|
|
|
FMO3--TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population |
Haoran Wei1, Mingming Zhao2,3, Man Huang1, Chenze Li1,4, Jianing Gao3, Ting Yu1, Qi Zhang3, Xiaoqing Shen1, Liang Ji3, Li Ni1, Chunxia Zhao1, Zeneng Wang5, Erdan Dong2,3, Lemin Zheng3( ), Dao Wen Wang1( ) |
1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China 2. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China 3. The Institute of Cardiovascular Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China 4. Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 5. Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA |
|
|
|
|
Abstract The association among plasma trimethylamine-N-oxide (TMAO), FMO3 polymorphisms, and chronic heart failure (CHF) remains to be elucidated. TMAO is a microbiota-dependent metabolite from dietary choline and carnitine. A prospective study was performed including 955 consecutively diagnosed CHF patients with reduced ejection fraction, with the longest follow-up of 7 years. The concentrations of plasma TMAO and its precursors, namely, choline and carnitine, were determined by liquid chromatography-mass spectrometry, and the FMO3 E158K polymorphisms (rs2266782) were genotyped. The top tertile of plasma TMAO was associated with a significant increment in hazard ratio (HR) for the composite outcome of cardiovascular death or heart transplantation (HR=1.47, 95% CI=1.13–1.91, P=0.004) compared with the lowest tertile. After adjustments of the potential confounders, higher TMAO could still be used to predict the risk of the primary endpoint (adjusted HR=1.33, 95% CI=1.01–1.74, P=0.039). This result was also obtained after further adjustment for carnitine (adjusted HR=1.33, 95% CI=1.01–1.74, P=0.039). The FMO3 rs2266782 polymorphism was associated with the plasma TMAO concentrations in our cohort, and lower TMAO levels were found in the AA-genotype. Thus, higher plasma TMAO levels indicated increased risk of the composite outcome of cardiovascular death or heart transplantation independent of potential confounders, and the FMO3 AA-genotype in rs2266782 was related to lower plasma TMAO levels.
|
| Keywords
chronic heart failure
trimethylamine-N-oxide
flavin monooxygenase 3
single nucleotide polymorphism
|
|
Corresponding Author(s):
Lemin Zheng,Dao Wen Wang
|
| About author: Mingsheng Sun and Mingxiao Yang contributed equally to this work. |
|
Just Accepted Date: 08 May 2021
Online First Date: 21 June 2021
Issue Date: 26 April 2022
|
|
| 1 |
MD Huffman, JD Berry, H Ning, AR Dyer, DB Garside, X Cai, ML Daviglus, DM Lloyd-Jones. Lifetime risk for heart failure among white and black Americans: cardiovascular lifetime risk pooling project. J Am Coll Cardiol 2013; 61(14): 1510–1517
https://doi.org/10.1016/j.jacc.2013.01.022
pmid: 23500287
|
| 2 |
N Sato. Epidemiology of heart failure in Asia. Heart Fail Clin 2015; 11(4): 573–579
https://doi.org/10.1016/j.hfc.2015.07.009
pmid: 26462097
|
| 3 |
Z Wang, E Klipfell, BJ Bennett, R Koeth, BS Levison, B Dugar, AE Feldstein, EB Britt, X Fu, YM Chung, Y Wu, P Schauer, JD Smith, H Allayee, WH Tang, JA DiDonato, AJ Lusis, SL Hazen. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57–63
https://doi.org/10.1038/nature09922
pmid: 21475195
|
| 4 |
WH Tang, Z Wang, BS Levison, RA Koeth, EB Britt, X Fu, Y Wu, SL Hazen. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368(17): 1575–1584
https://doi.org/10.1056/NEJMoa1109400
pmid: 23614584
|
| 5 |
WH Tang, Z Wang, Y Fan, B Levison, JE Hazen, LM Donahue, Y Wu, SL Hazen. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 2014; 64(18): 1908–1914
https://doi.org/10.1016/j.jacc.2014.02.617
pmid: 25444145
|
| 6 |
Z Wang, WH Tang, JA Buffa, X Fu, EB Britt, RA Koeth, BS Levison, Y Fan, Y Wu, SL Hazen. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014; 35(14): 904–910
https://doi.org/10.1093/eurheartj/ehu002
pmid: 24497336
|
| 7 |
V Senthong, XS Li, T Hudec, J Coughlin, Y Wu, B Levison, Z Wang, SL Hazen, WH Tang. Plasma trimethylamine N-oxide, a gut microbe-generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol 2016; 67(22): 2620–2628
https://doi.org/10.1016/j.jacc.2016.03.546
pmid: 27256833
|
| 8 |
XS Li, S Obeid, R Klingenberg, B Gencer, F Mach, L Räber, S Windecker, N Rodondi, D Nanchen, O Muller, MX Miranda, CM Matter, Y Wu, L Li, Z Wang, HS Alamri, V Gogonea, YM Chung, WH Tang, SL Hazen, TF Lüscher. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017; 38(11): 814–824
https://doi.org/10.1093/eurheartj/ehw582
pmid: 28077467
|
| 9 |
BJ Bennett, TQ de Aguiar Vallim, Z Wang, DM Shih, Y Meng, J Gregory, H Allayee, R Lee, M Graham, R Crooke, PA Edwards, SL Hazen, AJ Lusis. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013; 17(1): 49–60
https://doi.org/10.1016/j.cmet.2012.12.011
pmid: 23312283
|
| 10 |
M Warrier, DM Shih, AC Burrows, D Ferguson, AD Gromovsky, AL Brown, S Marshall, A McDaniel, RC Schugar, Z Wang, J Sacks, X Rong, TA Vallim, J Chou, PT Ivanova, DS Myers, HA Brown, RG Lee, RM Crooke, MJ Graham, X Liu, P Parini, P Tontonoz, AJ Lusis, SL Hazen, RE Temel, JM Brown. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 2015; 10(3): 326–338
https://doi.org/10.1016/j.celrep.2014.12.036
pmid: 25600868
|
| 11 |
RC Schugar, DM Shih, M Warrier, RN Helsley, A Burrows, D Ferguson, AL Brown, AD Gromovsky, M Heine, A Chatterjee, L Li, XS Li, Z Wang, B Willard, Y Meng, H Kim, N Che, C Pan, RG Lee, RM Crooke, MJ Graham, RE Morton, CD Langefeld, SK Das, LL Rudel, N Zein, AJ McCullough, S Dasarathy, WHW Tang, BO Erokwu, CA Flask, M Laakso, M Civelek, SV Naga Prasad, J Heeren, AJ Lusis, SL Hazen, JM Brown. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 2017; 20(1): 279
https://doi.org/10.1016/j.celrep.2017.06.053
pmid: 28683320
|
| 12 |
SB Koukouritaki, MT Poch, ET Cabacungan, DG McCarver, RN Hines. Discovery of novel flavin-containing monooxygenase 3 (FMO3) single nucleotide polymorphisms and functional analysis of upstream haplotype variants. Mol Pharmacol 2005; 68(2): 383–392
https://doi.org/10.1124/mol.105.012062
pmid: 15858076
|
| 13 |
A Türkanoğlu Özçelik, B Can Demirdöğen, S Demirkaya, O Adalı. Flavin containing monooxygenase 3 genetic polymorphisms Glu158Lys and Glu308Gly and their relation to ischemic stroke. Gene 2013; 521(1): 116–121
https://doi.org/10.1016/j.gene.2013.03.010
pmid: 23510775
|
| 14 |
CW Yancy, M Jessup, B Bozkurt, J Butler, DE Jr Casey, MH Drazner, GC Fonarow, SA Geraci, T Horwich, JL Januzzi, MR Johnson, EK Kasper, WC Levy, FA Masoudi, PE McBride, JJ McMurray, JE Mitchell, PN Peterson, B Riegel, F Sam, LW Stevenson, WH Tang, EJ Tsai, BL Wilkoff; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62(16): e147–e239
https://doi.org/10.1016/j.jacc.2013.05.019
pmid: 23747642
|
| 15 |
RA Koeth, Z Wang, BS Levison, JA Buffa, E Org, BT Sheehy, EB Britt, X Fu, Y Wu, L Li, JD Smith, JA DiDonato, J Chen, H Li, GD Wu, JD Lewis, M Warrier, JM Brown, RM Krauss, WH Tang, FD Bushman, AJ Lusis, SL Hazen. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576–585
https://doi.org/10.1038/nm.3145
pmid: 23563705
|
| 16 |
Y Zhu, E Jameson, M Crosatti, H Schäfer, K Rajakumar, TD Bugg, Y Chen. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA 2014; 111(11): 4268–4273
https://doi.org/10.1073/pnas.1316569111
pmid: 24591617
|
| 17 |
RA Koeth, BS Levison, MK Culley, JA Buffa, Z Wang, JC Gregory, E Org, Y Wu, L Li, JD Smith, WHW Tang, JA DiDonato, AJ Lusis, SL Hazen. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 2014; 20(5): 799–812
https://doi.org/10.1016/j.cmet.2014.10.006
pmid: 25440057
|
| 18 |
CE Cho, MA Caudill. Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab 2017; 28(2): 121–130
https://doi.org/10.1016/j.tem.2016.10.005
pmid: 27825547
|
| 19 |
JR Stubbs, JA House, AJ Ocque, S Zhang, C Johnson, C Kimber, K Schmidt, A Gupta, JB Wetmore, TD Nolin, JA Spertus, AS Yu. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 2016; 27(1): 305–313
https://doi.org/10.1681/ASN.2014111063
pmid: 26229137
|
| 20 |
T Shafi, NR Powe, TW Meyer, S Hwang, X Hai, ML Melamed, T Banerjee, J Coresh, TH Hostetter. Trimethylamine N-oxide and cardiovascular events in hemodialysis patients. J Am Soc Nephrol 2017; 28(1): 321–331
https://doi.org/10.1681/ASN.2016030374
pmid: 27436853
|
| 21 |
M Westerterp, AE Bochem, L Yvan-Charvet, AJ Murphy, N Wang, AR Tall. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ Res 2014; 114(1): 157–170
https://doi.org/10.1161/CIRCRESAHA.114.300738
pmid: 24385509
|
| 22 |
E Kathirvel, K Morgan, G Nandgiri, BC Sandoval, MA Caudill, T Bottiglieri, SW French, TR Morgan. Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol 2010; 299(5): G1068–G1077
https://doi.org/10.1152/ajpgi.00249.2010
pmid: 20724529
|
| 23 |
LJ Wang, HW Zhang, JY Zhou, Y Liu, Y Yang, XL Chen, CH Zhu, RD Zheng, WH Ling, HL Zhu. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 2014; 25(3): 329–336
https://doi.org/10.1016/j.jnutbio.2013.11.007
pmid: 24456734
|
| 24 |
GB Lim. Gut flora—pathogenic role in chronic heart failure. Nat Rev Cardiol 2016; 13(2): 61
https://doi.org/10.1038/nrcardio.2015.200
pmid: 26701213
|
| 25 |
WH Tang. We are not alone: understanding the contributions of intestinal microbial communities and the congested gut in heart failure. JACC Heart Fail 2016; 4(3): 228–229
https://doi.org/10.1016/j.jchf.2015.12.004
pmid: 26874394
|
| 26 |
E Pasini, R Aquilani, C Testa, P Baiardi, S Angioletti, F Boschi, M Verri, F Dioguardi. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 2016; 4(3): 220–227
https://doi.org/10.1016/j.jchf.2015.10.009
pmid: 26682791
|
| 27 |
DM Shih, Z Wang, R Lee, Y Meng, N Che, S Charugundla, H Qi, J Wu, C Pan, JM Brown, T Vallim, BJ Bennett, M Graham, SL Hazen, AJ Lusis. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 2015; 56(1): 22–37
https://doi.org/10.1194/jlr.M051680
pmid: 25378658
|
| 28 |
J Miao, AV Ling, PV Manthena, ME Gearing, MJ Graham, RM Crooke, KJ Croce, RM Esquejo, CB Clish, Morbid Obesity Study Group; D Vicent, SB Biddinger. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6(1): 6498
https://doi.org/10.1038/ncomms7498
pmid: 25849138
|
| 29 |
H Yamazaki, M Shimizu. Survey of variants of human flavin-containing monooxygenase 3 (FMO3) and their drug oxidation activities. Biochem Pharmacol 2013; 85(11): 1588–1593
https://doi.org/10.1016/j.bcp.2013.03.020
pmid: 23567996
|
| 30 |
DM Lambert, OA Mamer, BR Akerman, L Choinière, D Gaudet, P Hamet, EP Treacy. In vivo variability of TMA oxidation is partially mediated by polymorphisms of the FMO3 gene. Mol Genet Metab 2001; 73(3): 224–229
https://doi.org/10.1006/mgme.2001.3189
pmid: 11461189
|
| 31 |
A Morandi, C Zusi, M Corradi, F Olivieri, C Piona, E Fornari, C Maffeis. Minor diplotypes of FMO3 might protect children and adolescents from obesity and insulin resistance. Int J Obes 2018; 42(6): 1243–1248
https://doi.org/10.1038/s41366-018-0100-7
pmid: 29795455
|
| 32 |
Z Shan, T Sun, H Huang, S Chen, L Chen, C Luo, W Yang, X Yang, P Yao, J Cheng, FB Hu, L Liu. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr 2017; 106(3): 888–894
https://doi.org/10.3945/ajcn.117.157107
pmid: 28724646
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|