|
|
|
Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis |
Jiansong Huang1,2( ), Xin Huang1,2, Yang Li3, Xia Li1,2, Jinghan Wang1,2, Fenglin Li1,2, Xiao Yan4, Huanping Wang1,2, Yungui Wang1,2, Xiangjie Lin1,2, Jifang Tu1,2, Daqiang He5, Wenle Ye1,2, Min Yang1,2, Jie Jin1,6( ) |
1. Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China 2. Institute of Hematology, Zhejiang University School of Medicine, Hangzhou 310003, China 3. Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China 4. Department of Hematology, Qingdao Municipal Hospital, Qingdao 266000, China 5. Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China 6. Cancer Center, Zhejiang University, Hangzhou 310058, China |
|
|
|
|
Abstract Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton’s tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
|
| Keywords
abivertinib
Btk inhibitor
platelet
megakaryocyte
megakaryopoiesis
thrombopoiesis
|
|
Corresponding Author(s):
Jiansong Huang,Jie Jin
|
|
Just Accepted Date: 19 August 2021
Online First Date: 18 November 2021
Issue Date: 18 July 2022
|
|
| 1 |
J Huang, X Li, X Shi, M Zhu, J Wang, S Huang, X Huang, H Wang, L Li, H Deng, Y Zhou, J Mao, Z Long, Z Ma, W Ye, J Pan, X Xi, J Jin. Platelet integrin aIIbb3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12(1): 26
https://doi.org/10.1186/s13045-019-0709-6
pmid: 30845955
|
| 2 |
PEJ van der Meijden, JWM Heemskerk. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16(3): 166–179
https://doi.org/10.1038/s41569-018-0110-0
pmid: 30429532
|
| 3 |
W Zhang, C Zha, X Lu, R Jia, F Gao, Q Sun, M Jin, Y Liu. Anti-b2GPI/b2GPI complexes induce platelet activation and promote thrombosis via p38MAPK: a pathway to targeted therapies. Front Med 2019; 13(6): 680–689
https://doi.org/10.1007/s11684-018-0673-5
pmid: 30820805
|
| 4 |
E Lefrançais, G Ortiz-Muñoz, A Caudrillier, B Mallavia, F Liu, DM Sayah, EE Thornton, MB Headley, T David, SR Coughlin, MF Krummel, AD Leavitt, E Passegué, MR Looney. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544(7648): 105–109
https://doi.org/10.1038/nature21706
pmid: 28329764
|
| 5 |
YR Espasandin, AC Glembotsky , M Grodzielski, PR Lev, NP Goette, FC Molinas, RF Marta, PG Heller. Anagrelide platelet-lowering effect is due to inhibition of both megakaryocyte maturation and proplatelet formation: insight into potential mechanisms. J Thromb Haemost 2015; 13(4): 631–642
https://doi.org/10.1111/jth.12850
pmid: 25604267
|
| 6 |
CA Di Buduo, M Currao, A Pecci, DL Kaplan, CL Balduini, A Balduini. Revealing eltrombopag’s promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica 2016; 101(12): 1479–1488
https://doi.org/10.3324/haematol.2016.146746
pmid: 27515246
|
| 7 |
J Wang, Z Yi, S Wang, Z Li. The effect of decitabine on megakaryocyte maturation and platelet release. Thromb Haemost 2011; 106(2): 337–343
https://doi.org/10.1160/TH10-11-0744
pmid: 21713321
|
| 8 |
J Thiele, HM Kvasnicka, A Schmitt-Graeff. Effects of anagrelide on megakaryopoiesis and platelet production. Semin Thromb Hemost 2006; 32(4 Pt 2): 352–361
https://doi.org/10.1055/s-2006-942756
pmid: 16810611
|
| 9 |
X Xu, L Mao, W Xu, W Tang, X Zhang, B Xi, R Xu, X Fang, J Liu, C Fang, L Zhao, X Wang, J Jiang, P Hu, H Zhao, L Zhang. AC0010, an irreversible EGFR inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance in animal models and lung cancer patients. Mol Cancer Ther 2016; 15(11): 2586–2597
https://doi.org/10.1158/1535-7163.MCT-16-0281
pmid: 27573423
|
| 10 |
Y Ma, X Zheng, H Zhao, W Fang, Y Zhang, J Ge, L Wang, W Wang, J Jiang, S Chuai, Z Zhang, W Xu, X Xu, P Hu, L Zhang. First-in-human phase I study of AC0010, a mutant-selective EGFR inhibitor in non-small cell lung cancer: safety, efficacy, and potential mechanism of resistance. J Thorac Oncol 2018; 13(7): 968–977
https://doi.org/10.1016/j.jtho.2018.03.025
pmid: 29626621
|
| 11 |
S Benbarche, C Strassel, C Angénieux, L Mallo, M Freund, C Gachet, F Lanza, H de la Salle. Dual role of IL-21 in megakaryopoiesis and platelet homeostasis. Haematologica 2017; 102(4): 637–646
https://doi.org/10.3324/haematol.2016.143958
pmid: 28057742
|
| 12 |
Y Yamashita, A Miyazato, R Shimizu, N Komatsu, Y Miura, K Ozawa, H Mano. Tec protein-tyrosine kinase is involved in the thrombopoietin/c-Mpl signaling pathway. Exp Hematol 1997; 25(3): 211–216
pmid: 9091296
|
| 13 |
H Avraham, DJ Price. Regulation of megakaryocytopoiesis and platelet production by tyrosine kinases and tyrosine phosphatases. Methods 1999; 17(3): 250–264
https://doi.org/10.1006/meth.1998.0735
pmid: 10080910
|
| 14 |
V Sangkhae, SJ Saur, A Kaushansky, K Kaushansky, IS Hitchcock. Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling. Exp Hematol 2014; 42(6): 477–486.e4
https://doi.org/10.1016/j.exphem.2014.02.007
pmid: PMID: 24607955
|
| 15 |
ML Wang, KA Blum, P Martin, A Goy, R Auer, BS Kahl, W Jurczak, RH Advani, JE Romaguera, ME Williams, JC Barrientos, E Chmielowska, J Radford, S Stilgenbauer, M Dreyling, WW Jedrzejczak, P Johnson, SE Spurgeon, L Zhang, L Baher, M Cheng, D Lee, DM Beaupre, S Rule. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood 2015; 126(6): 739–745
https://doi.org/10.1182/blood-2015-03-635326
pmid: 26059948
|
| 16 |
X Yan, Y Zhou, S Huang, X Li, M Yu, J Huang, J Wang, Z Ma, J Jin, J Pan, C Li, F Li, J Jin. Promising efficacy of novel BTK inhibitor AC0010 in mantle cell lymphoma. J Cancer Res Clin Oncol 2018; 144(4): 697–706
https://doi.org/10.1007/s00432-017-2570-8
pmid: 29392403
|
| 17 |
S Huang, M Yu, N Shi, Y Zhou, F Li, X Li, X Huang, J Jin. Apigenin and abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer 2020; 11(8): 2123–2132
https://doi.org/10.7150/jca.34981
pmid: 32127939
|
| 18 |
S Huang, C Li, X Zhang, J Pan, F Li, Y Lv, J Huang, Q Ling, W Ye, S Mao, X Huang, J Jin. Abivertinib synergistically strengthens the anti-leukemia activity of venetoclax in acute myeloid leukemia in a BTK-dependent manner. Mol Oncol 2020; 14(10): 2560–2573
https://doi.org/10.1002/1878-0261.12742
pmid: 32519423
|
| 19 |
S Huang, J Pan, J Jin, C Li, X Li, J Huang, X Huang, X Yan, F Li, M Yu, C Hu, J Jin, Y Xu, Q Ling, W Ye, Y Wang, J Jin. Abivertinib, a novel BTK inhibitor: anti-leukemia effects and synergistic efficacy with homoharringtonine in acute myeloid leukemia. Cancer Lett 2019; 461: 132–143
https://doi.org/10.1016/j.canlet.2019.07.008
pmid: 31310800
|
| 20 |
M Yang, J Qian, J Huang, Y Jiao, W Tang, X Xu, W Xu, FR Luo, J Jin. A phase I study of the BTK inhibitor abivertinib (AC0010) in patients with relapsed or refractory B-cell lymphoma. HemaSphere 2019; 3(S1): 210 doi: 10.1097/01.HS9.0000560160.25056.77
|
| 21 |
M Ogura , Y Morishima , R Ohno , Y Kato , N Hirabayashi , H Nagura , H Saito . Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 1985; 66(6): 1384–1392
https://doi.org/10.1182/blood.V66.6.1384.1384
pmid: 2998511
|
| 22 |
JI Hearn, TN Green, M Chopra, YNS Nursalim, L Ladvanszky, N Knowlton, C Blenkiron, RC Poulsen, DC Singleton, SK Bohlander, ML Kalev-Zylinska . N-methyl-D-aspartate receptor hypofunction in Meg-01 cells reveals a role for intracellular calcium homeostasis in balancing megakaryocytic-erythroid differentiation. Thromb Haemost 2020; 120(4): 671–686
https://doi.org/10.1055/s-0040-1708483
pmid: 32289863
|
| 23 |
X Su, J Mi, J Yan, P Flevaris, Y Lu, H Liu, Z Ruan, X Wang, N Kieffer, S Chen, X Du, X Xi. RGT, a synthetic peptide corresponding to the integrin b3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin aIIbb3 with Src kinase. Blood 2008; 112(3): 592–602 doi:10.1182/blood-2007-09-110437
pmid: 18398066
|
| 24 |
H Yin, RI Litvinov, G Vilaire, H Zhu, W Li, GA Caputo, DT Moore, JD Lear, JW Weisel, WF Degrado, JS Bennett. Activation of platelet αIIbβ3 by an exogenous peptide corresponding to the transmembrane domain of αIIb. J Biol Chem 2006; 281(48): 36732–36741
https://doi.org/10.1074/jbc.M605877200
pmid: 17032655
|
| 25 |
D Liu, WF DeGrado. De novo design, synthesis, and characterization of antimicrobial b-peptides. J Am Chem Soc 2001; 123(31): 7553–7559
https://doi.org/10.1021/ja0107475
pmid: 11480975
|
| 26 |
J Perdomo, F Yan, HHL Leung, BH Chong. Megakaryocyte differentiation and platelet formation from human cord blood-derived CD34+ cells. J Vis Exp 2017; 130(130): e56420
https://doi.org/10.3791/56420
pmid: 29364213
|
| 27 |
J Huang, S Huang, Z Ma, X Lin, X Li, X Huang, J Wang, W Ye , Y Li, D He, M Yang, J Pan, Q Ling, F Li, S Mao, H Wang, Y Wang, J Jin. Ibrutinib suppresses early megakaryopoiesis but enhances proplatelet formation. Thromb Haemost 2021;121(2):192–205
https://doi.org/10.1055/s-0040-1716530
pmid: 32961571
|
| 28 |
M Salzmann, B Hoesel, M Haase, M Mussbacher, WC Schrottmaier, JB Kral-Pointner, M Finsterbusch, A Mazharian, A Assinger , JA Schmid. A novel method for automated assessment of megakaryocyte differentiation and proplatelet formation. Platelets 2018; 29(4): 357–364
https://doi.org/10.1080/09537104.2018.1430359
pmid: 29461915
|
| 29 |
X Li, X Yin, H Wang, J Huang, M Yu, Z Ma, C Li, Y Zhou, X Yan, S Huang, J Jin. The combination effect of homoharringtonine and ibrutinib on FLT3-ITD mutant acute myeloid leukemia. Oncotarget 2017; 8(8): 12764–12774
https://doi.org/10.18632/oncotarget.14463
pmid: 28061447
|
| 30 |
X Du, S Yin, F Zhou, X Du, J Xu, X Gu, G Wang, J Li. Reduction-sensitive mixed micelles for selective intracellular drug delivery to tumor cells and reversal of multidrug resistance. Int J Pharm 2018; 550(1-2): 1–13
https://doi.org/10.1016/j.ijpharm.2018.08.019
pmid: 30114451
|
| 31 |
Y Yang, H Akada, D Nath, RE Hutchison, G Mohi. Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood 2016; 127(26): 3410–3423
https://doi.org/10.1182/blood-2015-11-679431
pmid: 27081096
|
| 32 |
J Zheng, SS Wang, KP Shen, XW Huang, M Li, L Chen, X Peng, HM An, B Hu. Ursolic acid potentiated oxaliplatin to induce apoptosis in colorectal cancer RKO cells. Pharmazie 2020; 75(6): 246–249 doi: 10.1691/ph.2020.0417
pmid: 32539919
|
| 33 |
CA Belmokhtar, J Hillion, E Ségal-Bendirdjian. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene 2001; 20(26): 3354–3362
https://doi.org/10.1038/sj.onc.1204436
pmid: 11423986
|
| 34 |
W Zhang, Y Lu, T Zhen, X Chen, M Zhang, P Liu, X Weng, B Chen, Y Wang. Homoharringtonine synergy with oridonin in treatment of t(8;21) acute myeloid leukemia. Front Med 2019; 13(3): 388–397
https://doi.org/10.1007/s11684-018-0624-1
pmid: 30206768
|
| 35 |
N Miyashita , M Onozawa , S Yokoyama , D Hidaka , K Hayasaka , S Kunishima , T Teshima . Anagrelide modulates proplatelet formation resulting in decreased number and increased size of platelets. Hemasphere 2019; 3(4): e268
https://doi.org/10.1097/HS9.0000000000000268
pmid: 31723843
|
| 36 |
JJ Lopez, A Palazzo, C Chaabane, L Albarran, E Polidano, K Lebozec, S Dally, P Nurden, J Enouf, N Debili, R Bobe. Crucial role for endoplasmic reticulum stress during megakaryocyte maturation. Arterioscler Thromb Vasc Biol 2013; 33(12): 2750–2758
https://doi.org/10.1161/ATVBAHA.113.302184
pmid: 24115034
|
| 37 |
BC Thorp, X Badoux. Atrial fibrillation as a complication of ibrutinib therapy: clinical features and challenges of management. Leuk Lymphoma 2018; 59(2): 311–320
https://doi.org/10.1080/10428194.2017.1339874
pmid: 28629235
|
| 38 |
JA Burger, A Tedeschi, PM Barr, T Robak, C Owen, P Ghia, O Bairey, P Hillmen, NL Bartlett, J Li, D Simpson, S Grosicki, S Devereux, H McCarthy, S Coutre, H Quach, G Gaidano, Z Maslyak, DA Stevens, A Janssens, F Offner, J Mayer, M O’Dwyer, A Hellmann, A Schuh, T Siddiqi, A Polliack, CS Tam, D Suri, M Cheng, F Clow, L Styles, DF James, TJ; Kipps RESONATE-2 Investigators. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015; 373(25): 2425–2437
https://doi.org/10.1056/NEJMoa1509388
pmid: 26639149
|
| 39 |
SP Treon, CK Tripsas, K Meid, D Warren, G Varma, R Green, KV Argyropoulos, G Yang, Y Cao, L Xu, CJ Patterson, S Rodig, JL Zehnder , JC Aster, NL Harris, S Kanan, I Ghobrial, JJ Castillo, JP Laubach, ZR Hunter, Z Salman, J Li, M Cheng, F Clow, T Graef, ML Palomba, RH Advani. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med 2015; 372(15): 1430–1440
https://doi.org/10.1056/NEJMoa1501548
pmid: 25853747
|
| 40 |
T Gremmel, AL Frelinger 3rd, AD Michelson. Platelet physiology. Semin Thromb Hemost 2016; 42(3): 191–204
https://doi.org/10.1055/s-0035-1564835
pmid: 26926581
|
| 41 |
Q Wen, B Goldenson, JD Crispino. Normal and malignant megakaryopoiesis. Expert Rev Mol Med 2011; 13: e32
https://doi.org/10.1017/S1462399411002043
pmid: 22018018
|
| 42 |
E Bianchi, R Norfo, V Pennucci , R Zini, R Manfredini. Genomic landscape of megakaryopoiesis and platelet function defects. Blood 2016; 127(10): 1249–1259
https://doi.org/10.1182/blood-2015-07-607952
pmid: 26787733
|
| 43 |
N Songdej, AK Rao. Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood 2017; 129(21): 2873–2881
https://doi.org/10.1182/blood-2016-11-709881
pmid: 28416505
|
| 44 |
HG Roweth, S Parvin, KR Machlus. Megakaryocyte modification of platelets in thrombocytopenia. Curr Opin Hematol 2018; 25(5): 410–415
https://doi.org/10.1097/MOH.0000000000000451
pmid: 29985173
|
| 45 |
A Akinleye, Y Chen, N Mukhi, Y Song, D Liu. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 2013; 6(1): 59
https://doi.org/10.1186/1756-8722-6-59
pmid: 23958373
|
| 46 |
K Busygina, V Denzinger, I Bernlochner, C Weber, R Lorenz, W Siess. Btk inhibitors as first oral atherothrombosis-selective antiplatelet drugs? Thromb Haemost 2019; 119(8): 1212–1221
https://doi.org/10.1055/s-0039-1687877
pmid: 31087308
|
| 47 |
BT Atkinson, W Ellmeier, SP Watson. Tec regulates platelet activation by GPVI in the absence of Btk. Blood 2003; 102(10): 3592–3599
https://doi.org/10.1182/blood-2003-04-1142
pmid: 12842985
|
| 48 |
T Futatani, C Watanabe, Y Baba, S Tsukada, HD Ochs. Bruton’s tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br J Haematol 2001; 114(1): 141–149
https://doi.org/10.1046/j.1365-2141.2001.02905.x
pmid: 11472359
|
| 49 |
JM Pasquet , L Quek , C Stevens , R Bobe , M Huber, V Duronio , G Krystal, SP Watson. Phosphatidylinositol 3,4,5-trisphosphate regulates Ca2+ entry via btk in platelets and megakaryocytes without increasing phospholipase C activity. EMBO J 2000; 19(12): 2793–2802
https://doi.org/10.1093/emboj/19.12.2793
pmid: 10856225
|
| 50 |
R Bobe, JI Wilde, P Maschberger, K Venkateswarlu, PJ Cullen, W Siess, SP Watson. Phosphatidylinositol 3-kinase-dependent translocation of phospholipase Cγ2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood 2001; 97(3): 678–684
https://doi.org/10.1182/blood.V97.3.678
pmid: 11157484
|
| 51 |
A Markham, S Dhillon. Acalabrutinib: first global approval. Drugs 2018; 78(1): 139–145
https://doi.org/10.1007/s40265-017-0852-8
pmid: 29209955
|
| 52 |
J Series, C Garcia, M Levade, J Viaud, P Sié, L Ysebaert, B Payrastre. Differences and similarities in the effects of ibrutinib and acalabrutinib on platelet functions. Haematologica 2019; 104(11): 2292–2299
https://doi.org/10.3324/haematol.2018.207183
pmid: 30819914
|
| 53 |
AP Bye, AJ Unsworth, S Vaiyapuri, AR Stainer, MJ Fry, JM Gibbins. Ibrutinib inhibits platelet integrin aIIbb3 outside-in signaling and thrombus stability but not adhesion to collagen. Arterioscler Thromb Vasc Biol 2015; 35(11): 2326–2335
https://doi.org/10.1161/ATVBAHA.115.306130
pmid: 26359510
|
| 54 |
AH Lipsky, JN Lozier, A Wiestner. Response to comment on incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica 2016; 101(3): e124–e125
https://doi.org/10.3324/haematol.2015.140558
pmid: 26928253
|
| 55 |
K Kriegsmann, M Kriegsmann, M Witzens-Harig. Acalabrutinib, a second-generation Bruton’s tyrosine kinase inhibitor. Recent Results Cancer Res 2018; 212: 285–294
https://doi.org/10.1007/978-3-319-91439-8_14
pmid: 30069636
|
| 56 |
A Balduini, S Badalucco, MT Pugliano, D Baev, A De Silvestri, M Cattaneo, V Rosti, G Barosi. In vitro megakaryocyte differentiation and proplatelet formation in Ph-negative classical myeloproliferative neoplasms: distinct patterns in the different clinical phenotypes. PLoS One 2011; 6(6): e21015
https://doi.org/10.1371/journal.pone.0021015
pmid: 21698292
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|