|
|
Particulate matter 2.5 triggers airway inflammation and bronchial hyperresponsiveness in mice by activating the SIRT2--p65 pathway |
Manling Liu1, Zhaoling Shi2, Yue Yin1, Yishi Wang1, Nan Mu1, Chen Li1( ), Heng Ma1( ), Qiong Wang3( ) |
1. Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an 710032, China 2. Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, China 3. Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China |
|
|
Abstract Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.
|
Keywords
particulate matter 2.5
sirtuin 2
p65
airway inflammation
bronchial hyperresponsiveness
triptolide
|
Corresponding Author(s):
Chen Li,Heng Ma,Qiong Wang
|
Just Accepted Date: 14 April 2021
Online First Date: 13 July 2021
Issue Date: 01 November 2021
|
|
1 |
Q Sun, P Yue, JA Deiuliis, CN Lumeng, T Kampfrath, MB Mikolaj, Y Cai, MC Ostrowski, B Lu, S Parthasarathy, RD Brook, SD Moffatt-Bruce, LC Chen, S Rajagopalan. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 2009; 119(4): 538–546
https://doi.org/10.1161/CIRCULATIONAHA.108.799015
pmid: 19153269
|
2 |
A van Donkelaar, RV Martin, M Brauer, BL Boys. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 2015; 123(2): 135–143
https://doi.org/10.1289/ehp.1408646
pmid: 25343779
|
3 |
H Wang, X Shen, J Liu, C Wu, J Gao, Z Zhang, F Zhang, W Ding, Z Lu. The effect of exposure time and concentration of airborne PM2.5 on lung injury in mice: a transcriptome analysis. Redox Biol 2019; 26: 101264
https://doi.org/10.1016/j.redox.2019.101264
pmid: 31279222
|
4 |
H Wang, X Shen, G Tian, X Shi, W Huang, Y Wu, L Sun, C Peng, S Liu, Y Huang, X Chen, F Zhang, Y Chen, W Ding, Z Lu. AMPKα2 deficiency exacerbates long-term PM2.5 exposure-induced lung injury and cardiac dysfunction. Free Radic Biol Med 2018; 121: 202–214
https://doi.org/10.1016/j.freeradbiomed.2018.05.008
pmid: 29753072
|
5 |
C Potera. Toxicity beyond the lung: connecting PM2.5, inflammation, and diabetes. Environ Health Perspect 2014; 122(1): A29
https://doi.org/10.1289/ehp.122-A29
pmid: 24380826
|
6 |
J Lelieveld, JS Evans, M Fnais, D Giannadaki, A Pozzer. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015; 525(7569): 367–371
https://doi.org/10.1038/nature15371
pmid: 26381985
|
7 |
R Li, M Zhang, Y Wang, KKL Yung, R Su, Z Li, L Zhao, C Dong, Z Cai. Effects of sub-chronic exposure to atmospheric PM2.5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats. Toxicol Res (Camb) 2018; 7(2): 271–282
https://doi.org/10.1039/C7TX00262A
pmid: 30090581
|
8 |
X Ning, X Ji, G Li, N Sang. Ambient PM2.5 causes lung injuries and coupled energy metabolic disorder. Ecotoxicol Environ Saf 2019; 170: 620–626
https://doi.org/10.1016/j.ecoenv.2018.12.028
pmid: 30579162
|
9 |
Z Zhu, X Chen, J Sun, Q Li, X Lian, S Li, Y Wang, L Tian. Inhibition of nuclear thioredoxin aggregation attenuates PM2.5-induced NF-kB activation and pro-inflammatory responses. Free Radic Biol Med 2019; 130: 206–214
https://doi.org/10.1016/j.freeradbiomed.2018.10.438
pmid: 30420332
|
10 |
H Traboulsi, N Guerrina, M Iu, D Maysinger, P Ariya, CJ Baglole. Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci 2017; 18(2): E243
https://doi.org/10.3390/ijms18020243
pmid: 28125025
|
11 |
R Li, X Kou, L Xie, F Cheng, H Geng. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ Sci Pollut Res Int 2015; 22(24): 20167–20176
https://doi.org/10.1007/s11356-015-5222-z
pmid: 26304807
|
12 |
A Oeckinghaus, MS Hayden, S Ghosh. Crosstalk in NF-kB signaling pathways. Nat Immunol 2011; 12(8): 695–708
https://doi.org/10.1038/ni.2065
pmid: 21772278
|
13 |
LF Chen, Y Mu, WC Greene. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J 2002; 21(23): 6539–6548
https://doi.org/10.1093/emboj/cdf660
pmid: 12456660
|
14 |
SC Gupta, C Sundaram, S Reuter, BB Aggarwal. Inhibiting NF-kB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 2010; 1799(10–12): 775–787
https://doi.org/10.1016/j.bbagrm.2010.05.004
pmid: 20493977
|
15 |
T Cartwright, ND Perkins, C L Wilson. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 2016; 283(10): 1812–1822
https://doi.org/10.1111/febs.13627
pmid: 26663363
|
16 |
F Yuan, ZM Xu, LY Lu, H Nie, J Ding, WH Ying, HL Tian. SIRT2 inhibition exacerbates neuroinflammation and blood–brain barrier disruption in experimental traumatic brain injury by enhancing NF-kB p65 acetylation and activation. J Neurochem 2016; 136(3): 581–593
https://doi.org/10.1111/jnc.13423
pmid: 26546505
|
17 |
KM Rothgiesser, S Erener, S Waibel, B Lüscher, MO Hottiger. SIRT2 regulates NF-kB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 2010; 123: 4251–4258
https://doi.org/10.1242/jcs.073783
pmid: 21081649
|
18 |
V Tanwar, MW Gorr, M Velten, CM Eichenseer, VP Long 3rd, IM Bonilla, V Shettigar, MT Ziolo, JP Davis, SH Baine, CA Carnes, LE Wold. In utero particulate matter exposure produces heart failure, electrical remodeling, and epigenetic changes at adulthood. J Am Heart Assoc 2017; 6(4): e005796
https://doi.org/10.1161/JAHA.117.005796
pmid: 28400369
|
19 |
Y Wang, Y Mei, D Feng, L Xu. Triptolide modulates T-cell inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurosci Res 2008; 86(11): 2441–2449
https://doi.org/10.1002/jnr.21683
pmid: 18438925
|
20 |
W Zhu, Y Ou, Y Li, R Xiao, M Shu, Y Zhou, J Xie, S He, P Qiu, G Yan. A small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-κB pathway. Mol Pharmacol 2009; 75(4): 812–819
https://doi.org/10.1124/mol.108.052605
pmid: 19158360
|
21 |
MX Xu, YF Zhu, HF Chang, Y Liang. Nanoceria restrains PM2.5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-kB pathway in Nrf2 deficient mice. Free Radic Biol Med 2016; 99: 259–272
https://doi.org/10.1016/j.freeradbiomed.2016.08.021
pmid: 27554971
|
22 |
F Wang, Z Guo, T Lin, NL Rose. Seasonal variation of carbonaceous pollutants in PM2.5 at an urban ‘supersite’ in Shanghai, China. Chemosphere 2016; 146: 238–244
https://doi.org/10.1016/j.chemosphere.2015.12.036
pmid: 26735723
|
23 |
SY Zhang, D Shao, H Liu, J Feng, B Feng, X Song, Q Zhao, M Chu, C Jiang, W Huang, X Wang. Metabolomics analysis reveals that benzo[a]pyrene, a component of PM2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox Biol 2017; 13: 459–469
https://doi.org/10.1016/j.redox.2017.07.001
pmid: 28715731
|
24 |
W Rui, L Guan, F Zhang, W Zhang, W Ding. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-kB-dependent pathway. J Appl Toxicol 2016; 36(1): 48–59
https://doi.org/10.1002/jat.3143
pmid: 25876056
|
25 |
M He, T Ichinose, S Yoshida, T Ito, C He, Y Yoshida, K Arashidani, H Takano, G Sun, T Shibamoto. PM2.5-induced lung inflammation in mice: differences of inflammatory response in macrophages and type II alveolar cells. J Appl Toxicol 2017; 37(10): 1203–1218
https://doi.org/10.1002/jat.3482
pmid: 28555929
|
26 |
KJ Bein, AS Wexler. A high-efficiency, low-bias method for extracting particulate matter from filter and impactor substrates. Atmos Environ 2014; 90: 87–95
https://doi.org/10.1016/j.atmosenv.2014.03.042
|
27 |
KJ Bein, AS Wexler. Compositional variance in extracted particulate matter using different filter extraction techniques. Atmos Environ 2015; 107: 24–34
https://doi.org/10.1016/j.atmosenv.2015.02.026
|
28 |
Z Guo, Z Hong, W Dong, C Deng, R Zhao, J Xu, G Zhuang, R Zhang. PM2.5-induced oxidative stress and mitochondrial damage in the nasal mucosa of rats. Int J Environ Res Public Health 2017; 14(2): 134
https://doi.org/10.3390/ijerph14020134
pmid: 28146064
|
29 |
R Mendez, Z Zheng, Z Fan, S Rajagopalan, Q Sun, K Zhang. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Transl Res 2013; 5(2): 224–234
pmid: 23573366
|
30 |
HW Hou, JM Wang, D Wang, R Wu, ZL Ji. Triptolide exerts protective effects against fibrosis following ileocolonic anastomosis by mechanisms involving the miR-16-1/HSP70 pathway in IL-10-deficient mice. Int J Mol Med 2017; 40(2): 337–346
https://doi.org/10.3892/ijmm.2017.3016
pmid: 28627592
|
31 |
MP DeLorme, OR Moss. Pulmonary function assessment by whole-body plethysmography in restrained versus unrestrained mice. J Pharmacol Toxicol Methods 2002; 47(1): 1–10
https://doi.org/10.1016/S1056-8719(02)00191-0
pmid: 12387933
|
32 |
A Hirano, A Kanehiro, K Ono, W Ito, A Yoshida, C Okada, H Nakashima, Y Tanimoto, M Kataoka, EW Gelfand, M Tanimoto. Pirfenidone modulates airway responsiveness, inflammation, and remodeling after repeated challenge. Am J Respir Cell Mol Biol 2006; 35(3): 366–377
https://doi.org/10.1165/rcmb.2005-0452OC
pmid: 16675785
|
33 |
S Kumar, N Bhardwaj, S Khurana, A Gupta, KD Soni, R Aggrawal, P Mathur. Bronchoalveolar lavage fluid cytokine bead array profile for prognostication of ventilated trauma patients. Indian J Crit Care Med 2016; 20(9): 513–517
https://doi.org/10.4103/0972-5229.190375
pmid: 27688626
|
34 |
JH Zhang, YP Chen, X Yang, CQ Li. Vitamin D3 levels and NLRP3 expression in murine models of obese asthma: association with asthma outcomes. Braz J Med Biol Res 2018; 51(1): e6841
https://doi.org/10.1590/1414-431x20176841
pmid: 29160418
|
35 |
C Li, L Yu, H Xue, Z Yang, Y Yin, B Zhang, M Chen, H Ma. Nuclear AMPK regulated CARM1 stabilization impacts autophagy in aged heart. Biochem Biophys Res Commun 2017; 486(2): 398–405
https://doi.org/10.1016/j.bbrc.2017.03.053
pmid: 28315332
|
36 |
CLM Li, Z Yang, Z Shi, H Xue, H Ma. PM2.5 induced airway inflammation and promoted airway hyperreactibity through SIRT2-p65 pathway. Pathophysiology 2018; 25(3): 237–238
https://doi.org/doi.org/10.1016/j.pathophys.2018.07.165
|
37 |
AT Lemos, CT Lemos, AN Flores, EO Pantoja, JAV Rocha, VMF Vargas. Genotoxicity biomarkers for airborne particulate matter (PM2.5) in an area under petrochemical influence. Chemosphere 2016; 159: 610–618
https://doi.org/10.1016/j.chemosphere.2016.05.087
pmid: 27343868
|
38 |
S Baldacci, S Maio, S Cerrai, G Sarno, N Baïz, M Simoni, I Annesi-Maesano, G; ViegiHEALS Study. Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med 2015; 109(9): 1089–1104
https://doi.org/10.1016/j.rmed.2015.05.017
pmid: 26073963
|
39 |
Z Liu, B Hu, L Wang, F Wu, W Gao, Y Wang. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study. Environ Sci Pollut Res Int 2015; 22(1): 627–642
https://doi.org/10.1007/s11356-014-3347-0
pmid: 25096488
|
40 |
K Ogino, R Zhang, H Takahashi, K Takemoto, M Kubo, I Murakami, DH Wang, Y Fujikura. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS One 2014; 9(3): e92710
https://doi.org/10.1371/journal.pone.0092710
pmid: 24671176
|
41 |
Y Shen, ZH Zhang, D Hu, X Ke, Z Gu, QY Zou, GH Hu, SH Song, HY Kang, SL Hong. The airway inflammation induced by nasal inoculation of PM2.5 and the treatment of bacterial lysates in rats. Sci Rep 2018; 8(1): 9816
https://doi.org/10.1038/s41598-018-28156-9
pmid: 29959403
|
42 |
M Xu, F Li, M Wang, H Zhang, L Xu, IM Adcock, KF Chung, Y Zhang. Protective effects of VGX-1027 in PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Eur J Pharmacol 2019; 842: 373–383
https://doi.org/10.1016/j.ejphar.2018.11.010
pmid: 30419239
|
43 |
K Ogino, K Nagaoka, T Okuda, A Oka, M Kubo, E Eguchi, Y Fujikura. PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice. Environ Toxicol 2017; 32(3): 1047–1054
https://doi.org/10.1002/tox.22303
pmid: 27341501
|
44 |
X Wang, Y Hui, L Zhao, Y Hao, H Guo, F Ren. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One 2017; 12(2): e0171721
https://doi.org/10.1371/journal.pone.0171721
pmid: 28199353
|
45 |
X Wu, NM Gowda, YI Kawasawa, DC Gowda. A malaria protein factor induces IL-4 production by dendritic cells via PI3K-Akt-NF-kB signaling independent of MyD88/TRIF and promotes Th2 response. J Biol Chem 2018; 293(27): 10425–10434
https://doi.org/10.1074/jbc.AC118.001720
pmid: 29666186
|
46 |
EJ Clutterbuck, CJ Sanderson. Human eosinophil hematopoiesis studied in vitro by means of murine eosinophil differentiation factor (IL5): production of functionally active eosinophils from normal human bone marrow. Blood 1988; 71(3): 646–651
https://doi.org/10.1182/blood.V71.3.646.646
pmid: 3257886
|
47 |
Y Endo, K Hirahara, R Yagi, DJ Tumes, T Nakayama. Pathogenic memory type Th2 cells in allergic inflammation. Trends Immunol 2014; 35(2): 69–78
https://doi.org/10.1016/j.it.2013.11.003
pmid: 24332592
|
48 |
JE Hoberg, AE Popko, CS Ramsey, MW Mayo. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol Cell Biol 2006; 26(2): 457–471
https://doi.org/10.1128/MCB.26.2.457-471.2006
pmid: 16382138
|
49 |
G Diamant, R Dikstein. Transcriptional control by NF-kB: elongation in focus. Biochim Biophys Acta 2013; 1829(9): 937–945
https://doi.org/10.1016/j.bbagrm.2013.04.007
pmid: 23624258
|
50 |
B Huang, XD Yang, A Lamb, LF Chen. Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway. Cell Signal 2010; 22(9): 1282–1290
https://doi.org/10.1016/j.cellsig.2010.03.017
pmid: 20363318
|
51 |
Y Li, X Li, K He, B Li, K Liu, J Qi, H Wang, Y Wang, W Luo. C-peptide prevents NF-kB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J 2018; 32(4): 2269–2279
https://doi.org/10.1096/fj.201700891R
pmid: 29229684
|
52 |
A Nadeem, N Siddiqui, NO Alharbi, MM Alharbi, F Imam. Acute glutathione depletion leads to enhancement of airway reactivity and inflammation via p38MAPK-iNOS pathway in allergic mice. Int Immunopharmacol 2014; 22(1): 222–229
https://doi.org/10.1016/j.intimp.2014.06.030
pmid: 24978607
|
53 |
WY Jeon, IS Shin, HK Shin, MY Lee. Samsoeum water extract attenuates allergic airway inflammation via modulation of Th1/Th2 cytokines and decrease of iNOS expression in asthmatic mice. BMC Complement Altern Med 2015; 15(1): 47
https://doi.org/10.1186/s12906-015-0561-3
pmid: 25886760
|
54 |
S Goulaouic, L Foucaud, A Bennasroune, P Laval-Gilly, J Falla. Effect of polycyclic aromatic hydrocarbons and carbon black particles on pro-inflammatory cytokine secretion: impact of PAH coating onto particles. J Immunotoxicol 2008; 5(3): 337–345
https://doi.org/10.1080/15476910802371016
pmid: 18830893
|
55 |
C Plé, Y Fan, S Ait Yahia, H Vorng, L Everaere, C Chenivesse, J Balsamelli, I Azzaoui, P de Nadai, B Wallaert, G Lazennec, A Tsicopoulos. Polycyclic aromatic hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells from both healthy and asthmatic subjects. PLoS One 2015; 10(4): e0122372
https://doi.org/10.1371/journal.pone.0122372
pmid: 25860963
|
56 |
KW Bock. Aryl hydrocarbon receptor (AHR) functions in NAD+ metabolism, myelopoiesis and obesity. Biochem Pharmacol 2019; 163: 128–132
https://doi.org/10.1016/j.bcp.2019.02.021
pmid: 30779909
|
57 |
K Yuan, X Li, Q Lu, Q Zhu, H Jiang, T Wang, G Huang, A Xu. application and mechanisms of triptolide in the treatment of inflammatory diseases—a review. Front Pharmacol 2019; 10: 1469
https://doi.org/10.3389/fphar.2019.01469
pmid: 31866868
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|