Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (3) : 404-415    https://doi.org/10.1007/s11684-021-0834-9
REVIEW
Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection
Weibao Song, Hongjuan Zhang, Yu Zhang, Rui Li, Yanxing Han, Yuan Lin(), Jiandong Jiang()
State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
 Download: PDF(556 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Zika virus (ZIKV) is an emerging pathogen associated with neurological complications, such as Guillain–Barré syndrome in adults and microcephaly in fetuses and newborns. This mosquito-borne flavivirus causes important social and sanitary problems owing to its rapid dissemination. However, the development of antivirals against ZIKV is lagging. Although various strategies have been used to study anti-ZIKV agents, approved drugs or vaccines for the treatment (or prevention) of ZIKV infections are currently unavailable. Repurposing clinically approved drugs could be an effective approach to quickly respond to an emergency outbreak of ZIKV infections. The well-established safety profiles and optimal dosage of these clinically approved drugs could provide an economical, safe, and efficacious approach to address ZIKV infections. This review focuses on the recent research and development of agents against ZIKV infection by repurposing clinical drugs. Their characteristics, targets, and potential use in anti-ZIKV therapy are presented. This review provides an update and some successful strategies in the search for anti-ZIKV agents are given.

Keywords Zika virus      clinical drugs      ZIKV inhibitors      antivirals      repurposing     
Corresponding Author(s): Yuan Lin,Jiandong Jiang   
Just Accepted Date: 17 November 2020   Online First Date: 16 December 2020    Issue Date: 18 June 2021
 Cite this article:   
Weibao Song,Hongjuan Zhang,Yu Zhang, et al. Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection[J]. Front. Med., 2021, 15(3): 404-415.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0834-9
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I3/404
Fig.1  Overview of ZIKV replication in the infected cells and the important drug targets that can be inhibited by anti-ZIKV agents discussed in this review.
Name Structure Original use Anti-ZIKV activity Mode of action Drug status References
In vitro EC50 In vivo
Sofosbuvir HCV therapy 0.41 µmol/L Active in C57BL/6J mice Inhibitor of RdRp Class B FDA-approved drug [29,34,42]
Emetine Intestinal amoebiasis and amoebic liver abscess treatment 52.9 nmol/L Active in female SJL mice and Ifnar1/ mice Inhibitor of RdRp FDA-approved drug [47]
Niclosamide Worm infections treatment 0.42–0.54 µmol/L Inhibitor of NS2/NS3 interaction Class B FDA-approved drug [19,30]
Temoporfin Squamous cell carcinoma of the head and neck treatment 0.02–0.027 µmol/L Active in Balb/C mice Inhibitor of NS2/NS3 interaction FDA-approved drug [30,57]
Nitazoxanide Various helminthic and protozoal infections treatment 0.39–1.66 µmol/L Inhibitor of NS2/NS3 interaction Class B FDA-approved drug [30,58]
Novobiocin Antibiotic 26.12–38.14 µg/mL Active in dexamethasone-immunosuppressed mice Inhibitor of NS2/NS3 interaction Class C FDA-approved drug [61]
Bromocriptine Galactorrhea and Parkinson’s disease treatment 13 µmol/L Inhibitor of NS2/NS3 interaction FDA-approved drug [63]
Chloroquine Malaria and rheumatoid arthritis treatment 9.82 µmol/L Active in SJL mice Disrupting the pH-dependent steps of viral replication Class C FDA-approved drug [28,73,74]
Hydroxychloroquine Antimalarial Active in WT pregnant mice Alkalizing intracellular acidic organelles; reducing autophagic activity Class C FDA-approved drug [84,85]
Mefloquine Antimalarial 3.6–10 µmol/L Class B FDA-approved drug [18,92]
Amodiaquine Antimalarial 2.8 µmol/L SCID-beige mice Targeting an early step of viral replication Class C FDA-approved drug [75,94]
Azithromycin Antibiotic 2–15 µmol/L FDA-approved drug [98,100]
Daptomycin Antibiotic 1.0 µmol/L Class B FDA-approved drug [18,102]
Emricasan Hepatic injury and liver fibrosis treatment Inhibiting caspases Phase II clinical trials [19]
Suramin African trypanosomiasis and adult Onchocerca treatment 39.8 µmol/L Affecting virus attaching stage and the release of infectious progeny Investigational [111]
Tab.1  Summary of repurposing drugs described in this review
1 D Musso, DJ Gubler. Zika virus. Clin Microbiol Rev 2016; 29(3): 487–524
https://doi.org/10.1128/CMR.00072-15 pmid: 27029595
2 VM Cao-Lormeau, A Blake, S Mons, S Lastère, C Roche, J Vanhomwegen, T Dub, L Baudouin, A Teissier, P Larre, AL Vial, C Decam, V Choumet, SK Halstead, HJ Willison, L Musset, JC Manuguerra, P Despres, E Fournier, HP Mallet, D Musso, A Fontanet, J Neil, F Ghawché. Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387(10027): 1531–1539
https://doi.org/10.1016/S0140-6736(16)00562-6 pmid: 26948433
3 GM Blohm, JA Lednicky, M Márquez, SK White, JC Loeb, CA Pacheco, DJ Nolan, T Paisie, M Salemi, AJ Rodríguez-Morales, J Glenn Morris Jr, JRC Pulliam, AE Paniz-Mondolfi. Evidence for mother-to-child transmission of Zika virus through breast milk. Clin Infect Dis 2018; 66(7): 1120–1121
https://doi.org/10.1093/cid/cix968 pmid: 29300859
4 DL Heymann, A Hodgson, AA Sall, DO Freedman, JE Staples, F Althabe, K Baruah, G Mahmud, N Kandun, PF Vasconcelos, S Bino, KU Menon. Zika virus and microcephaly: why is this situation a PHEIC? Lancet 2016; 387(10020): 719–721
https://doi.org/10.1016/S0140-6736(16)00320-2 pmid: 26876373
5 AD Haddow, AJ Schuh, CY Yasuda, MR Kasper, V Heang, R Huy, H Guzman, RB Tesh, SC Weaver. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 2012; 6(2): e1477
https://doi.org/10.1371/journal.pntd.0001477 pmid: 22389730
6 A Sinigaglia, S Riccetti, M Trevisan, L Barzon. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018; 13(9): 825–835
https://doi.org/10.1080/17460441.2018.1515909 pmid: 30160181
7 M Baz, G Boivin. Antiviral agents in development for Zika virus infections. Pharmaceuticals (Basel) 2019; 12(3): E101
https://doi.org/10.3390/ph12030101 pmid: 31261947
8 E Mastrangelo, M Milani, M Bollati, B Selisko, F Peyrane, V Pandini, G Sorrentino, B Canard, PV Konarev, DI Svergun, X de Lamballerie, B Coutard, AA Khromykh, M Bolognesi. Crystal structure and activity of Kunjin virus NS3 helicase; protease and helicase domain assembly in the full length NS3 protein. J Mol Biol 2007; 372(2): 444–455
https://doi.org/10.1016/j.jmb.2007.06.055 pmid: 17658551
9 J Lei, G Hansen, C Nitsche, CD Klein, L Zhang, R Hilgenfeld. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 2016; 353(6298): 503–505
https://doi.org/10.1126/science.aag2419 pmid: 27386922
10 B Zhao, G Yi, F Du, YC Chuang, RC Vaughan, B Sankaran, CC Kao, P Li. Structure and function of the Zika virus full-length NS5 protein. Nat Commun 2017; 8(1): 14762
https://doi.org/10.1038/ncomms14762 pmid: 28345656
11 WW Phoo, Y Li, Z Zhang, MY Lee, YR Loh, YB Tan, EY Ng, J Lescar, C Kang, D Luo. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat Commun 2016; 7(1): 13410
https://doi.org/10.1038/ncomms13410 pmid: 27845325
12 M Onorati, Z Li, F Liu, AMM Sousa, N Nakagawa, M Li, MT Dell’Anno, FO Gulden, S Pochareddy, ATN Tebbenkamp, W Han, M Pletikos, T Gao, Y Zhu, C Bichsel, L Varela, K Szigeti-Buck, S Lisgo, Y Zhang, A Testen, XB Gao, J Mlakar, M Popovic, M Flamand, SM Strittmatter, LK Kaczmarek, ES Anton, TL Horvath, BD Lindenbach, N Sestan. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 2016; 16(10): 2576–2592
https://doi.org/10.1016/j.celrep.2016.08.038 pmid: 27568284
13 J Zou, PY Shi. Strategies for Zika drug discovery. Curr Opin Virol 2019; 35: 19–26
https://doi.org/10.1016/j.coviro.2019.01.005 pmid: 30852345
14 SA Shiryaev, C Farhy, A Pinto, CT Huang, N Simonetti, A Elong Ngono, A Dewing, S Shresta, AB Pinkerton, P Cieplak, AY Strongin, AV Terskikh. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res 2017; 143: 218–229
https://doi.org/10.1016/j.antiviral.2017.04.015 pmid: 28461069
15 AA Elfiky, WM Elshemey. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J Med Virol 2018; 90(1): 13–18
https://doi.org/10.1002/jmv.24934 pmid: 28922464
16 G Gadea, S Bos, P Krejbich-Trotot, E Clain, W Viranaicken, C El-Kalamouni, P Mavingui, P Desprès. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology 2016; 497: 157–162
https://doi.org/10.1016/j.virol.2016.07.015 pmid: 27471954
17 X Xie, J Zou, C Shan, Y Yang, DB Kum, K Dallmeier, J Neyts, PY Shi. Zika virus replicons for drug discovery. EBioMedicine 2016; 12: 156–160
https://doi.org/10.1016/j.ebiom.2016.09.013 pmid: 27658737
18 NJ Barrows, RK Campos, ST Powell, KR Prasanth, G Schott-Lerner, R Soto-Acosta, G Galarza-Muñoz, EL McGrath, R Urrabaz-Garza, J Gao, P Wu, R Menon, G Saade, I Fernandez-Salas, SL Rossi, N Vasilakis, A Routh, SS Bradrick, MA Garcia-Blanco. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 2016; 20(2): 259–270
https://doi.org/10.1016/j.chom.2016.07.004 pmid: 27476412
19 M Xu, EM Lee, Z Wen, Y Cheng, WK Huang, X Qian, J Tcw, J Kouznetsova, SC Ogden, C Hammack, F Jacob, HN Nguyen, M Itkin, C Hanna, P Shinn, C Allen, SG Michael, A Simeonov, W Huang, KM Christian, A Goate, KJ Brennand, R Huang, M Xia, GL Ming, W Zheng, H Song, H Tang. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016; 22(10): 1101–1107
https://doi.org/10.1038/nm.4184 pmid: 27571349
20 A Wilder-Smith, K Vannice, A Durbin, J Hombach, SJ Thomas, I Thevarjan, CP Simmons. Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Med 2018; 16(1): 84
https://doi.org/10.1186/s12916-018-1067-x pmid: 29871628
21 MS Diamond, JE Ledgerwood, TC Pierson. Zika virus vaccine development: progress in the face of new challenges. Annu Rev Med 2019; 70(1): 121–135
https://doi.org/10.1146/annurev-med-040717-051127 pmid: 30388054
22 M Allison. NCATS launches drug repurposing program. Nat Biotechnol 2012; 30(7): 571–572
https://doi.org/10.1038/nbt0712-571a pmid: 22781662
23 AK Konreddy, GU Rani, K Lee, Y Choi. Recent drug-repurposing-driven advances in the discovery of novel antibiotics. Curr Med Chem 2019; 26(28): 5363–5388
https://doi.org/10.2174/0929867325666180706101404 pmid: 29984648
24 K Dandu, PR Kallamadi, SS Thakur, CM Rao. Drug repurposing for retinoblastoma: recent advances. Curr Top Med Chem 2019; 19(17): 1535–1544
https://doi.org/10.2174/1568026619666190119152706 pmid: 30659544
25 Y Han, T Mesplède. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update. Expert Opin Investig Drugs 2018; 27(12): 951–962
https://doi.org/10.1080/13543784.2018.1548609 pmid: 30430882
26 J Devillers. Repurposing drugs for use against Zika virus infection. SAR QSAR Environ Res 2018; 29(2): 103–115
https://doi.org/10.1080/1062936X.2017.1411642 pmid: 29299939
27 M Schlitzer. Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem 2007; 2(7): 944–986
https://doi.org/10.1002/cmdc.200600240 pmid: 17530725
28 R Delvecchio, LM Higa, P Pezzuto, AL Valadão, PP Garcez, FL Monteiro, EC Loiola, AA Dias, FJ Silva, MT Aliota, EA Caine, JE Osorio, M Bellio, DH O’Connor, S Rehen, RS de Aguiar, A Savarino, L Campanati, A Tanuri. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 2016; 8(12): E322
https://doi.org/10.3390/v8120322 pmid: 27916837
29 CQ Sacramento, GR de Melo, CS de Freitas, N Rocha, LV Hoelz, M Miranda, N Fintelman-Rodrigues, A Marttorelli, AC Ferreira, G Barbosa-Lima, JL Abrantes, YR Vieira, MM Bastos, E de Mello Volotão, EP Nunes, DA Tschoeke, L Leomil, EC Loiola, P Trindade, SK Rehen, FA Bozza, PT Bozza, N Boechat, FL Thompson, AM de Filippis, K Brüning, TM Souza. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci Rep 2017; 7(1): 40920
https://doi.org/10.1038/srep40920 pmid: 28098253
30 Z Li, M Brecher, YQ Deng, J Zhang, S Sakamuru, B Liu, R Huang, CA Koetzner, CA Allen, SA Jones, H Chen, NN Zhang, M Tian, F Gao, Q Lin, N Banavali, J Zhou, N Boles, M Xia, LD Kramer, CF Qin, H Li. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 2017; 27(8): 1046–1064
https://doi.org/10.1038/cr.2017.88 pmid: 28685770
31 MN Patel, MD Halling-Brown, JE Tym, P Workman, B Al-Lazikani. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov 2013; 12(1): 35–50
https://doi.org/10.1038/nrd3913 pmid: 23274470
32 F Napolitano, Y Zhao, VM Moreira, R Tagliaferri, J Kere, M D’Amato, D Greco. Drug repositioning: a machine-learning approach through data integration. J Cheminform 2013; 5(1): 30
https://doi.org/10.1186/1758-2946-5-30 pmid: 23800010
33 A Pujol, R Mosca, J Farrés, P Aloy. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 2010; 31(3): 115–123
https://doi.org/10.1016/j.tips.2009.11.006 pmid: 20117850
34 KM Bullard-Feibelman, J Govero, Z Zhu, V Salazar, M Veselinovic, MS Diamond, BJ Geiss. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res 2017; 137: 134–140
https://doi.org/10.1016/j.antiviral.2016.11.023 pmid: 27902933
35 PK Mehrotra, S Kitchlu, A Dwivedi, PK Agnihotri, S Srivastava, R Roy, AP Bhaduri. Emetine ditartrate: a possible lead for emergency contraception. Contraception 2004; 69(5): 379–387
https://doi.org/10.1016/j.contraception.2003.12.011 pmid: 15105060
36 N Novac. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 2013; 34(5): 267–272
https://doi.org/10.1016/j.tips.2013.03.004 pmid: 23582281
37 D Chopra, B Bhandari. Sofosbuvir: really meets the unmet needs for hepatitis C treatment? Infect Disord Drug Targets 2020; 20(1): 2–15
https://doi.org/10.2174/1871526518666180816101124 pmid: 30113002
38 HK Bhatia, H Singh, N Grewal, NK Natt. Sofosbuvir: a novel treatment option for chronic hepatitis C infection. J Pharmacol Pharmacother 2014; 5(4): 278–284
https://doi.org/10.4103/0976-500X.142464 pmid: 25422576
39 E Murakami, T Tolstykh, H Bao, C Niu, HM Steuer, D Bao, W Chang, C Espiritu, S Bansal, AM Lam, MJ Otto, MJ Sofia, PA Furman. Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J Biol Chem 2010; 285(45): 34337–34347
https://doi.org/10.1074/jbc.M110.161802 pmid: 20801890
40 DA Herbst Jr, KR Reddy. Sofosbuvir, a nucleotide polymerase inhibitor, for the treatment of chronic hepatitis C virus infection. Expert Opin Investig Drugs 2013; 22(4): 527–536
https://doi.org/10.1517/13543784.2013.775246 pmid: 23448131
41 J Liu, J Du, P Wang, D Nagarathnam, CL Espiritu, H Bao, E Murakami, PA Furman, MJA Sofia. A 2′-deoxy-2′-fluoro-2′-C-methyl uridine cyclopentyl carbocyclic analog and its phosphoramidate prodrug as inhibitors of HCV NS5B polymerase. Nucleosides Nucleotides Nucleic Acids 2012; 31(4): 277–285
https://doi.org/10.1080/15257770.2012.658131 pmid: 22444190
42 N Mumtaz, LC Jimmerson, LR Bushman, JJ Kiser, G Aron, CBEM Reusken, MPG Koopmans, JJA van Kampen. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antiviral Res 2017; 146: 161–163
https://doi.org/10.1016/j.antiviral.2017.09.004 pmid: 28912011
43 HT Xu, SA Hassounah, SP Colby-Germinario, M Oliveira, C Fogarty, Y Quan, Y Han, O Golubkov, I Ibanescu, B Brenner, BR Stranix, MA Wainberg. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. J Antimicrob Chemother 2017; 72(3): 727–734
https://doi.org/10.1093/jac/dkw514 pmid: 28069884
44 H Matthews, M Usman-Idris, F Khan, M Read, N Nirmalan. Drug repositioning as a route to anti-malarial drug discovery: preliminary investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride hydrate. Malar J 2013; 12(1): 359
https://doi.org/10.1186/1475-2875-12-359 pmid: 24107123
45 S Krstin, T Mohamed, X Wang, M Wink. How do the alkaloids emetine and homoharringtonine kill trypanosomes? An insight into their molecular modes of action. Phytomedicine 2016; 23(14): 1771–1777
https://doi.org/10.1016/j.phymed.2016.10.008 pmid: 27912879
46 M Saif. Treatment of amoebiasis. J Egypt Public Health Assoc 1973; 48(3): 159–166
pmid: 4760109
47 S Yang, M Xu, EM Lee, K Gorshkov, SA Shiryaev, S He, W Sun, YS Cheng, X Hu, AM Tharappel, B Lu, A Pinto, C Farhy, CT Huang, Z Zhang, W Zhu, Y Wu, Y Zhou, G Song, H Zhu, K Shamim, C Martínez-Romero, A García-Sastre, RA Preston, DT Jayaweera, R Huang, W Huang, M Xia, A Simeonov, G Ming, X Qiu, AV Terskikh, H Tang, H Song, W Zheng. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov 2018; 4(1): 31
https://doi.org/10.1038/s41421-018-0034-1 pmid: 29872540
48 Y Lin, H Zhang, W Song, S Si, Y Han, J Jiang. Identification and characterization of Zika virus NS5 RNA-dependent RNA polymerase inhibitors. Int J Antimicrob Agents 2019; 54(4): 502–506
https://doi.org/10.1016/j.ijantimicag.2019.07.010 pmid: 31310806
49 S Helms, A Miller. Natural treatment of chronic rhinosinusitis. Altern Med Rev 2006; 11(3): 196–207
pmid: 17217321
50 JG Julander, V Siddharthan, J Evans, R Taylor, K Tolbert, C Apuli, J Stewart, P Collins, M Gebre, S Neilson, A Van Wettere, YM Lee, WP Sheridan, JD Morrey, YS Babu. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res 2017; 137: 14–22
https://doi.org/10.1016/j.antiviral.2016.11.003 pmid: 27838352
51 A Munjal, R Khandia, K Dhama, S Sachan, K Karthik, R Tiwari, YS Malik, D Kumar, RK Singh, HMN Iqbal, SK Joshi. Advances in developing therapies to combat Zika virus: current knowledge and future perspectives. Front Microbiol 2017; 8: 1469
https://doi.org/10.3389/fmicb.2017.01469 pmid: 28824594
52 A Kumar, B Liang, M Aarthy, SK Singh, N Garg, IU Mysorekar, R Giri. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega 2018; 3(12): 18132–18141
https://doi.org/10.1021/acsomega.8b01002 pmid: 30613818
53 CL Murray, CT Jones, CM Rice. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008; 6(9): 699–708
https://doi.org/10.1038/nrmicro1928 pmid: 18587411
54 P Erbel, N Schiering, A D’Arcy, M Renatus, M Kroemer, SP Lim, Z Yin, TH Keller, SG Vasudevan, U Hommel. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 2006; 13(4): 372–373
https://doi.org/10.1038/nsmb1073 pmid: 16532006
55 C Kang, TH Keller, D Luo. Zika virus protease: an antiviral drug target. Trends Microbiol 2017; 25(10): 797–808
https://doi.org/10.1016/j.tim.2017.07.001 pmid: 28789826
56 Z Li, M Brecher, YQ Deng, J Zhang, S Sakamuru, B Liu, R Huang, CA Koetzner, CA Allen, SA Jones, H Chen, NN Zhang, M Tian, F Gao, Q Lin, N Banavali, J Zhou, N Boles, M Xia, LD Kramer, CF Qin, H Li. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 2017; 27(8): 1046–1064
https://doi.org/10.1038/cr.2017.88 pmid: 28685770
57 I Yakavets, HP Lassalle, D Scheglmann, A Wiehe, V Zorin, L Bezdetnaya. Temoporfin-in-cyclodextrin-in-liposome—a new approach for anticancer drug delivery: the optimization of composition. Nanomaterials (Basel) 2018; 8(10): E847
https://doi.org/10.3390/nano8100847 pmid: 30340318
58 JF Rossignol. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res 2014; 110: 94–103
https://doi.org/10.1016/j.antiviral.2014.07.014 pmid: 25108173
59 Z Shi, J Wei, X Deng, S Li, Y Qiu, D Shao, B Li, K Zhang, F Xue, X Wang, Z Ma. Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Virol J 2014; 11(1): 10
https://doi.org/10.1186/1743-422X-11-10 pmid: 24456815
60 OH Rizk, MG Bekhit, AAB Hazzaa, EM El-Khawass, IA Abdelwahab. Synthesis, antibacterial evaluation, and DNA gyrase inhibition profile of some new quinoline hybrids. Arch Pharm (Weinheim) 2019; 352(10): e1900086
https://doi.org/10.1002/ardp.201900086 pmid: 31389630
61 S Yuan, JF Chan, H den-Haan, KK Chik, AJ Zhang, CC Chan, VK Poon, CC Yip, WW Mak, Z Zhu, Z Zou, KM Tee, JP Cai, KH Chan, J de la Peña, H Pérez-Sánchez, JP Cerón-Carrasco, KY Yuen. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection invitro and invivo. Antiviral Res 2017; 145: 33–43
https://doi.org/10.1016/j.antiviral.2017.07.007 pmid: 28712942
62 RH Flatman, A Eustaquio, SM Li, L Heide, A Maxwell. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob Agents Chemother 2006; 50(4): 1136–1142
https://doi.org/10.1128/AAC.50.4.1136-1142.2006 pmid: 16569821
63 JF Chan, KK Chik, S Yuan, CC Yip, Z Zhu, KM Tee, JO Tsang, CC Chan, VK Poon, G Lu, AJ Zhang, KK Lai, KH Chan, RY Kao, KY Yuen. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141: 29–37
https://doi.org/10.1016/j.antiviral.2017.02.002 pmid: 28185815
64 OJ Ginther, VG Santos, RA Mir, MA Beg. Role of LH in the progesterone increase during the bromocriptine-induced prolactin decrease in heifers. Theriogenology 2012; 78(9): 1969–1976
https://doi.org/10.1016/j.theriogenology.2012.08.003 pmid: 23110952
65 Y Li, Z Zhang, WW Phoo, YR Loh, R Li, HY Yang, AE Jansson, J Hill, TH Keller, K Nacro, D Luo, C Kang. Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure 2018; 26(4): 555–564.e3
https://doi.org/10.1016/j.str.2018.02.005 pmid: 29526431
66 Y Geng, L Kohli, BJ Klocke, KA Roth. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol 2010; 12(5): 473–481
pmid: 20406898
67 X Zhu, Y Pan, Y Li, Y Jiang, H Shang, DC Gowda, L Cui, Y Cao. Targeting Toll-like receptors by chloroquine protects mice from experimental cerebral malaria. Int Immunopharmacol 2012; 13(4): 392–397
https://doi.org/10.1016/j.intimp.2012.05.012 pmid: 22659438
68 DJ Browning. Pharmacology of chloroquine and hydroxychloroquine. In: Hydroxychloroquine and Chloroquine Retinopathy. New York: Springer, 2014: 35–63
https://doi.org/10.1007/978-1-4939-0597-3_2
69 WP Tsai, PL Nara, HF Kung, S Oroszlan. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 1990; 6(4): 481–489
https://doi.org/10.1089/aid.1990.6.481 pmid: 1692728
70 KJ Farias, PR Machado, BA da Fonseca. Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells. ScientificWorldJournal 2013; 2013: 282734
https://doi.org/10.1155/2013/282734 pmid: 23431254
71 YZ Zhu, QQ Xu, DG Wu, H Ren, P Zhao, WG Lao, Y Wang, QY Tao, XJ Qian, YH Wei, MM Cao, ZT Qi. Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol 2012; 86(24): 13407–13422
https://doi.org/10.1128/JVI.00903-12 pmid: 23015720
72 EE Ooi, JS Chew, JP Loh, RC Chua. In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 2006; 3(1): 39
https://doi.org/10.1186/1743-422X-3-39 pmid: 16729896
73 Y Zhu, Y Lin, X Liu, W Hu, Y Wang. Identification of AcAP5 as a novel factor Xa inhibitor with both direct and allosteric inhibition. Biochem Biophys Res Commun 2017; 483(1): 495–501
https://doi.org/10.1016/j.bbrc.2016.12.116 pmid: 28007598
74 SA Shiryaev, P Mesci, A Pinto, I Fernandes, N Sheets, S Shresta, C Farhy, CT Huang, AY Strongin, AR Muotri, AV Terskikh. Repurposing of the anti-malaria drug chloroquine for Zika virus treatment and prophylaxis. Sci Rep 2017; 7(1): 15771
https://doi.org/10.1038/s41598-017-15467-6 pmid: 29150641
75 Y Han, T Mesplède, H Xu, Y Quan, MA Wainberg. The antimalarial drug amodiaquine possesses anti-Zika virus activities. J Med Virol 2018; 90(5): 796–802
https://doi.org/10.1002/jmv.25031 pmid: 29315671
76 I Law, KF Ilett, LP Hackett, M Page-Sharp, F Baiwog, S Gomorrai, I Mueller, HA Karunajeewa, TM Davis. Transfer of chloroquine and desethylchloroquine across the placenta and into milk in Melanesian mothers. Br J Clin Pharmacol 2008; 65(5): 674–679
https://doi.org/10.1111/j.1365-2125.2008.03111.x pmid: 18279478
77 G Ruiz-Irastorza, MA Khamashta. Hydroxychloroquine: the cornerstone of lupus therapy. Lupus 2008; 17(4): 271–273
https://doi.org/10.1177/0961203307086643 pmid: 18413405
78 T Dörner. Hydroxychloroquine in SLE: old drug, new perspectives. Nat Rev Rheumatol 2010; 6(1): 10–11
https://doi.org/10.1038/nrrheum.2009.235 pmid: 20046202
79 I Ben-Zvi, S Kivity, P Langevitz, Y Shoenfeld. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 2012; 42(2): 145–153
https://doi.org/10.1007/s12016-010-8243-x pmid: 21221847
80 RW Berliner, DP Earle Jr, JV Taggart, CG Zubrod, WJ Welch, NJ Conan, E Bauman, ST Scudder, JA Shannon. Studies on the chemotherapy of the human malarias; of the human malarias the physiological disposition, antimalarial activity, and toxicity of several derivatives of 4-aminoquinoline. J Clin Invest 1948; 27(3): 98–107
https://doi.org/10.1172/JCI101980 pmid: 18860187
81 R Tzekov. Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol 2005; 110(1): 111–120
https://doi.org/10.1007/s10633-005-7349-6 pmid: 16249962
82 EO Titus. Recent developments in the understanding of the pharmacokinetics and mechanism of action of chloroquine. Ther Drug Monit 1989; 11(4): 369–379
https://doi.org/10.1097/00007691-198907000-00001 pmid: 2662478
83 PM O’Neill, PG Bray, SR Hawley, SA Ward, BK Park. 4-Aminoquinolines—past, present, and future: a chemical perspective. Pharmacol Ther 1998; 77(1): 29–58
https://doi.org/10.1016/S0163-7258(97)00084-3 pmid: 9500158
84 JM Rolain, P Colson, D Raoult. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 2007; 30(4): 297–308
https://doi.org/10.1016/j.ijantimicag.2007.05.015 pmid: 17629679
85 B Cao, LA Parnell, MS Diamond, IU Mysorekar. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med 2017; 214(8): 2303–2313
https://doi.org/10.1084/jem.20170957 pmid: 28694387
86 YC Kaplan, J Ozsarfati, C Nickel, G Koren. Reproductive outcomes following hydroxychloroquine use for autoimmune diseases: a systematic review and meta-analysis. Br J Clin Pharmacol 2016; 81(5): 835–848
https://doi.org/10.1111/bcp.12872 pmid: 26700396
87 S Pukrittayakamee, M Imwong, S Looareesuwan, NJ White. Therapeutic responses to antimalarial and antibacterial drugs in vivax malaria. Acta Trop 2004; 89(3): 351–356
https://doi.org/10.1016/j.actatropica.2003.10.012 pmid: 14744561
88 KJ Palmer, SM Holliday, RN Brogden. Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1993; 45(3): 430–475
https://doi.org/10.2165/00003495-199345030-00009 pmid: 7682911
89 Y Liu, S Chen, R Xue, J Zhao, M Di. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway. Biochem Biophys Res Commun 2016; 470(2): 350–355
https://doi.org/10.1016/j.bbrc.2016.01.046 pmid: 26780727
90 D Krieger, S Vesenbeckh, N Schönfeld, G Bettermann, TT Bauer, H Rüssmann, H Mauch. Mefloquine as a potential drug against multidrug-resistant tuberculosis. Eur Respir J 2015; 46(5): 1503–1505
https://doi.org/10.1183/13993003.00321-2015 pmid: 26206875
91 M Brickelmaier, A Lugovskoy, R Kartikeyan, MM Reviriego-Mendoza, N Allaire, K Simon, RJ Frisque, L Gorelik. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob Agents Chemother 2009; 53(5): 1840–1849
https://doi.org/10.1128/AAC.01614-08 pmid: 19258267
92 G Barbosa-Lima, AM Moraes, ADS Araújo, ET da Silva, CS de Freitas, YR Vieira, A Marttorelli, JC Neto, PT Bozza, MVN de Souza, TML Souza. 2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur J Med Chem 2017; 127: 334–340
https://doi.org/10.1016/j.ejmech.2016.12.058 pmid: 28068604
93 S Qiao, S Tao, M Rojo de la Vega, SL Park, AA Vonderfecht, SL Jacobs, DD Zhang, GT Wondrak. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death. Autophagy 2013; 9(12): 2087–2102
https://doi.org/10.4161/auto.26506 pmid: 24113242
94 T Zhou, L Tan, GY Cederquist, Y Fan, BJ Hartley, S Mukherjee, M Tomishima, KJ Brennand, Q Zhang, RE Schwartz, T Evans, L Studer, S Chen. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 2017; 21(2): 274–283.e5
https://doi.org/10.1016/j.stem.2017.06.017 pmid: 28736217
95 L Zilbermintz, W Leonardi, SY Jeong, M Sjodt, R McComb, CL Ho, C Retterer, D Gharaibeh, R Zamani, V Soloveva, S Bavari, A Levitin, J West, KA Bradley, RT Clubb, SN Cohen, V Gupta, M Martchenko. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting. Sci Rep 2015; 5(1): 13476
https://doi.org/10.1038/srep13476 pmid: 26310922
96 AR Parhizgar, A Tahghighi. Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci 2017; 42(2): 115–128
pmid: 28360437
97 M Sarkar, C Woodland, G Koren, AR Einarson. Pregnancy outcome following gestational exposure to azithromycin. BMC Pregnancy Childbirth 2006; 6(1): 18
https://doi.org/10.1186/1471-2393-6-18 pmid: 16734900
98 H Retallack, E Di Lullo, C Arias, KA Knopp, MT Laurie, C Sandoval-Espinosa, WR Mancia Leon, R Krencik, EM Ullian, J Spatazza, AA Pollen, C Mandel-Brehm, TJ Nowakowski, AR Kriegstein, JL DeRisi. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA 2016; 113(50): 14408–14413
https://doi.org/10.1073/pnas.1618029113 pmid: 27911847
99 PS Ramsey, MB Vaules, GM Vasdev, WW Andrews, KD Ramin. Maternal and transplacental pharmacokinetics of azithromycin. Am J Obstet Gynecol 2003; 188(3): 714–718
https://doi.org/10.1067/mob.2003.141 pmid: 12634646
100 MW Kemp, Y Miura, MS Payne, AH Jobe, SG Kallapur, M Saito, SJ Stock, OB Spiller, DJ Ireland, N Yaegashi, M Clarke, D Hahne, J Rodger, JA Keelan, JP Newnham. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. Antimicrob Agents Chemother 2014; 58(11): 6581–6591
https://doi.org/10.1128/AAC.03721-14 pmid: 25155606
101 DA Enoch, JM Bygott, ML Daly, JA Karas. Daptomycin. J Infect 2007; 55(3): 205–213
https://doi.org/10.1016/j.jinf.2007.05.180 pmid: 17629567
102 BI Eisenstein. Lipopeptides, focusing on daptomycin, for the treatment of Gram-positive infections. Expert Opin Investig Drugs 2004; 13(9): 1159–1169
https://doi.org/10.1517/13543784.13.9.1159 pmid: 15330747
103 DM Shoemaker, J Simou, WE Roland. A review of daptomycin for injection (Cubicin) in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manag 2006; 2(2): 169–174
https://doi.org/10.2147/tcrm.2006.2.2.169 pmid: 18360590
104 M Dei Cas, E Casagni, V Gambaro, E Cesari, G Roda. Determination of daptomycin in human plasma and breast milk by UPLC/MS-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1116: 38–43
https://doi.org/10.1016/j.jchromb.2019.03.036 pmid: 30953921
105 M McCall, C Toso, J Emamaullee, R Pawlick, R Edgar, J Davis, A Maciver, T Kin, R Arch, AM Shapiro. The caspase inhibitor IDN-6556 (PF3491390) improves marginal mass engraftment after islet transplantation in mice. Surgery 2011; 150(1): 48–55
https://doi.org/10.1016/j.surg.2011.02.023 pmid: 21596412
106 JJ Haddad. Current opinion on 3-[2-[(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid, an investigational drug targeting caspases and caspase-like proteases: the clinical trials in sight and recent anti-inflammatory advances. Recent Pat Inflamm Allergy Drug Discov 2013; 7(3): 229–258
https://doi.org/10.2174/1872213X113079990017 pmid: 23859695
107 NC Hoglen, LS Chen, CD Fisher, BP Hirakawa, T Groessl, PC Contreras. Characterization of IDN-6556 (3-[2-(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase inhibitor. J Pharmacol Exp Ther 2004; 309(2): 634–640
https://doi.org/10.1124/jpet.103.062034 pmid: 14742742
108 FJ Barreyro, S Holod, PV Finocchietto, AM Camino, JB Aquino, A Avagnina, MC Carreras, JJ Poderoso, GJ Gores. The pan-caspase inhibitor emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015; 35(3): 953–966
https://doi.org/10.1111/liv.12570 pmid: 24750664
109 ML Shiffman, P Pockros, JG McHutchison, ER Schiff, M Morris, G Burgess. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor — a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment Pharmacol Ther 2010; 31(9): 969–978
https://doi.org/10.1111/j.1365-2036.2010.04264.x pmid: 20163376
110 BO Duke. The effects of drugs on Onchocerca volvulus. 3. Trials of suramin at different dosages and a comparison of the brands Antrypol, Moranyl and Naganol. Bull World Health Organ 1968; 39(2): 157–167
pmid: 4881068
111 IC Albulescu, K Kovacikova, A Tas, EJ Snijder, MJ van Hemert. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res 2017; 143: 230–236
https://doi.org/10.1016/j.antiviral.2017.04.016 pmid: 28461070
[1] Xiaohuan Wang, Peng Zou, Fan Wu, Lu Lu, Shibo Jiang. Development of small-molecule viral inhibitors targeting various stages of the life cycle of emerging and re-emerging viruses[J]. Front. Med., 2017, 11(4): 449-461.
[2] Qanta A. Ahmed,Ziad A. Memish. Yellow fever and Hajj: with all eyes on Zika, a familiar flavivirus remains a threat[J]. Front. Med., 2016, 10(4): 527-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed