state recognition, improve the accuracy of safe area location, and avoid surgical injury to tissues. Aside from traditional imaging methods, surgical sensing techniques based on force, bioelectrical impedance, and other methods have been gradually developed and tested in the clinical setting. This article reviews the progress of different tissue state recognition methods in spinal surgery and summarizes their advantages and disadvantages.

Keywords spinal surgery      tissue state recognition      image      force sensing      bioelectrical impedance     
Corresponding Author(s): Yu Zhao   
Just Accepted Date: 07 February 2021   Online First Date: 14 May 2021    Issue Date: 23 September 2021
 Cite this article:   
Hao Qu,Yu Zhao. Advances in tissue state recognition in spinal surgery: a review[J]. Front. Med., 2021, 15(4): 575-584.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0816-3
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I4/575
Fig.1  Application of mixed reality technology to PTED training. Reprinted from Ref. [29] with permission.
Technology Application Advantages Disadvantages
Imaging C-arm, O-arm, AR, VR, MR, … Provides accurate tissue location
Improves the accuracy of operation
Fuzzy tissue type information
Delays
Cannot directly obtain physiologic information
Force sensing Surgical instruments with force sensors Has strong specificity
Has been applied to clinical practice
Different operative methods, speed, etc. affect the force signal
Lack of research on force feedback to the operator
Bioelectrical impedance Health risk assessment system, pedicle probe and navigation system based on bioelectrical impedance technology Reliable principle
Simple operation
Strong feasibility
Many factors can affect the accuracy of the numerical value
Lacks a standard bioelectrical impedance database as a reference
Suffers form deviations in data collection
Physical feature perception Shows specific changes according to different contact tissues Limited relevant research
Tab.1  Different methods for tissue state recognition
Fig.2  Schematic of the analysis of milling force (A) and the safety control strategy (B). Reprinted from Ref. [37] with permission.
Fig.3  Mean impedance magnitude and phase angle spectra of cerebrospinal fluid (CSF), ligamentum flavum, and epidural space. Reprinted from Ref. [52] with permission.
Fig.4  Distribution of frequency between 10 and 15 kHz after using the recursive FFT for different moments: (A) drilling the cortical born; (B) cancellous bone; (C) transition region from cortical born to cancellous bone; (D) transition region from cancellous bone to inner cortical born. Reprinted from Ref. [57] with permission.
Fig.5  Bur temperature (A) and fresh-milled bone temperature (B) as a function of feed rate and spindle speed. Reprinted from Ref. [61] with permission.
1 E Truumees. A history of lumbar disc herniation from Hippocrates to the 1990s. Clin Orthop Relat Res 2015; 473(6): 1885–1895
https://doi.org/10.1007/s11999-014-3633-7 pmid: 24752913
2 PS Issack, ME Cunningham, M Pumberger, AP Hughes, FP Cammisa Jr. Degenerative lumbar spinal stenosis: evaluation and management. J Am Acad Orthop Surg 2012; 20(8): 527–535
https://doi.org/10.5435/JAAOS-20-08-527 pmid: 22855855
3 J Lurie, C Tomkins-Lane. Management of lumbar spinal stenosis. BMJ 2016; 352: h6234
https://doi.org/10.1136/bmj.h6234 pmid: 26727925
4 TD Koreckij, JS Fischgrund. Degenerative spondylolisthesis. J Spinal Disord Tech 2015; 28(7): 236–241
https://doi.org/10.1097/BSD.0000000000000298 pmid: 26172828
5 JL Melancia, AF Francisco, JL Antunes. Spinal stenosis. Handb Clin Neurol 2014; 119(119): 541–549
https://doi.org/10.1016/B978-0-7020-4086-3.00035-7 pmid: 24365318
6 SC Overley, JS Kim, BA Gogel, RK Merrill, AC Hecht. Tandem spinal stenosis: a systematic review. JBJS Rev 2017; 5(9): e2
https://doi.org/10.2106/JBJS.RVW.17.00007 pmid: 28872572
7 JH Lee, KH Choi, S Kang, DH Kim, DH Kim, BR Kim, W Kim, JH Kim, KH Do, JG Do, JS Ryu, K Min, SG Bahk, YH Park, HJ Bang, KH Shin, S Yang, HS Yang, SD Yoo, JS Yoo, KJ Yoon, SJ Yoon, GJ Lee, SY Lee, SC Lee, SY Lee, IS Lee, JS Lee, CH Lee, JY Lim, JY Han, SH Han, DH Sung, KH Cho, SY Kim, HJ Kim, W Ju. Nonsurgical treatments for patients with radicular pain from lumbosacral disc herniation. Spine J 2019; 19(9): 1478–1489
https://doi.org/10.1016/j.spinee.2019.06.004 pmid: 31201860
8 L Viezens, P Reer, A Strahl, L Weiser, M Schroeder, J Beyerlein, C Schaefer. Safety and efficacy of single-stage versus 2-stage spinal fusion via posterior instrumentation and anterior thoracoscopy: a retrospective matched-pair cohort study with 247 consecutive patients. World Neurosurg 2018; 109: e739–e747
https://doi.org/10.1016/j.wneu.2017.10.074 pmid: 29079258
9 OR Fjeld, L Grøvle, J Helgeland, MC Småstuen, TK Solberg, JA Zwart, M Grotle. Complications, reoperations, readmissions, and length of hospital stay in 34 639 surgical cases of lumbar disc herniation. Bone Joint J 2019; 101-B(4): 470–477
https://doi.org/10.1302/0301-620X.101B4.BJJ-2018-1184.R1 pmid: 30929479
10 H Inose, T Kato, M Yuasa, T Yamada, H Maehara, T Hirai, T Yoshii, S Kawabata, A Okawa. Comparison of decompression, decompression plus fusion, and decompression plus stabilization for degenerative spondylolisthesis: a prospective, randomized study. Clin Spine Surg 2018; 31(7): E347–E352
https://doi.org/10.1097/BSD.0000000000000659 pmid: 29877872
11 Z Chen, B Wu, X Zhai, Y Bai, X Zhu, B Luo, X Chen, C Li, M Yang, K Xu, C Liu, C Wang, Y Zhao, X Wei, K Chen, W Yang, D Ta, M Li. Basic study for ultrasound-based navigation for pedicle screw insertion using transmission and backscattered methods. PLoS One 2015; 10(4): e0122392
https://doi.org/10.1371/journal.pone.0122392 pmid: 25861053
12 T Fujishiro, Y Nakaya, S Fukumoto, S Adachi, A Nakano, K Fujiwara, I Baba, M Neo. Accuracy of pedicle screw placement with robotic guidance system: a cadaveric study. Spine 2015; 40(24): 1882–1889
https://doi.org/10.1097/BRS.0000000000001099 pmid: 26655804
13 M Galluzzo, S D’Adamio, R Pastorino, A Andreoli, S Servoli, L Bianchi, M Talamonti. Effect of anti IL-12/23 on body composition: results of bioelectrical impedance analysis in Caucasian psoriatic patients. Expert Opin Biol Ther 2018; 18(3): 229–235
https://doi.org/10.1080/14712598.2018.1419183 pmid: 29252034
14 S Wei, W Tao, H Zhu, Y Li. Three-dimensional intraoperative imaging with O-arm to establish a working trajectory in percutaneous endoscopic lumbar discectomy. Wideochir Inne Tech Maloinwazyjne 2016; 10(4): 555–560
pmid: 26865892
15 V Kosmopoulos, C Schizas. Pedicle screw placement accuracy: a meta-analysis. Spine 2007; 32(3): E111–E120
https://doi.org/10.1097/01.brs.0000254048.79024.8b pmid: 17268254
16 LT Holly, KT Foley. Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine 2006; 31(5): 536–541
https://doi.org/10.1097/01.brs.0000201297.83920.a1 pmid: 16508547
17 J Hirayama, M Hashimoto. Percutaneous endoscopic diskectomy using an interlaminar approach based on 3D CT/MR fusion imaging. J Neurol Surg A Cent Eur Neurosurg 2019; 80(2): 88–95
https://doi.org/10.1055/s-0038-1673399 pmid: 30583302
18 Z Hu, X Li, J Cui, X He, C Li, Y Han, J Pan, M Yang, J Tan, L Li. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: a study of 40 cases. Int J Surg 2017; 41: 97–103
https://doi.org/10.1016/j.ijsu.2017.03.059 pmid: 28344159
19 J Tang, Z Zhu, T Sui, D Kong, X Cao. Position and complications of pedicle screw insertion with or without image-navigation techniques in the thoracolumbar spine: a meta-analysis of comparative studies. J Biomed Res 2014; 28(3): 228–239
pmid: 25013406
20 Y Yang, F Wang, S Han, Y Wang, J Dong, L Li, D Zhou. Isocentric C-arm three-dimensional navigation versus conventional C-arm assisted C1-C2 transarticular screw fixation for atlantoaxial instability. Arch Orthop Trauma Surg 2015; 135(8): 1083–1092
https://doi.org/10.1007/s00402-015-2249-z pmid: 26119707
21 JM Bledsoe, D Fenton, JL Fogelson, EW Nottmeier. Accuracy of upper thoracic pedicle screw placement using three-dimensional image guidance. Spine J 2009; 9(10): 817–821
https://doi.org/10.1016/j.spinee.2009.06.014 pmid: 19664966
22 MF Oertel, J Hobart, M Stein, V Schreiber, W Scharbrodt. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine 2011; 14(4): 532–536
https://doi.org/10.3171/2010.10.SPINE091032 pmid: 21275555
23 Z Sun, D Yuan, Y Sun, Z Zhang, G Wang, Y Guo, G Wang, D Liu, P Chen, L Jing, F Yang, P Zhang, H Zhang, Y Wu, W Shi, J Wang. Application of intraoperative O-arm-assisted real-time navigation technique for spinal fixation. Translational Neuroence & Clinics 2017; 3(3): 135–146
https://doi.org/10.18679/CN11-6030_R.2017.022
24 S Bernhardt, SA Nicolau, V Agnus, L Soler, C Doignon, J Marescaux. Automatic localization of endoscope in intraoperative CT image: a simple approach to augmented reality guidance in laparoscopic surgery. Med Image Anal 2016; 30: 130–143
https://doi.org/10.1016/j.media.2016.01.008 pmid: 26925804
25 C, Li J, Zeng G, Ye W, Sun J, Hong J, Li C. ZhengDevelopment of a virtual reality preoperative planning system for postlateral endoscopic lumbar discectomy surgery and its clinical application. World Neurosurg 2019; 123: e1–e8
https://doi.org/10.1016/j.wneu.2018.08.082 pmid: 30144600
26 M Draelos, B Keller, C Viehland, OM Carrasco-Zevallos, A Kuo, J Izatt. Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality. Biomed Opt Express 2018; 9(6): 2825–2843
https://doi.org/10.1364/BOE.9.002825 pmid: 30258693
27 A Javaux, D Bouget, C Gruijthuijsen, D Stoyanov, T Vercauteren, S Ourselin, J Deprest, K Denis, E Vander Poorten. A mixed-reality surgical trainer with comprehensive sensing for fetal laser minimally invasive surgery. Int J CARS 2018; 13(12): 1949–1957
https://doi.org/10.1007/s11548-018-1822-7 pmid: 30054776
28 G Coelho, HLA Defino. The role of mixed reality simulation for surgical training in spine: phase 1 validation. Spine 2018; 43(22): 1609–1616
https://doi.org/10.1097/BRS.0000000000002856 pmid: 30180147
29 H Yu, Z Zhou, X Lei, H Liu, G Fan, S He. Mixed reality-based preoperative planning for training of percutaneous transforaminal endoscopic discectomy: a feasibility study. World Neurosurg 2019; 129: e767–e775
https://doi.org/10.1016/j.wneu.2019.06.020 pmid: 31203062
30 WY Lee, CL Shih. Control and breakthrough detection of a three-axis robotic bone drilling system. Mechatronics 2006; 16(2): 73–84
https://doi.org/10.1016/j.mechatronics.2005.11.002
31 MH Aziz, MA Ayub, R Jaafar. Real-time algorithm for detection of breakthrough bone drilling. Procedia Eng 2012; 41: 352–359
https://doi.org/10.1016/j.proeng.2012.07.184
32 Y Hu, H Jin, L Zhang, P Zhang, J Zhang. State recognition of pedicle drilling with force sensing in a robotic spinal surgical system. IEEE/ASME Trans Mechatron 2014; 19(1): 357–365
https://doi.org/10.1109/TMECH.2012.2237179
33 M Marco, M Rodríguez-Millán, C Santiuste, E Giner, M Henar Miguélez. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater 2015; 44: 179–201
https://doi.org/10.1016/j.jmbbm.2014.12.006 pmid: 25676359
34 T Ortmaier, H Weiss, S Döbele, U Schreiber. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. Int J Med Robot 2006; 2(4): 350–363
https://doi.org/10.1002/rcs.114 pmid: 17520654
35 WY Kim, SY Ko, JO Park, S Park. 6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/T sensors and adjustable admittances to protect bones against damage. Mechatronics 2016; 35: 136–147
https://doi.org/10.1016/j.mechatronics.2016.02.005
36 Z Deng, H Jin, Y Hu, Y He, P Zhang, W Tian, J Zhang. Fuzzy force control and state detection in vertebral lamina milling. Mechatronics 2016; 35: 1–10
https://doi.org/10.1016/j.mechatronics.2016.02.004
37 L Fan, P Gao, B Zhao, Y Sun, X Xin, Y Hu, S Liu, J Zhang. Safety control strategy for vertebral lamina milling task. CAAI Trans Intell Technol 2016; 1(3): 249–258
https://doi.org/10.1016/j.trit.2016.10.005
38 Z Jiang, X Qi, Y Sun, Y Hu, Z Guillaume, J Zhang. Cutting depth monitoring based on milling force for robot-assisted laminectomy. IEEE Trans Autom Sci Eng 2020; 17(1): 2–14
https://doi.org/10.1109/TASE.2019.2920133
39 Y Kasahara, K Ohnishi, H Kawana. Analysis of drill wear based on torque and force sensorless cutting power estimation. IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2010
40 T Osa, CF Abawi, N Sugita, H Chikuda, S Sugita, T Tanaka, H Oshima, T Moro, S Tanaka, M Mitsuishi. Hand-held bone cutting tool with autonomous penetration detection for spinal surgery. IEEE/ASME Trans Mechatron 2015; 20(6): 3018–3027
https://doi.org/10.1109/TMECH.2015.2410287
41 Y Dai, Y Xue, J Zhang. Vibration-based milling condition monitoring in robot-assisted spine surgery. IEEE/ASME Trans Mechatron 2015; 20(6): 3028–3039
https://doi.org/10.1109/TMECH.2015.2414177
42 Y Dai, Y Xue, J Zhang. A continuous wavelet transform approach for harmonic parameters estimation in the presence of impulsive noise. J Sound Vibrat 2016; 360: 300–314
https://doi.org/10.1016/j.jsv.2015.09.023
43 TJ Faes, HA van der Meij, JC de Munck, RM Heethaar. The electric resistivity of human tissues (100 Hz–10 MHz): a meta-analysis of review studies. Physiol Meas 1999; 20(4): R1–R10
https://doi.org/10.1088/0967-3334/20/4/201 pmid: 10593226
44 H Nakase, R Matsuda, Y Shin, YS Park, T Sakaki. The use of ultrasonic bone curettes in spinal surgery. Acta Neurochir (Wien) 2006; 148(2): 207–213
https://doi.org/10.1007/s00701-005-0655-7 pmid: 16311841
45 C Gabriel, S Gabriel, E Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996; 41(11): 2231–2249
https://doi.org/10.1088/0031-9155/41/11/001 pmid: 8938024
46 DA Dean, T Ramanathan, D Machado, R Sundararajan. Electrical impedance spectroscopy study of biological tissues. J Electrost 2008; 66(3–4): 165–177
https://doi.org/10.1016/j.elstat.2007.11.005 pmid: 19255614
47 R Antakia, BH Brown, PE Highfield, TJ Stephenson, NJ Brown, SP Balasubramanian. Electrical impedance spectroscopy to aid parathyroid identification and preservation in central compartment neck surgery: a proof of concept in a rabbit model. Surg Innov 2016; 23(2): 176–182
https://doi.org/10.1177/1553350615607639 pmid: 26423912
48 Y Dai, Y Xue, J Zhang. Drilling electrode for real-time measurement of electrical impedance in bone tissues. Ann Biomed Eng 2014; 42(3): 579–588
https://doi.org/10.1007/s10439-013-0938-8 pmid: 24254254
49 F Shao, H Bai, M Tang, Y Xue, Y Dai, J Zhang. Tissue discrimination by bioelectrical impedance during PLL resection in anterior decompression surgery for treatment of cervical spondylotic myelopathy. J Orthop Surg Res 2019; 14(1): 341
https://doi.org/10.1186/s13018-019-1380-x pmid: 31694719
50 T Wyss Balmer, J Ansó, E Muntane, K Gavaghan, S Weber, A Stahel, P Büchler. In-vivo electrical impedance measurement in mastoid bone. Ann Biomed Eng 2017; 45(4): 1122–1132
https://doi.org/10.1007/s10439-016-1758-4 pmid: 27830489
51 Y Turan, M Sayin, A Yurt, T Yilmaz, FD Ozer, C Temiz. Local tissue electrical resistances in transpedicular screw application in the thoracolumbar region. Turk Neurosurg 2016; 26(6): 937–943
pmid: 27560525
52 S Halonen, K Annala, J Kari, S Jokinen, A Lumme, K Kronström, A Yli-Hankala. Detection of spine structures with Bioimpedance Probe (BIP) Needle in clinical lumbar punctures. J Clin Monit Comput 2017; 31(5): 1065–1072
https://doi.org/10.1007/s10877-016-9915-8 pmid: 27492427
53 Z Li, C Chen, Y Lin, X Li, H Tan, MT Chan, WK Wu, S Zhan, Q Cao, J Shen. A novel probe for measuring tissue bioelectrical impedance to enhance pedicle screw placement in spinal surgery. Am J Transl Res 2018; 10(7): 2205–2212
pmid: 30093957
54 I Boesnach, M Hahn, J Moldenhauer, TH Beth, U Spetzger. Analysis of drill sound in spine surgery. Perspective in Image-guided Surgery—the Scientific Workshop on Medical Robotics, Navigation and Visualization. RheinAhrCampus Remagen, Germany, March 11–12, 2004
55 Z Liao, DA Axinte. On monitoring chip formation, penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission. J Mater Process Technol 2016; 229: 82–93
https://doi.org/10.1016/j.jmatprotec.2015.09.016
56 Y Sun, H Jin, Y Hu, P Zhang, J Zhang. State recognition of bone drilling with audio signal in Robotic Orthopedics Surgery System. IEEE International Conference on Intelligent Robots and Systems. IEEE 2014: 3503–3508
57 F Guan, Y Sun, X Qi, Y Hu, G Yu, J Zhang. State recognition of bone drilling based on acoustic emission in pedicle screw operation. Sensors (Basel) 2018; 18(5): 1484
https://doi.org/10.3390/s18051484 pmid: 29747395
58 G Augustin, T Zigman, S Davila, T Udilljak, T Staroveski, D Brezak, S Babic. Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol, Avon) 2012; 27(4): 313–325
https://doi.org/10.1016/j.clinbiomech.2011.10.010 pmid: 22071428
59 HC Shin, YS Yoon. Bone temperature estimation during orthopaedic round bur milling operations. J Biomech 2006; 39(1): 33–39
https://doi.org/10.1016/j.jbiomech.2004.11.004 pmid: 16271585
60 L Wen, ZH Zhao, JB Song, DD Yu, M Chen, SGF Shen. Experimental study on thermal and force characteristics in the dry slotting of cortical bone. Adv Mat Res 2016; 1136: 233–238
https://doi.org/10.4028/www.scientific.net/AMR.1136.233
61 I Kais, AL Al-Abdullah, H Abdi, CP Lim. Force and temperature modelling of bone milling using artificial neural networks. Measurement 2018; 116: 25–37
https://doi.org/10.1016/j.measurement.2017.10.051
[1] Jiechao Ma, Yang Song, Xi Tian, Yiting Hua, Rongguo Zhang, Jianlin Wu. Survey on deep learning for pulmonary medical imaging[J]. Front. Med., 2020, 14(4): 450-469.
[2] Yuzhen Wang,Rui Xu,Gaoxing Luo,Jun Wu. Three-dimensional reconstruction of light microscopy image sections: present and future[J]. Front. Med., 2015, 9(1): 30-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed