Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (3) : 438-447    https://doi.org/10.1007/s11684-020-0826-1
RESEARCH ARTICLE
Identification of COL3A1 variants associated with sporadic thoracic aortic dissection: a case--control study
Yanghui Chen1,2, Yang Sun1,2, Zongzhe Li1,2, Chenze Li1,2, Lei Xiao1,2, Jiaqi Dai1,2, Shiyang Li1,2,3, Hao Liu1,2, Dong Hu1,2, Dongyang Wu1,2, Senlin Hu1,2, Bo Yu1,2, Peng Chen1,2, Ping Xu4, Wei Kong5, Dao Wen Wang1,2()
1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
3. The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
4. State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
5. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
 Download: PDF(966 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thoracic aortic dissection (TAD) without familial clustering or syndromic features is known as sporadic TAD (STAD). So far, the genetic basis of STAD remains unknown. Whole exome sequencing was performed in 223 STAD patients and 414 healthy controls from the Chinese Han population (N = 637). After population structure and genetic relationship and ancestry analyses, we used the optimal sequence kernel association test to identify the candidate genes or variants of STAD. We found that COL3A1 was significantly relevant to STAD (P = 7.35 × 10−6) after 10 000 times permutation test (P = 2.49 × 10−3). Moreover, another independent cohort, including 423 cases and 734 non-STAD subjects (N = 1157), replicated our results (P = 0.021). Further bioinformatics analysis showed that COL3A1 was highly expressed in dissected aortic tissues, and its expression was related to the extracellular matrix (ECM) pathway. Our study identified a profile of known heritable TAD genes in the Chinese STAD population and found that COL3A1 could increase the risk of STAD through the ECM pathway. We wanted to expand the knowledge of the genetic basis and pathology of STAD, which may further help in providing better genetic counseling to the patients.

Keywords sporadic thoracic aortic dissection      exome sequencing      gene COL3A1      case–control study      extracellular matrix     
Corresponding Author(s): Dao Wen Wang   
Just Accepted Date: 26 April 2021   Online First Date: 28 May 2021    Issue Date: 18 June 2021
 Cite this article:   
Yanghui Chen,Yang Sun,Zongzhe Li, et al. Identification of COL3A1 variants associated with sporadic thoracic aortic dissection: a case--control study[J]. Front. Med., 2021, 15(3): 438-447.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0826-1
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I3/438
Type A (n = 130) Type B (n = 90)
Clinical characteristics
Male (%) 104 (80.00) 71 (78.89)
Age (year) 50.72±10.35 51.46±9.81
BMI (kg/m2) 24.93±4.47 24.61±4.36
SBP (mmHg) 141.00±40.00 148.00±33.50
DBP (mmHg) 78.00±20.00 85.00±18.25
Epidemiology
Smoking (%) 37 (27.46) 23 (25.56)
Drinking (%) 23 (17.69) 11 (21.11)
Hypertension (%) 77 (59.23) 41 (45.56)
Diagnostic imaging
CT/CTA (%) 130 (100) 90 (100)
Echocardiography (%) 121 (93.08) 82 (91.11)
Blood serum laboratory tests
WBC (×109/L) 12.34±5.63 9.66±4.92
Hb (g/L) 132.50±21.00 130.50±26.00
GLU (mmol/L) 7.42±1.84 6.78±1.79
AST (IU/L) 21.00±19.00 16.00±15.50
ALT (IU/L) 21.50±27.50 19.00±10.25
BUN (mmol/L) 7.26±4.12 5.52±2.89
Cr (µmol/L) 96.00±50.00 77.00±31.75
TC (mmol/L) 3.78±1.21 3.95±1.00
TG (mmol/L) 1.03±0.64 1.08±0.82
LDL (mmol/L) 2.48±0.87 2.47±0.92
HDL (mmol/L) 1.07±0.38 1.09±0.43
Extent of aortic dissection n = 124 n = 90
Supra-aortic vessels (%) 121 (97.58)
Arch (%) 121 (97.58)
Descending thoracic aorta (%) 117 (94.35) 82 (91.11)
Abdominal aorta (%) 88 (70.97) 80 (88.89)
Superior mesenteric artery (%) 33 (26.61) 20 (22.22)
Left renal artery (%) 49 (39.52) 21 (23.33)
Right renal artery (%) 30 (24.19) 23 (25.56)
Iliac arteries (%) 49 (39.52) 37 (41.11)
Echocardiography n = 124 n = 90
Ascending aortic dimension (mm) 40.00±7.25 37.00±4.50
Dilation of aortic dimension (%) 94 (77.69) 36 (43.33)
Ejection fraction (%) 60.00±5.00 60.00±2.00
Ejection fraction<50% (%) 5 (4.13) 0 (0)
Tab.1  Clinical characteristics of all STAD cases
Fig.1  Variants in genes putatively associated with HTAD. All rare functional damaging variants (missense variants, frame shift variants, and nonsense variants) in the exome are shown. Each bar represents one of the individuals, and each row represents a gene. The colors represent different types of variants and clinical phenotypes. The top bar plot indicates the number of functional variants in each person.
Fig.2  Gene-based associated test identified COL3A1 in STAD. (A) Procedure of variant filtering for gene-based associated test. (B) Heatmap showing the P value of candidate genes by SKAT-O in discovery cohorts; + indicates that cases carried more of the rare deleterious variants, and − indicates that controls carried more. (C) Mutation needle plot of COL3A1 rare deleterious variants.
Subject Age Gender Type Amino acid Exon MAF in 1000 Genomes (EAS) MAF in ExAC (EAS) MAF in gnomAD
ADx086 36 F B p.P566L 24 0.006 0.0038 0.0035
ADx099 46 M A p.A1045T 43 0.0069 0.0053 0.0055
ADx203 49 M B p.A1045T 43 0.0069 0.0053 0.0055
ADx219 43 M A p.P566L 24 0.006 0.0038 0.0035
ADx477 50 M A p.A1045T 43 0.0069 0.0053 0.0055
ADx506 49 M A p.P566L 24 0.006 0.0038 0.0035
ADx540 63 M B p.P566L 24 0.006 0.0038 0.0035
ADx629 33 M A p.P566L 24 0.006 0.0038 0.0035
ADx692 64 M B p.R413Q 18 ND 0.0002 0.0002
ADx720 57 F B p.R1100H 45 ND 0.0002 0.0002
ADx736 53 M A p.G888C 39 ND ND ND
ADx823 55 M A p.P566L 24 0.006 0.0038 0.0035
ADx825 54 M A p.R1255H 48 ND 0 0
ADx826 49 M A p.P566L 24 0.006 0.0038 0.0035
Tab.2  Details of rare deleterious variants from COL3A1 in the STAD population
Fig.3  COL3A1 analysis in GSE52093 and the GTEx database. (A) COL3A1 expression in whole body organ and data from the GTEx database. (B) COL3A1 overexpressed in aorta with dissection from GSE52093. TAD refers to dissected aorta from TAD patients; normal means aorta without dissection from non-TAD individuals. (C) Volcano plot showing the results of GSEA using GSE52093 case data. The right shows the top 10 pathways enriched in COL3A1 high level. COL3A1 high level refers to the significant pathway enriched by COL3A1 high-level associated genes, COL3A1 low level refers to the significant pathway enriched by COL3A1 low-level associated genes, and stable refers to insignificant pathway. (D) GSEA results revealing that the ECM pathway was highly enriched in COL3A1-overexpressed genes that are highly expressed when COL3A1 is also highly expressed and data from the GTEx database.
1 DP Howard, A Banerjee, JF Fairhead, J Perkins, LE Silver, PM; the Oxford Vascular Study Rothwell. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation 2013; 127(20): 2031–2037
https://doi.org/10.1161/CIRCULATIONAHA.112.000483 pmid: 23599348
2 A Pinard, GT Jones, DM Milewicz. Genetics of thoracic and abdominal aortic diseases. Circ Res 2019; 124(4): 588–606
https://doi.org/10.1161/CIRCRESAHA.118.312436 pmid: 30763214
3 D Wu, YH Shen, L Russell, JS Coselli, SA LeMaire. Molecular mechanisms of thoracic aortic dissection. J Surg Res 2013; 184(2): 907–924
https://doi.org/10.1016/j.jss.2013.06.007 pmid: 23856125
4 M Renard, C Francis, R Ghosh, AF Scott, PD Witmer, LC Adès, GU Andelfinger, P Arnaud, C Boileau, BL Callewaert, D Guo, N Hanna, ME Lindsay, H Morisaki, T Morisaki, N Pachter, L Robert, L Van Laer, HC Dietz, BL Loeys, DM Milewicz, J De Backer. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol 2018; 72(6): 605–615
https://doi.org/10.1016/j.jacc.2018.04.089 pmid: 30071989
5 YH Shen, SA LeMaire. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54(3): 95–155
https://doi.org/10.1067/j.cpsurg.2017.01.001 pmid: 28521856
6 L Campens, B Callewaert, L Muiño Mosquera, M Renard, S Symoens, A De Paepe, P Coucke, J De Backer. Gene panel sequencing in heritable thoracic aortic disorders and related entities— results of comprehensive testing in a cohort of 264 patients. Orphanet J Rare Dis 2015; 10(1): 9
https://doi.org/10.1186/s13023-014-0221-6 pmid: 25644172
7 R Weerakkody, D Ross, DA Parry, B Ziganshin, J Vandrovcova, P Gampawar, A Abdullah, J Biggs, J Dumfarth, Y Ibrahim, Yale Aortic Institute Data and Repository Team, C Bicknell, M Field, J Elefteriades, N Cheshire, TJ Aitman. Targeted genetic analysis in a large cohort of familial and sporadic cases of aneurysm or dissection of the thoracic aorta. Genet Med 2018; 20(11): 1414–1422
https://doi.org/10.1038/gim.2018.27 pmid: 29543232
8 P Arnaud, N Hanna, L Benarroch, M Aubart, L Bal, P Bouvagnet, T Busa, Y Dulac, S Dupuis-Girod, T Edouard, L Faivre, L Gouya, D Lacombe, M Langeois, B Leheup, O Milleron, S Naudion, S Odent, M Tchitchinadze, J Ropers, G Jondeau, C Boileau. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD). Genet Med 2019; 21(9): 2015–2024
https://doi.org/10.1038/s41436-019-0444-y pmid: 30739908
9 Z Li, C Zhou, L Tan, P Chen, Y Cao, X Li, J Yan, H Zeng, DW Wang, DW Wang. A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection. Sci China Life Sci 2018; 61(12): 1545–1553
https://doi.org/10.1007/s11427-018-9382-0 pmid: 30341550
10 S Lee, MJ Emond, MJ Bamshad, KC Barnes, MJ Rieder, DA Nickerson, NHLBI GO Exome Sequencing Project—ESP Lung Project Team; DC Christiani, MM Wurfel, X Lin. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am J Hum Genet 2012; 91(2): 224–237
https://doi.org/10.1016/j.ajhg.2012.06.007 pmid: 22863193
11 AM Bolger, M Lohse, B Usadel. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–2120
https://doi.org/10.1093/bioinformatics/btu170 pmid: 24695404
12 H Li, R Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25(14): 1754–1760
https://doi.org/10.1093/bioinformatics/btp324 pmid: 19451168
13 A McKenna, M Hanna, E Banks, A Sivachenko, K Cibulskis, A Kernytsky, K Garimella, D Altshuler, S Gabriel, M Daly, MA DePristo. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20(9): 1297–1303
https://doi.org/10.1101/gr.107524.110 pmid: 20644199
14 S Purcell, B Neale, K Todd-Brown, L Thomas, MAR Ferreira, D Bender, J Maller, P Sklar, PI de Bakker, MJ Daly, PC Sham. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81(3): 559–575
https://doi.org/10.1086/519795 pmid: 17701901
15 J Yang, SH Lee, ME Goddard, PM Visscher. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011; 88(1): 76–82
https://doi.org/10.1016/j.ajhg.2010.11.011 pmid: 21167468
16 AL Price, NJ Patterson, RM Plenge, ME Weinblatt, NA Shadick, D Reich. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38(8):904–909 PMID: 16862161
https://doi.org/10.1038/ng1847
17 Z Li, J Huang, J Zhao, C Chen, H Wang, H Ding, DW Wang, DW Wang. Rapid molecular genetic diagnosis of hypertrophic cardiomyopathy by semiconductor sequencing. J Transl Med 2014; 12(1): 173
https://doi.org/10.1186/1479-5876-12-173 pmid: 24938736
18 A Mayakonda, DC Lin, Y Assenov, C Plass, HP Koeffler. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 2018; 28(11): 1747–1756
https://doi.org/10.1101/gr.239244.118 pmid: 30341162
19 PC Ng, S Henikoff. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31(13): 3812–3814
https://doi.org/10.1093/nar/gkg509 pmid: 12824425
20 IA Adzhubei, S Schmidt, L Peshkin, VE Ramensky, A Gerasimova, P Bork, AS Kondrashov, SR Sunyaev. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248 pmid: 20354512
21 JM Schwarz, DN Cooper, M Schuelke, D Seelow. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11(4): 361–362
https://doi.org/10.1038/nmeth.2890 pmid: 24681721
22 H Carter, C Douville, PD Stenson, DN Cooper, R Karchin. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics 2013; 14(Suppl 3): S3
https://doi.org/10.1186/1471-2164-14-S3-S3 pmid: 23819870
23 NM Ioannidis, JH Rothstein, V Pejaver, S Middha, SK McDonnell, S Baheti, A Musolf, Q Li, E Holzinger, D Karyadi, LA Cannon-Albright, CC Teerlink, JL Stanford, WB Isaacs, J Xu, KA Cooney, EM Lange, J Schleutker, JD Carpten, IJ Powell, O Cussenot, G Cancel-Tassin, GG Giles, RJ MacInnis, C Maier, CL Hsieh, F Wiklund, WJ Catalona, WD Foulkes, D Mandal, RA Eeles, Z Kote-Jarai, CD Bustamante, DJ Schaid, T Hastie, EA Ostrander, JE Bailey-Wilson, P Radivojac, SN Thibodeau, AS Whittemore, W Sieh. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016; 99(4): 877–885
https://doi.org/10.1016/j.ajhg.2016.08.016 pmid: 27666373
24 C Dong, P Wei, X Jian, R Gibbs, E Boerwinkle, K Wang, X Liu. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet 2015; 24(8): 2125–2137
https://doi.org/10.1093/hmg/ddu733 pmid: 25552646
25 P Rentzsch, D Witten, GM Cooper, J Shendure, M Kircher. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019; 47(D1): D886–D894
https://doi.org/10.1093/nar/gky1016 pmid: 30371827
26 EV Davydov, DL Goode, M Sirota, GM Cooper, A Sidow, S Batzoglou. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Comput Biol 2010; 6(12): e1001025
https://doi.org/10.1371/journal.pcbi.1001025 pmid: 21152010
27 JLV Maag. gganatogram: an R package for modular visualisation of anatograms and tissues based on ggplot2. F1000 Res 2018; 7: 1576
https://doi.org/10.12688/f1000research.16409.1 pmid: 30467523
28 ME Ritchie, B Phipson, D Wu, Y Hu, CW Law, W Shi, GK Smyth. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47
https://doi.org/10.1093/nar/gkv007 pmid: 25605792
29 Y Benjamini, Y Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser A Stat Soc 1995; 57(1): 289–300
30 G Yu, LG Wang, Y Han, QY He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
https://doi.org/10.1089/omi.2011.0118 pmid: 22455463
31 A Subramanian, P Tamayo, VK Mootha, S Mukherjee, BL Ebert, MA Gillette, A Paulovich, SL Pomeroy, TR Golub, ES Lander, JP Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550
https://doi.org/10.1073/pnas.0506580102 pmid: 16199517
32 S Richards, N Aziz, S Bale, D Bick, S Das, J Gastier-Foster, WW Grody, M Hegde, E Lyon, E Spector, K Voelkerding, HL Rehm; the ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405–423
https://doi.org/10.1038/gim.2015.30 pmid: 25741868
33 PG Hagan, CA Nienaber, EM Isselbacher, D Bruckman, DJ Karavite, PL Russman, A Evangelista, R Fattori, T Suzuki, JK Oh, AG Moore, JF Malouf, LA Pape, C Gaca, U Sechtem, S Lenferink, HJ Deutsch, H Diedrichs, J Marcos y Robles, A Llovet, D Gilon, SK Das, WF Armstrong, GM Deeb, KA Eagle. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 2000; 283(7): 897–903
https://doi.org/10.1001/jama.283.7.897 pmid: 10685714
34 W Wang, W Duan, Y Xue, L Wang, J Liu, S Yu, D Yi; the Registry of Aortic Dissection in China (Sino-RAD) Investigators. Clinical features of acute aortic dissection from the Registry of Aortic Dissection in China. J Thorac Cardiovasc Surg 2014; 148(6): 2995–3000
https://doi.org/10.1016/j.jtcvs.2014.07.068 pmid: 25433882
35 J Zheng, J Guo, L Huang, Q Wu, K Yin, L Wang, T Zhang, L Quan, Q Zhao, J Cheng. Genetic diagnosis of acute aortic dissection in South China Han population using next-generation sequencing. Int J Legal Med 2018; 132(5): 1273–1280
https://doi.org/10.1007/s00414-018-1890-9 pmid: 30056620
36 SA LeMaire, ML McDonald, DC Guo, L Russell, CC Miller 3rd, RJ Johnson, MR Bekheirnia, LM Franco, M Nguyen, RE Pyeritz, JE Bavaria, R Devereux, C Maslen, KW Holmes, K Eagle, SC Body, C Seidman, JG Seidman, EM Isselbacher, M Bray, JS Coselli, AL Estrera, HJ Safi, JW Belmont, SM Leal, DM Milewicz. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet 2011; 43(10): 996–1000
https://doi.org/10.1038/ng.934 pmid: 21909107
37 V Tam, N Patel, M Turcotte, Y Bossé, G Paré, D Meyre. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20(8): 467–484
https://doi.org/10.1038/s41576-019-0127-1 pmid: 31068683
38 H Kuivaniemi, G Tromp. Type III collagen (COL3A1): gene and protein structure, tissue distribution, and associated diseases. Gene 2019; 707: 151–171
https://doi.org/10.1016/j.gene.2019.05.003 pmid: 31075413
39 M Pepin, U Schwarze, A Superti-Furga, PH Byers. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 2000; 342(10): 673–680
https://doi.org/10.1056/NEJM200003093421001 pmid: 10706896
40 CJ Lin, CY Lin, NO Stitziel. Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biol 2018; 71-72: 128–143
https://doi.org/10.1016/j.matbio.2018.04.005 pmid: 29656146
41 S D'Hondt, B Guillemyn, D Syx, S Symoens, R De Rycke, L Vanhoutte, W Toussaint, BN Lambrecht, A De Paepe, DR Keene, Y Ishikawa, HP Bächinger, S Janssens, MJM Bertrand, F Malfait. Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biol 2018; 70: 72–83 PMID: 29551664
https://doi.org/10.1016/j.matbio.2018.03.008
[1] FMD-20077-OF-WDW_suppl_1 Download
[1] Hui Xue, Dike Tao, Yuteng Weng, Qiqi Fan, Shuang Zhou, Ruilin Zhang, Han Zhang, Rui Yue, Xiaogang Wang, Zuolin Wang, Yao Sun. Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis[J]. Front. Med., 2019, 13(5): 575-589.
[2] Xuejun Zhang. Exome sequencing greatly expedites the progressive research of Mendelian diseases[J]. Front Med, 2014, 8(1): 42-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed