Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (3) : 429-441    https://doi.org/10.1007/s11684-021-0842-9
RESEARCH ARTICLE
Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke
Yao Chen1,2,3,7, Fahuan Song1,2,3, Mengjiao Tu1,2,3,8, Shuang Wu1,2,3, Xiao He1,2,3, Hao Liu1,2,3, Caiyun Xu1,2,3, Kai Zhang1,2,3, Yuankai Zhu1,2,3, Rui Zhou1,2,3, Chentao Jin1,2,3, Ping Wang5,6, Hong Zhang1,2,3,4,5,6(), Mei Tian1,2,3()
1. Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
2. Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, China
3. Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou 310009, China
4. Shanxi Medical University, Taiyuan 030001, China
5. Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China​
6. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
7. Department of Radiology, Zhejiang Hospital, Hangzhou 310030, China
8. Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
 Download: PDF(6172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The local microenvironment is essential to stem cell-based therapy for ischemic stroke, and spatiotemporal changes of the microenvironment in the pathological process provide vital clues for understanding the therapeutic mechanisms. However, relevant studies on microenvironmental changes were mainly confined in the acute phase of stroke, and long-term changes remain unclear. This study aimed to investigate the microenvironmental changes in the subacute and chronic phases of ischemic stroke after stem cell transplantation. Herein, induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs) were transplanted into the ischemic brain established by middle cerebral artery occlusion surgery. Positron emission tomography imaging and neurological tests were applied to evaluate the metabolic and neurofunctional alterations of rats transplanted with stem cells. Quantitative proteomics was employed to investigate the protein expression profiles in iPSCs-transplanted brain in the subacute and chronic phases of stroke. Compared with NSCs-transplanted rats, significantly increased glucose metabolism and neurofunctional scores were observed in iPSCs-transplanted rats. Subsequent proteomic data of iPSCs-transplanted rats identified a total of 39 differentially expressed proteins in the subacute and chronic phases, which are involved in various ischemic stroke-related biological processes, including neuronal survival, axonal remodeling, antioxidative stress, and mitochondrial function restoration. Taken together, our study indicated that iPSCs have a positive therapeutic effect in ischemic stroke and emphasized the wide-ranging microenvironmental changes in the subacute and chronic phases.

Keywords ischemic stroke      microenvironment      induced pluripotent stem cells (iPSCs)      positron emission tomography (PET)      quantitative proteomics     
Corresponding Author(s): Hong Zhang,Mei Tian   
Just Accepted Date: 16 April 2021   Online First Date: 13 July 2021    Issue Date: 18 July 2022
 Cite this article:   
Yao Chen,Fahuan Song,Mengjiao Tu, et al. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke[J]. Front. Med., 2022, 16(3): 429-441.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0842-9
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I3/429
Fig.1  Schematic of the experimental procedures. The methods for evaluating the therapeutic response of stem cells include PET imaging, neurological tests, immunofluorescence, and HE staining. The methods for microenvironment study include quantitative iTRAQ-LC-MS/MS analysis and Western blot analysis.
Fig.2  Improved glucose metabolism and neurologic function after stem cell transplantation. (A) Representative 18F-FDG PET images and (B) semiquantitative analysis of glucose metabolism of cerebral ischemic rats demonstrate metabolic recovery after stem cell transplantation. Images are shown in the axial view. White arrows show the infarcted area. **P<0.01 compared with the PBS group. (C) Neurological scores show the neurological function restoration of cerebral ischemic rats in each group. *P<0.05, **P<0.01 compared with the PBS group; #P<0.05 compared with the NSCs group. (D) Serial 11C-MET PET images of cerebral ischemic rats after transplantation in each group. Images are shown in the coronal view. (E) HE staining of tissues in the peri-infarct zone in each group. Scale bar= 100 µm.
Fig.3  Differentiation of transplanted stem cells in vivo. Representative immunofluorescent images indicate the differentiation of transplanted iPSCs (A) and NSCs (B) in the cortex adjacent to the ischemic striatum. The GFP-positive iPSCs and NSCs are shown in green fluorescence; the NeuN-, GFAP-, and vWF-positive cells are shown in red; the DAPI-stained nuclei are shown in blue. White arrows show the NeuN-, GFAP-, or vWF-positive transplanted stem cells in merged images. Scale bar= 100 µm.
Fig.4  Expression profiles of differentially expressed proteins. The volcano plots show 2294 and 2303 identified proteins between the iPSCs group and the PBS group on days 7 (A) and 14 (B), respectively. Each dot represents a protein. The threshold for differential expression (fold change= 1.2 or 0.83 and significance level of P value<0.05) is indicated by the blue dashed lines. The significantly upregulated and downregulated proteins are highlighted in red and blue, respectively. (C) Heatmap showing the expression levels of 39 differentially expressed proteins in the cerebral ischemic area on days 7 and 14. *, significantly expressed between the iPSCs group and the PBS group.
UniProt ID Gene symbol Protein name Ratio (iPSCs/PBS) P value
Neuronal survival
Q4QQV8 Chmp5 Charged multivesicular body protein 5a 2.00 0.03
Q01986 Map2k1 Dual specificity mitogen-activated protein kinase kinase 1b 1.22 0.02
B1WBW4 Armc10 Armadillo repeat-containing protein 10a 0.68 0.03
P04775 Scn2a Sodium channel protein type 2 subunit αb 0.77 0.01
G3V7J1 Clstn3 Calsyntenin-3b 0.78 0.02
Q5M7A7 Cnrip1 CB1 cannabinoid receptor-interacting protein 1a 0.82 0.01
F1LP76 Ikbkap Elongator complex protein 1b 0.83 0.01
Axonal remodeling
P22057 Ptgds Prostaglandin-H2 D-isomerasea 1.72 0.04
Q6J4I0 Ppp1r1b Protein phosphatase 1 regulatory subunit 1Ba 1.41 0.00
Q562C6 Lztfl1 Leucine zipper transcription factor-like protein 1a 1.20 0.00
F1LP34 Anp32b Acidic leucine-rich nuclear phosphoprotein 32 family member Bb 0.81 0.03
P47875 Csrp1 Cysteine and glycine-rich protein 1a 0.83 0.01
Mitochondrial function
Q62760 Tomm20 Mitochondrial import receptor subunit TOM20 homologa 1.32 0.04
Q4QRB0 Gale Galactose-4-epimerase, UDP, isoform CRA_aa 1.31 0.01
A0A0G2JSR6 Gng7 Guanine nucleotide binding protein G(I)/G(S)/G(O) subunit γ-7a 1.22 0.00
P32089 Slc25a1 Tricarboxylate transport protein, mitochondrialb 1.20 0.01
G3V9J7 Rabep1 RabGTPase binding effector protein 1b 0.79 0.02
A0A096MIV5 Abcf2 Protein Abcf2b 0.81 0.03
G3V784 Adpgk ADP-dependent glucokinase, isoform CRA_ab 0.81 0.04
Q5RKH2 Galk1 Galactokinase 1b 0.83 0.02
Oxidative stress
D3ZCZ9 LOC100912599 NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrialb 1.27 0.03
Q3KRD8 Eif6 Eukaryotic translation initiation factor 6b 0.80 0.04
Q6AXX6 Fam213a Redox-regulatory protein FAM213Aa 0.82 0.01
Q6AXX5 Rdh11 Protein Rdh11b 0.82 0.03
Others/unknown
A1L114 Fga Fga proteina 1.70 0.01
P14480 Fgb Fibrinogen beta chaina 1.65 0.02
D4A250 RGD1563620 Protein RGD1563620b 1.41 0.01
A0A0G2QC17 Pdp1 Protein phosphatase 2C, magnesium dependent, catalytic subunit, isoform CRA_aa 1.36 0.03
Q63041 A1m α-1-macroglobulina 1.36 0.04
Q68FY4 Gc Group specific componenta 1.34 0.00
A0A0G2JUR5 Mprip Myosin phosphatase Rho-interacting proteina 1.27 0.02
M0RCT5 Eml1 Echinoderm microtubule-associated protein-like 1a 1.21 0.03
D3ZWW5 Slc30a9 Protein Slc30a9a 1.21 0.04
Q80X08 Fam21 WASH complex subunit FAM21b 0.70 0.04
Q6PDU6 Hbb β-gloa 0.70 0.02
A0A0G2JXY6 Scn1b Sodium channel subunit β-1b 0.76 0.04
A0A0G2K5H2 Clvs1 Clavesin-1b 0.79 0.00
P84039 Enpp5 Ectonucleotidepyrophosphatase/phosphodiesterase family member 5b 0.82 0.00
F1M3P6 Scai Protein Scaia 0.82 0.02
Tab.1  Quantitative information of the differentially expressed proteins from the iTRAQ data
Fig.5  GO annotations of differentially expressed proteins on days 7 (A) and 14 (B). GO annotations cover three categories including biological process, cellular component, and molecular function. Only the top five terms in each category are shown.
Fig.6  Western blot analysis of the selected differentially expressed proteins. (A) Representative Western blots of GALE and MEK1 and (B) corresponding quantitative analyses of expression levels in the cerebral ischemic tissues on days 7 and 14. The expression levels of GALE and MEK1 in the iPSCs group were significantly higher than those in the PBS group on days 7 and 14. *P<0.05, **P<0.01 compared with the PBS group.
1 GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990−2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1859–1922
https://doi.org/10.1016/S0140-6736(18)32335-3 pmid: 30415748
2 WJ Powers, AA Rabinstein, T Ackerson, OM Adeoye, NC Bambakidis, K Becker, J Biller, M Brown, BM Demaerschalk, B Hoh, EC Jauch, CS Kidwell, TM Leslie-Mazwi, B Ovbiagele, PA Scott, KN Sheth, AM Southerland, DV Summers, DL Tirschwell. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344–e418
https://doi.org/10.1161/STR.0000000000000211 pmid: 31662037
3 C Stonesifer, S Corey, S Ghanekar, Z Diamandis, SA Acosta, CV Borlongan. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158: 94–131
https://doi.org/10.1016/j.pneurobio.2017.07.004 pmid: 28743464
4 L Wei, ZZ Wei, MQ Jiang, O Mohamad, SP Yu. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157: 49–78
https://doi.org/10.1016/j.pneurobio.2017.03.003 pmid: 28322920
5 K Oki, J Tatarishvili, J Wood, P Koch, S Wattananit, Y Mine, E Monni, D Tornero, H Ahlenius, J Ladewig, O Brüstle, O Lindvall, Z Kokaia. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells 2012; 30(6): 1120–1133
https://doi.org/10.1002/stem.1104 pmid: 22495829
6 H Zhang, F Song, C Xu, H Liu, Z Wang, J Li, S Wu, Y Shen, Y Chen, Y Zhu, R Du, M Tian. Spatiotemporal PET imaging of dynamic metabolic changes after therapeutic approaches of induced pluripotent stem cells, neuronal stem cells, and a Chinese patent medicine in stroke. J Nucl Med 2015; 56(11): 1774–1779 PMID: 26359258
https://doi.org/DOI: 10.2967/jnumed.115.163170
7 RH Andres, N Horie, W Slikker, H Keren-Gill, K Zhan, G Sun, NC Manley, MP Pereira, LA Sheikh, EL McMillan, BT Schaar, CN Svendsen, TM Bliss, GK Steinberg. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 2011; 134(6): 1777–1789
https://doi.org/10.1093/brain/awr094 pmid: 21616972
8 A Alvarez-Buylla, JM Garcia-Verdugo. Neurogenesis in adult subventricular zone. J Neurosci 2002; 22(3): 629–634
https://doi.org/10.1523/JNEUROSCI.22-03-00629.2002 pmid: 11826091
9 C Reis, M Wilkinson, H Reis, O Akyol, V Gospodarev, C Araujo, S Chen, JH Zhang. A look into stem cell therapy: exploring the options for treatment of ischemic stroke. Stem Cells Int 2017; 2017: 3267352
https://doi.org/10.1155/2017/3267352 pmid: 29201059
10 M Bacigaluppi, GL Russo, L Peruzzotti-Jametti, S Rossi, S Sandrone, E Butti, R De Ceglia, A Bergamaschi, C Motta, M Gallizioli, V Studer, E Colombo, C Farina, G Comi, LS Politi, L Muzio, C Villani, RW Invernizzi, DM Hermann, D Centonze, G Martino. Neural stem cell transplantation induces stroke recovery by upregulating glutamate transporter GLT-1 in astrocytes. J Neurosci 2016; 36(41): 10529–10544
https://doi.org/10.1523/JNEUROSCI.1643-16.2016 pmid: 27733606
11 K Takahashi, S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024 pmid: 16904174
12 DK Smith, M He, CL Zhang, JC Zheng. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Prog Neurobiol 2017; 157: 212–229
https://doi.org/10.1016/j.pneurobio.2016.01.006 pmid: 26844759
13 MJ Chau, TC Deveau, M Song, X Gu, D Chen, L Wei. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells 2014; 32(12): 3075–3087
https://doi.org/10.1002/stem.1802 pmid: 25132189
14 E Sánchez-Mendoza, V Bellver-Landete, JJ Merino, MP González, R Martínez-Murillo, MJ Oset-Gasque. Review: Could neurotransmitters influence neurogenesis and neurorepair after stroke? Neuropathol Appl Neurobiol 2013; 39(7): 722–735
https://doi.org/10.1111/nan.12082 pmid: 23941684
15 JD Bernstock, L Peruzzotti-Jametti, D Ye, FA Gessler, D Maric, N Vicario, YJ Lee, S Pluchino, JM Hallenbeck. Neural stem cell transplantation in ischemic stroke: a role for preconditioning and cellular engineering. J Cereb Blood Flow Metab 2017; 37(7): 2314–2319
https://doi.org/10.1177/0271678X17700432 pmid: 28303738
16 U Dirnagl, C Iadecola, MA Moskowitz. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22(9): 391–397
https://doi.org/10.1016/S0166-2236(99)01401-0 pmid: 10441299
17 A ElAli, P Thériault, S Rivest. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci 2014; 15(4): 6453–6474
https://doi.org/10.3390/ijms15046453 pmid: 24743889
18 H Li, W You, X Li, H Shen, G Chen. Proteomic-based approaches for the study of ischemic stroke. Transl Stroke Res 2019; 10(6): 601–606
https://doi.org/10.1007/s12975-019-00716-9 pmid: 31278685
19 M Wen, Y Jin, H Zhang, X Sun, Y Kuai, W Tan. Proteomic analysis of rat cerebral cortex in the subacute to long-term phases of focal cerebral ischemia-reperfusion injury. J Proteome Res 2019; 18(8): 3099–3118
https://doi.org/10.1021/acs.jproteome.9b00220 pmid: 31265301
20 A Datta, Q Jingru, TH Khor, MT Teo, K Heese, SK Sze. Quantitative neuroproteomics of an in vivo rodent model of focal cerebral ischemia/reperfusion injury reveals a temporal regulation of novel pathophysiological molecular markers. J Proteome Res 2011; 10(11): 5199–5213
https://doi.org/10.1021/pr200673y pmid: 21950801
21 M Ning, DA Sarracino, AT Kho, S Guo, SR Lee, B Krastins, FS Buonanno, JA Vizcaíno, S Orchard, D McMullin, X Wang, EH Lo. Proteomic temporal profile of human brain endothelium after oxidative stress. Stroke 2011; 42(1): 37–43
https://doi.org/10.1161/STROKEAHA.110.585703 pmid: 21164131
22 D He, Z Zhang, J Lao, H Meng, L Han, F chen, D Ye, H Zhang, Y Xun. Proteomic analysis of the peri-infarct area after human umbilical cord mesenchymal stem cell transplantation in experimental stroke. Aging Dis 2016; 7(5): 623–634
https://doi.org/10.14336/AD.2016.0121 pmid: 27699085
23 JH Sung, EH Cho, MO Kim, PO Koh. Identification of proteins differentially expressed by melatonin treatment in cerebral ischemic injury—a proteomics approach. J Pineal Res 2009; 46(3): 300–306
https://doi.org/10.1111/j.1600-079X.2008.00661.x pmid: 19196433
24 JH Garcia, S Wagner, KF Liu, XJ Hu. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 1995; 26(4): 627–635
https://doi.org/10.1161/01.STR.26.4.627 pmid: 7709410
25 J Wang, F Chao, F Han, G Zhang, Q Xi, J Li, H Jiang, J Wang, G Yu, M Tian, H Zhang. PET demonstrates functional recovery after transplantation of induced pluripotent stem cells in a rat model of cerebral ischemic injury. J Nucl Med 2013; 54(5): 785–792
https://doi.org/10.2967/jnumed.112.111112 pmid: 23503731
26 ZH Taxin, SA Neymotin, A Mohan, P Lipton, WW Lytton. Modeling molecular pathways of neuronal ischemia. Prog Mol Biol Transl Sci 2014; 123: 249–275
https://doi.org/10.1016/B978-0-12-397897-4.00014-0 pmid: 24560148
27 H Yuan, JE Frank, Y Hong, H An, C Eldeniz, J Nie, A Bunevicius, D Shen, W Lin. Spatiotemporal uptake characteristics of [18]F-2-fluoro-2-deoxy-D-glucose in a rat middle cerebral artery occlusion model. Stroke 2013; 44(8): 2292–2299
https://doi.org/10.1161/STROKEAHA.113.000903 pmid: 23743978
28 N Kosi, I Alić, I Salamon, D Mitrečić. Stroke promotes survival of nearby transplanted neural stem cells by decreasing their activation of caspase 3 while not affecting their differentiation. Neurosci Lett 2018; 666: 111–119
https://doi.org/10.1016/j.neulet.2017.12.040 pmid: 29278729
29 B Zhao, QJ Shi, ZZ Zhang, SY Wang, X Wang, H Wang. Protective effects of paeonol on subacute/chronic brain injury during cerebral ischemia in rats. Exp Ther Med 2018; 15(4): 3836–3846
https://doi.org/10.3892/etm.2018.5893 pmid: 29563983
30 S Boulos, BP Meloni, PG Arthur, B Majda, C Bojarski, NW Knuckey. Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis 2007; 25(1): 54–64
https://doi.org/10.1016/j.nbd.2006.08.012 pmid: 17011206
31 H Amani, R Habibey, F Shokri, SJ Hajmiresmail, O Akhavan, A Mashaghi, H Pazoki-Toroudi. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep 2019; 9(1): 6044
https://doi.org/10.1038/s41598-019-42633-9 pmid: 30988361
32 TP Garrington, GL Johnson. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11(2): 211–218
https://doi.org/10.1016/S0955-0674(99)80028-3 pmid: 10209154
33 Y Zhu, GY Yang, B Ahlemeyer, L Pang, XM Che, C Culmsee, S Klumpp, J Krieglstein. Transforming growth factor-β 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 2002; 22(10): 3898–3909
https://doi.org/10.1523/JNEUROSCI.22-10-03898.2002 pmid: 12019309
34 ON El-Assal, GE Besner. HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI3K/Akt and MEK/ERK1/2 activation. Gastroenterology 2005; 129(2): 609–625
https://doi.org/10.1053/j.gastro.2005.05.054 pmid: 16083716
35 DJ Lips, OF Bueno, BJ Wilkins, NH Purcell, RA Kaiser, JN Lorenz, L Voisin, MK Saba-El-Leil, S Meloche, J Pouysségur, G Pagès, LJ De Windt, PA Doevendans, JD Molkentin. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 2004; 109(16): 1938–1941
https://doi.org/10.1161/01.CIR.0000127126.73759.23 pmid: 15096454
36 J Astrup, L Symon, NM Branston, NA Lassen. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977; 8(1): 51–57
https://doi.org/10.1161/01.STR.8.1.51 pmid: 13521
37 EH Lo. A new penumbra: transitioning from injury into repair after stroke. Nat Med 2008; 14(5): 497–500
https://doi.org/10.1038/nm1735 pmid: 18463660
38 M Shahmoradgoli, O Mannherz, F Engel, S Heck, A Krämer, M Seiffert, A Pscherer, P Lichter. Antiapoptotic function of charged multivesicular body protein 5: a potentially relevant gene in acute myeloid leukemia. Int J Cancer 2011; 128(12): 2865–2871
https://doi.org/10.1002/ijc.25632 pmid: 20734392
39 Y Ueno, M Chopp, L Zhang, B Buller, Z Liu, NL Lehman, XS Liu, Y Zhang, C Roberts, ZG Zhang. Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke 2012; 43(8): 2221–2228
https://doi.org/10.1161/STROKEAHA.111.646224 pmid: 22618383
40 S David, AJ Aguayo. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981; 214(4523): 931–933
https://doi.org/10.1126/science.6171034 pmid: 6171034
41 A Trimarco, MG Forese, V Alfieri, A Lucente, P Brambilla, G Dina, D Pieragostino, P Sacchetta, Y Urade, B Boizet-Bonhoure, F Martinelli Boneschi, A Quattrini, C Taveggia. Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination. Nat Neurosci 2014; 17(12): 1682–1692
https://doi.org/10.1038/nn.3857 pmid: 25362470
42 A Fukuhara, M Yamada, K Fujimori, Y Miyamoto, T Kusumoto, H Nakajima, T Inui. Lipocalin-type prostaglandin D synthase protects against oxidative stress-induced neuronal cell death. Biochem J 2012; 443(1): 75–84
https://doi.org/10.1042/BJ20111889 pmid: 22248185
43 S Saleem, ZA Shah, Y Urade, S Doré. Lipocalin-prostaglandin D synthase is a critical beneficial factor in transient and permanent focal cerebral ischemia. Neuroscience 2009; 160(1): 248–254
https://doi.org/10.1016/j.neuroscience.2009.02.039 pmid: 19254753
44 M Straccia, J Carrere, AE Rosser, JM Canals. Human t-DARPP is induced during striatal development. Neuroscience 2016; 333: 320–330
https://doi.org/10.1016/j.neuroscience.2016.07.022 pmid: 27475250
45 A Delli Carri, M Onorati, MJ Lelos, V Castiglioni, A Faedo, R Menon, S Camnasio, R Vuono, P Spaiardi, F Talpo, M Toselli, G Martino, RA Barker, SB Dunnett, G Biella, E Cattaneo. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 2013; 140(2): 301–312
https://doi.org/10.1242/dev.084608 pmid: 23250204
46 JM Hulett, P Walsh, T Lithgow. Domain stealing by receptors in a protein transport complex. Mol Biol Evol 2007; 24(9): 1909–1911
https://doi.org/10.1093/molbev/msm126 pmid: 17586602
47 S Franco-Iborra, T Cuadros, A Parent, J Romero-Gimenez, M Vila, C Perier. Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell Death Dis 2018; 9(11): 1122
https://doi.org/10.1038/s41419-018-1154-0 pmid: 30405116
48 PA Frey, AD Hegeman. Chemical and stereochemical actions of UDP-galactose 4-epimerase. Acc Chem Res 2013; 46(7): 1417–1426
https://doi.org/10.1021/ar300246k pmid: 23339688
49 D Demirbas, AI Coelho, ME Rubio-Gozalbo, GT Berry. Hereditary galactosemia. Metabolism 2018; 83: 188–196
https://doi.org/10.1016/j.metabol.2018.01.025 pmid: 29409891
50 MA Moskowitz, EH Lo, C Iadecola. The science of stroke: mechanisms in search of treatments. Neuron 2010; 67(2): 181–198
https://doi.org/10.1016/j.neuron.2010.07.002 pmid: 20670828
51 Y Gilgun-Sherki, Z Rosenbaum, E Melamed, D Offen. Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 2002; 54(2): 271–284
https://doi.org/10.1124/pr.54.2.271 pmid: 12037143
52 S Ricciardi, A Miluzio, D Brina, K Clarke, M Bonomo, R Aiolfi, LG Guidotti, F Falciani, S Biffo. Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation. J Thromb Haemost 2015; 13(11): 2108–2118
https://doi.org/10.1111/jth.13150 pmid: 26391622
53 K Kmita, C Wirth, J Warnau, S Guerrero-Castillo, C Hunte, G Hummer, VR Kaila, K Zwicker, U Brandt, V Zickermann. Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I. Proc Natl Acad Sci USA 2015; 112(18): 5685–5690
https://doi.org/10.1073/pnas.1424353112 pmid: 25902503
54 S Dröse, A Stepanova, A Galkin. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. Biochim Biophys Acta 2016; 1857(7): 946–957
https://doi.org/10.1016/j.bbabio.2015.12.013 pmid: 26777588
55 MO Lee, SH Moon, HC Jeong, JY Yi, TH Lee, SH Shim, YH Rhee, SH Lee, SJ Oh, MY Lee, MJ Han, YS Cho, HM Chung, KS Kim, HJ Cha. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci USA 2013; 110(35): E3281–E3290
https://doi.org/10.1073/pnas.1303669110 pmid: 23918355
56 U Ben-David, QF Gan, T Golan-Lev, P Arora, O Yanuka, YS Oren, A Leikin-Frenkel, M Graf, R Garippa, M Boehringer, G Gromo, N Benvenisty. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013; 12(2): 167–179
https://doi.org/10.1016/j.stem.2012.11.015 pmid: 23318055
[1] FMD-20093-OF-TM_suppl_1 Download
[1] Ling Dai, Xiang Gao, Zhihua Ye, Hanmin Li, Xin Yao, Dingbo Lu, Na Wu. The “Traditional Chinese medicine regulating liver regeneration” treatment plan for reducing mortality of patients with hepatitis B-related liver failure based on real-world clinical data[J]. Front. Med., 2021, 15(3): 495-505.
[2] Xiao He, Chentao Jin, Mindi Ma, Rui Zhou, Shuang Wu, Haoying Huang, Yuting Li, Qiaozhen Chen, Mingrong Zhang, Hong Zhang, Mei Tian. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder[J]. Front. Med., 2019, 13(5): 602-609.
[3] Minhong Shen, Yibin Kang. Complex interplay between tumor microenvironment and cancer therapy[J]. Front. Med., 2018, 12(4): 426-439.
[4] Xiaohan Yang, Tiezheng Zheng, Hao Hong, Nan Cai, Xiaofeng Zhou, Changkai Sun, Liying Wu, Shuhong Liu, Yongqi Zhao, Lingling Zhu, Ming Fan, Xuezhong Zhou, Fengxie Jin. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen–glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model[J]. Front. Med., 2018, 12(3): 307-318.
[5] Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
[6] Qiang Gao, Yinghong Shi, Xiaoying Wang, Jian Zhou, Shuangjian Qiu, Jia Fan. Translational medicine in hepatocellular carcinoma[J]. Front Med, 2012, 6(2): 122-133.
[7] Wei-Li ZHANG MD, PhD, Ru-Tai HUI MD, PhD, . Genetics of ischemic and hemorrhagic stroke in Chinese population[J]. Front. Med., 2010, 4(1): 21-28.
[8] Hui QIU, Hui ZHANG, Zuohua FENG. 4-1BBL expressed by eukaryotic cells activates immune cells and suppresses the progression of murine tumor[J]. Front Med Chin, 2009, 3(1): 20-25.
[9] XU Qingwen, CHEN Weifeng. Developing effective tumor vaccines: basis, challenges and perspectives[J]. Front. Med., 2007, 1(1): 11-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed