Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (3) : 403-415    https://doi.org/10.1007/s11684-021-0858-1
RESEARCH ARTICLE
IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia
Xiao Huang, Tingting Ma, Yongmei Zhu, Bo Jiao, Shanhe Yu, Kankan Wang(), Jian-Qing Mi(), Ruibao Ren()
Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Collaborative Innovation Center of Hematology, National Research Center for translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
 Download: PDF(624 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The morbidity and mortality of myeloproliferative neoplasms (MPNs) are primarily caused by arterial and venous complications, progression to myelofibrosis, and transformation to acute leukemia. However, identifying molecular-based biomarkers for risk stratification of patients with MPNs remains a challenge. We have previously shown that interferon regulatory factor-8 (IRF8) and IRF4 serve as tumor suppressors in myeloid cells. In this study, we evaluated the expression of IRF4 and IRF8 and the JAK2V617F mutant allele burden in patients with MPNs. Patients with decreased IRF4 expression were correlated with a more developed MPN phenotype in myelofibrosis (MF) and secondary AML (sAML) transformed from MPNs versus essential thrombocythemia (ET). Negative correlations between the JAK2V617F allele burden and the expression of IRF8 (P <0.05) and IRF4 (P<0.001) and between white blood cell (WBC) count and IRF4 expression (P <0.05) were found in ET patients. IRF8 expression was negatively correlated with the JAK2V617F allele burden (P <0.05) in polycythemia vera patients. Complete response (CR), partial response (PR), and no response (NR) were observed in 67.5%, 10%, and 22.5% of ET patients treated with hydroxyurea (HU), respectively, in 12 months. At 3 months, patients in the CR group showed high IRF4 and IRF8 expression compared with patients in the PR and NR groups. In the 12-month therapy period, low IRF4 and IRF8 expression were independently associated with the unfavorable response to HU and high WBC count. Our data indicate that the expression of IRF4 and IRF8 was associated with the MPN phenotype, which may serve as biomarkers for the response to HU in ET.

Keywords myeloproliferative neoplasms      IRF4      IRF8      hydroxyurea      essential thrombocythemia     
Corresponding Author(s): Kankan Wang,Jian-Qing Mi,Ruibao Ren   
Just Accepted Date: 12 July 2021   Online First Date: 02 August 2021    Issue Date: 18 July 2022
 Cite this article:   
Xiao Huang,Tingting Ma,Yongmei Zhu, et al. IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia[J]. Front. Med., 2022, 16(3): 403-415.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0858-1
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I3/403
ET (A) PV (B) PMF (C) sAML (D) P (A) ?vs. (B) P (A) ?vs. (C) P (A) ?vs. (D) P (B) ?vs. (C) P (B) ?vs. (D) P (C) ?vs. (D)
No. of patients ?(male:female) 40 (27:13) 13 (4:9) 5 (1:4) 5 (3:2) 0.026 0.06 1 1 0.326 0.524
Age ?(year) 55.5 ?(25–84) 57 ?(47–71) 62 ?(48–68) 58 ?(51–80) 0.315 0.233 0.107 0.64 0.394 0.748
WBC ?(× 109/L) 10.72 ?(5.2–39) 12.2 ?(7.39–21.48) 5.05 ?(0.82–18.52) 26 ?(17.33–55.8) 0.86 0.336 <0.001 0.331 <0.001 <0.001
Hb (g/L) 145.5 ?(54–170) 188 ?(160–207) 81 ?(50–123) 118 ?(74–152) <0.001 <0.001 <0.001 <0.001 <0.001 0.128
Hematocrit ?(%) 45.45 ?(27.0–49.1) 60 ?(48.2–70.8) 37.3 ?(18.7–61.7) 25.5 ?(22.9–46.9) <0.001 0.394 0.137 <0.001 <0.001 0.375
Erythrocyte ?count ?(× 109/L) 5.02 ?(2.18–5.79) 6.93 ?(5.78–9.91) 2.99 ?(1.80–4.65) 2.52 ?(2.20–5.65) <0.001 0.001 0.179 <0.001 <0.001 0.765
PLT (× 109/L) 956 (634–?2070) 660 ?(146–1167) 248 ?(29–2609) 231 ?(146–272) 0.006 0.055 <0.001 0.977 0.048 0.102
JAK2V617F ?allele? burden (%) 40.8 ?(12–97) 58.7 ?(40–97) 52.4 ?(35–77) 70.4 ?(21–98) 0.124 0.832 0.137 0.453 0.683 0.335
IRF8 expression ?(copies 105 ?IRF8/β-actin) 69.82 ?(15.28–121.29) 68.21 ?(46.26–98.81) 51.89 ?(43.75–80.31) 42.62 ?(32.28–111.84) 0.784 0.29 0.531 0.42 0.697 0.698
IRF4 expression ?(copies 106 ?IRF4/β-actin) 176.04 ?(33.84–465.1) 111.6 ?(51.06–268) 55.51 ?(21.38–84.88) 34.06 ?(29.35–74.65) 0.207 0.022 0.008 0.165 0.101 0.91
Tab.1  Laboratory and clinical characteristics of MPNs and sAML with JAK2V617F mutation at diagnosis
Fig.1  JAK2V617F allele burden (A) and IRF4 (B) and IRF8 (C) expression in the 63 patients enlisted in the study. Boxes represent the interquartile range that contains 50% of the subjects; the horizontal line inside marks the median, and the bars show the upper and lower ranges of values.
Factors n (%) IRF8 expression (copies ?105 IRF8/β-actin) P value IRF4 expression (copies ?106 IRF4/β-actin) P value
Age
?<60 years 32 (60.38%) 71.96 0.557 193.21 0.002
?≥60 years 21 (39.62%) 67.99 108.59
Gender
?Male 31 (58.49%) 71.85 0.599 150.71 0.445
?Female 22 (41.51%) 68.32 172.31
Diagnosis
?ET 40 (75.47%) 70.94 0.769 168.69 0.255
?PV 13 (24.53%) 68.68 131.97
WBC count
?<15 × 109/L 39 (73.58%) 74.36 0.041 171.66 0.148
?≥15 × 109/L 14 (26.42%) 59.32 126.32
JAK2V617F allele burden (%)
?<50% 30 (56.60%) 78.04 0.006 214.06 <0.001
?≥50% 23 (43.40%) 60.40 88.75
Tab.2  Baseline characteristic of the study group and comparison of IRF4 and IRF8 expression depending on clinical factors
Fig.2  Correlation of IRF4 and IRF8 expression with JAK2V617F allele burden and WBC count in ET (A–E) and PV (F–H) patients. The significant P values and r value for correlations are shown in the figure.
Fig.3  Rate of responses to HU according to the ELN criteria at 3 and 12 months in ET patients.
Fig.4  Clinical characteristics and IRF4 and IRF8 expression in the CR, PR, and NR groups evaluated at 3 months in ET patients. (A) Age; (B) JAK2V617F allele burden; (C) WBC count; (D) IRF4 expression; (E) IRF8 expression. *P<0.05, **P<0.01, ***P<0.001.
Fig.5  Receiver operating characteristic (ROC) curve analyses to explore the cut-off expression level of IRF4 and IRF8 in the cohort of ET patients: (A) IRF4 expression; (B) IRF8 expression. Note: The cut-off level for expression was determined using CR as a binary end point within 12 months. AUC, area under the curve.
Fig.6  Probability of achieving a complete clinico-hematological response (CR) to HU in 40 ET patients according to WBC count and IRF4 and IRF8 expression at baseline (A–C).
Factor No. CR (%) Univariate???? Multivariate????
P value Hazard ratio (95% CI) P value Hazard ratio (95% CI)
Age
?<60 years (21/25) 84% 0.006 2.1 (1.10–3.99) 0.717
?≥60 years (6/15) 40%
Sex
?Male (19/27) 70.4% 0.722 1.14 (0.70–1.88) 0.599
?Female (8/13) 61.5%
Splenomegaly
?No (25/37) 67.6% 1 1.01 (0.44–2.33) 0.325
?Yes (2/3) 66.7%
Thrombotic event
?No (23/35) 65.7% 1 0.82 (0.50–1.35) 0.851
?Yes (4/5) 80%
Hb level
?≥120 g/L (25/35) 71.4% 0.307 1.79 (0.60–5.33) 0.457
?<120 g/L (2/5) 40%
WBC count
?<15 × 109/L (25/30) 83.3% 0.001 4.17 (1.19–14.54) 0.021 8.14 (1.38–48.05)
?≥15 × 109/L (2/10) 20%
Platelet count
?<1000 × 109/L (18/23) 78.3% 0.171 1.48 (0.90–2.43) 0.657
?≥1000 × 109/L (9/17) 52.9%
JAK2V617F allele burden ?(%)
?<50% (25/26) 96.2% <0.001 6.73 (1.86–24.3) 0.223
?≥50% (2/14) 14.3%
IRF8 expression (copies 105 IRF8/β-actin)
?≥71.83 (15/16) 93.8% 0.004 1.88 (1.23–2.85) 0.030 2.51 (1.10–5.77)
?<71.83 (12/24) 50%
IRF4 expression (copies 106 IRF4/β-actin)
?≥107.11 (25/25) 100% <0.001 7.5 (2.06–27.3) 0.001 22.18 (3.65–134.77)
?<107.11 (2/15) 13.3%
Tab.3  Analysis of factors associated with the clinico-hematological response to HU in 40 patients with ET
1 A Tefferi, W Vainchenker. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29(5): 573–582
https://doi.org/10.1200/JCO.2010.29.8711 pmid: 21220604
2 JL Spivak. Myeloproliferative neoplasms. N Engl J Med 2017; 376(22): 2168–2181
https://doi.org/10.1056/NEJMra1406186 pmid: 28564565
3 EJ Baxter, LM Scott, PJ Campbell, C East, N Fourouclas, S Swanton, GS Vassiliou, AJ Bench, EM Boyd, N Curtin, MA Scott, WN Erber, AR Green; Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365(9464): 1054–1061
https://doi.org/10.1016/S0140-6736(05)71142-9 pmid: 15781101
4 JM O’Sullivan, CN Harrison. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. Mol Cell Endocrinol 2017; 451: 71–79
https://doi.org/10.1016/j.mce.2017.01.050 pmid: 28167129
5 O Silvennoinen, SR Hubbard. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015; 125(22): 3388–3392
https://doi.org/10.1182/blood-2015-01-621110 pmid: 25824690
6 A Tefferi, M Elliott. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost 2007; 33(4): 313–320
https://doi.org/10.1055/s-2007-976165 pmid: 17525888
7 A Casini, P Fontana, TP Lecompte. Thrombotic complications of myeloproliferative neoplasms: risk assessment and risk-guided management. J Thromb Haemost 2013; 11(7): 1215–1227
https://doi.org/10.1111/jth.12265 pmid: 23601811
8 IO Hansen, AL Sørensen, HC Hasselbalch. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol 2017; 98(1): 75–84
https://doi.org/10.1111/ejh.12787 pmid: 27471124
9 HC Hasselbalch. Perspectives on the increased risk of second cancer in patients with essential thrombocythemia, polycythemia vera and myelofibrosis. Eur J Haematol 2015; 94(2): 96–98
https://doi.org/10.1111/ejh.12437 pmid: 25689636
10 R Landolfi, L Di Gennaro, T Barbui, V De Stefano, G Finazzi, R Marfisi, G Tognoni, R; European Collaboration on Low-Dose Aspirin in Polycythemia Vera (ECLAP). Marchioli Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 2007; 109(6): 2446–2452
https://doi.org/10.1182/blood-2006-08-042515 pmid: 17105814
11 F Lussana, S Caberlon, C Pagani, PW Kamphuisen, HR Büller, M Cattaneo. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res 2009; 124(4): 409–417
https://doi.org/10.1016/j.thromres.2009.02.004 pmid: 19299003
12 HL Geyer, RM Scherber, AC Dueck, JJ Kiladjian, Z Xiao, S Slot, S Zweegman, F Sackmann, AK Fuentes, D Hernández-Maraver, K Döhner, CN Harrison, D Radia, P Muxi, C Besses, F Cervantes, PL Johansson, B Andreasson, A Rambaldi, T Barbui, AM Vannucchi, F Passamonti, J Samuelsson, G Birgegard, RA Mesa. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014; 123(24): 3803–3810
https://doi.org/10.1182/blood-2013-09-527903 pmid: 24553173
13 CN Harrison, AR Green. Essential thrombocythemia. Hematol Oncol Clin North Am 2003; 17(5): 1175–1190
https://doi.org/10.1016/S0889-8588(03)00082-0 pmid: 14560781
14 E Antonioli, P Guglielmelli, A Pancrazzi, C Bogani, M Verrucci, V Ponziani, G Longo, A Bosi, AM Vannucchi. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19(10): 1847–1849
https://doi.org/10.1038/sj.leu.2403902 pmid: 16079890
15 S Cortelazzo, G Finazzi, M Ruggeri, O Vestri, M Galli, F Rodeghiero, T Barbui. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995; 332(17): 1132–1137
https://doi.org/10.1056/NEJM199504273321704 pmid: 7700286
16 A Carobbio, J Thiele, F Passamonti, E Rumi, M Ruggeri, F Rodeghiero, ML Randi, I Bertozzi, AM Vannucchi, E Antonioli, H Gisslinger, V Buxhofer-Ausch, G Finazzi, N Gangat, A Tefferi, T Barbui. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood 2011; 117(22): 5857–5859
https://doi.org/10.1182/blood-2011-02-339002 pmid: 21490340
17 CN Harrison, PJ Campbell, G Buck, K Wheatley, CL East, D Bareford, BS Wilkins, JD van der Walt, JT Reilly, AP Grigg, P Revell, BE Woodcock, AR Green; United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353(1): 33–45
https://doi.org/10.1056/NEJMoa043800 pmid: 16000354
18 R Landolfi, L Di Gennaro. Prevention of thrombosis in polycythemia vera and essential thrombocythemia. Haematologica 2008; 93(3): 331–335
https://doi.org/10.3324/haematol.12604 pmid: 18310537
19 T Tamura, H Yanai, D Savitsky, T Taniguchi. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26(1): 535–584
https://doi.org/10.1146/annurev.immunol.26.021607.090400 pmid: 18303999
20 F Locatelli, P Merli, S Rutella. At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol 2013; 94(6): 1141–1157
https://doi.org/10.1189/jlb.0613343 pmid: 24096380
21 T Tamura, P Tailor, K Yamaoka, HJ Kong, H Tsujimura, JJ O’Shea, H Singh, K Ozato. IFN regulatory factor-4 and-8 govern dendritic cell subset development and their functional diversity. J Immunol 2005; 174(5): 2573–2581
https://doi.org/10.4049/jimmunol.174.5.2573 pmid: 15728463
22 A Karow, R Nienhold, P Lundberg, E Peroni, MC Putti, ML Randi, RC Skoda. Mutational profile of childhood myeloproliferative neoplasms. Leukemia 2015; 29(12): 2407–2409
https://doi.org/10.1038/leu.2015.205 pmid: 26223499
23 Manzella L, Tirrò E, Pennisi MS, Massimino M, Stella S, Romano C, Vitale SR, Vigneri P. Roles of interferon regulatory factors in chronic myeloid leukemia. Curr Cancer Drug Targets 2016; 16(7): 594–605
https://doi.org/10.2174/1568009616666160105105857 pmid: 26728039
24 T Holtschke, J Löhler, Y Kanno, T Fehr, N Giese, F Rosenbauer, J Lou, KP Knobeloch, L Gabriele, JF Waring, MF Bachmann, RM Zinkernagel, HC Morse 3rd, K Ozato, I Horak. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87(2): 307–317
https://doi.org/10.1016/S0092-8674(00)81348-3 pmid: 8861914
25 SX Hao, R Ren. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20(4): 1149–1161
https://doi.org/10.1128/MCB.20.4.1149-1161.2000 pmid: 10648600
26 SH Jo, JH Schatz, J Acquaviva, H Singh, R Ren. Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116(15): 2759–2767
https://doi.org/10.1182/blood-2009-07-234559 pmid: 20585039
27 G Barosi, G Birgegard, G Finazzi, M Griesshammer, C Harrison, HC Hasselbalch, JJ Kiladjian, E Lengfelder, MF McMullin, F Passamonti, JT Reilly, AM Vannucchi, T Barbui. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 2009; 113(20): 4829–4833
https://doi.org/10.1182/blood-2008-09-176818 pmid: 19278953
28 DA Arber, A Orazi, R Hasserjian, J Thiele, MJ Borowitz, MM Le Beau, CD Bloomfield, M Cazzola, JW Vardiman. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391–2405
https://doi.org/10.1182/blood-2016-03-643544 pmid: 27069254
29 G Rotunno, C Mannarelli, P Guglielmelli, A Pacilli, A Pancrazzi, L Pieri, T Fanelli, A Bosi, AM; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators Vannucchi. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014; 123(10): 1552–1555
https://doi.org/10.1182/blood-2013-11-538983 pmid: 24371211
30 SX Hao, R Ren. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20(4): 1149–1161
https://doi.org/10.1128/MCB.20.4.1149-1161.2000 pmid: 10648600
31 S Iida, PH Rao, M Butler, P Corradini, M Boccadoro, B Klein, RSK Chaganti, R Dalla-Favera. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 1997; 17(2): 226–230
https://doi.org/10.1038/ng1097-226 pmid: 9326949
32 Y Mamane, S Sharma, N Grandvaux, E Hernandez, J Hiscott. IRF-4 activities in HTLV-I-induced T cell leukemogenesis. J Interferon Cytokine Res 2002; 22(1): 135–143
https://doi.org/10.1089/107999002753452746 pmid: 11846984
33 CC Chang, J Lorek, DE Sabath, Y Li, CR Chitambar, B Logan, B Kampalath, RP Cleveland. Expression of MUM1/IRF4 correlates with clinical outcome in patients with B-cell chronic lymphocytic leukemia. Blood 2002; 100(13): 4671–4675
https://doi.org/10.1182/blood-2002-01-0104 pmid: 12393648
34 DL Stirewalt, YE Choi, NE Sharpless, EL Pogosova-Agadjanyan, MR Cronk, M Yukawa, EB Larson, BL Wood, FR Appelbaum, JP Radich, S Heimfeld. Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells. Leukemia 2009; 23(2): 391–393
https://doi.org/10.1038/leu.2008.176 pmid: 18596738
35 M Schmidt, A Hochhaus, A Nitsche, R Hehlmann, A Neubauer. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-α. Blood 2001; 97(11): 3648–3650
https://doi.org/10.1182/blood.V97.11.3648 pmid: 11369663
36 M Schmidt, A Hochhaus, SA König-Merediz, C Brendel, J Proba, GJ Hoppe, B Wittig, G Ehninger, R Hehlmann, A Neubauer. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol 2000; 18(19): 3331–3338
https://doi.org/10.1200/JCO.2000.18.19.3331 pmid: 11013272
37 R Mesa, CB Miller, M Thyne, J Mangan, S Goldberger, S Fazal, X Ma, W Wilson, DC Paranagama, DG Dubinski, J Boyle, JO Mascarenhas. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer 2016; 16(1): 167
https://doi.org/10.1186/s12885-016-2208-2 pmid: 26922064
38 A Tefferi, JW Vardiman. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22(1): 14–22
https://doi.org/10.1038/sj.leu.2404955 pmid: 17882280
39 CN Harrison, S Koschmieder, L Foltz, P Guglielmelli, T Flindt, M Koehler, J Mathias, N Komatsu, RN Boothroyd, A Spierer, J Perez Ronco, G Taylor-Stokes, J Waller, RA Mesa. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: results from the international MPN Landmark survey. Ann Hematol 2017; 96(10): 1653–1665
https://doi.org/10.1007/s00277-017-3082-y pmid: 28780729
40 BL Stein, AR Moliterno. Primary myelofibrosis and the myeloproliferative neoplasms: the role of individual variation. JAMA 2010; 303(24): 2513–2518
https://doi.org/10.1001/jama.2010.853 pmid: 20571018
41 H Kreipe, K Hussein, G Göhring, B Schlegelberger. Progression of myeloproliferative neoplasms to myelofibrosis and acute leukaemia. J Hematop 2011; 4(2): 61–68
https://doi.org/10.1007/s12308-011-0096-6
42 TS Larsen, N Pallisgaard, MB Møller, HC Hasselbalch. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis—impact on disease phenotype. Eur J Haematol 2007; 79(6): 508–515
https://doi.org/10.1111/j.1600-0609.2007.00960.x pmid: 17961178
43 E Antonioli, P Guglielmelli, G Poli, C Bogani, A Pancrazzi, G Longo, V Ponziani, L Tozzi, L Pieri, V Santini, A Bosi, AM Vannucchi; Myeloproliferative Disorders Research Consortium (MPD-RC). Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008; 93(1): 41–48
https://doi.org/10.3324/haematol.11653 pmid: 18166784
44 HH Hsiao, MY Yang, YC Liu, CP Lee, WC Yang, TC Liu, CS Chang, SF Lin. The association of JAK2V617F mutation and leukocytosis with thrombotic events in essential thrombocythemia. Exp Hematol 2007; 35(11): 1704–1707
https://doi.org/10.1016/j.exphem.2007.08.011 pmid: 17920754
45 L Gugliotta, A Tieghi, A Iurlo, A Candoni, G Specchia, M Lunghi, E Rumi, PR Scalzulli, A Dragani, V Martinelli, ML Randi, N Maschio, AM Liberati, F Palmieri, C Santoro, AM D'Arco, A Rago, C Chiozzotto, L Mastrullo, E Cacciola, R Cacciola, F Lanza, K Codeluppi, C De Philippis, A Patriarca, R Ciancia, M Fiacchini, G Gugliotta, G Cimino, G Gaidano, MG Mazzucconi, F Passamonti, AM Vannucchi, N Vianelli. Thrombosis history and relationship with low thrombocytosis, leukocytosis, and Jak2 V617F mutation in a cohort of 977 patients with essential thrombocythemia (ET): preliminary report of the Registro Italiano Trombocitemia (RIT). Blood 2011; 118 (21): 3836
https://doi.org/10.1182/blood.V118.21.3836.3836
46 TI George. Malignant or benign leukocytosis. Hematology (Am Soc Hematol Educ Program) 2012; 2012(1): 475–484
https://doi.org/10.1182/asheducation.V2012.1.475.3798515 pmid: 23233622
47 BL Stein, AR Moliterno, RV Tiu. Polycythemia vera disease burden: contributing factors, impact on quality of life, and emerging treatment options. Ann Hematol 2014; 93(12): 1965–1976
https://doi.org/10.1007/s00277-014-2205-y pmid: 25270596
48 M Yamamoto, T Kato, C Hotta, A Nishiyama, D Kurotaki, M Yoshinari, M Takami, M Ichino, M Nakazawa, T Matsuyama, R Kamijo, S Kitagawa, K Ozato, T Tamura. Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS One 2011; 6(10): e25812
https://doi.org/10.1371/journal.pone.0025812 pmid: 22003407
49 CE Shiau, Z Kaufman, AM Meireles, WS Talbot. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 2015; 10(1): e0117513
https://doi.org/10.1371/journal.pone.0117513 pmid: 25615614
50 AV Paschall, R Zhang, CF Qi, K Bardhan, L Peng, G Lu, J Yang, M Merad, T McGaha, G Zhou, A Mellor, SI Abrams, HC Morse 3rd, K Ozato, H Xiong, K Liu. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol 2015; 194(5): 2369–2379
https://doi.org/10.4049/jimmunol.1402412 pmid: 25646302
51 A Yáñez, MY Ng, N Hassanzadeh-Kiabi, HS Goodridge. IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. Blood 2015; 125(9): 1452–1459
https://doi.org/10.1182/blood-2014-09-600833 pmid: 25597637
52 T Tamura, HJ Kong, C Tunyaplin, H Tsujimura, K Calame, K Ozato. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 2003; 102(13): 4547–4554
https://doi.org/10.1182/blood-2003-01-0291 pmid: 12933588
53 G Finazzi, A Rambaldi, V Guerini, A Carobbo, T Barbui. Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica 2007; 92(1): 135–136
https://doi.org/10.3324/haematol.10634 pmid: 17229651
54 A Carobbio, G Finazzi, E Antonioli, AM Vannucchi, G Barosi, M Ruggeri, F Rodeghiero, F Delaini, A Rambaldi, T Barbui. Hydroxyurea in essential thrombocythemia: rate and clinical relevance of responses by European LeukemiaNet criteria. Blood 2010; 116(7): 1051–1055
https://doi.org/10.1182/blood-2010-03-272179 pmid: 20479281
55 JC Hernández-Boluda, A Alvarez-Larrán, M Gómez, A Angona, P Amat, B Bellosillo, L Martínez-Avilés, B Navarro, A Teruel, F Martínez-Ruiz, C Besses. Clinical evaluation of the European LeukaemiaNet criteria for clinicohaematological response and resistance/intolerance to hydroxycarbamide in essential thrombocythaemia. Br J Haematol 2011; 152(1): 81–88
https://doi.org/10.1111/j.1365-2141.2010.08430.x pmid: 21083657
56 AM Vannucchi, L Pieri, P Guglielmelli. JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Ther Adv Hematol 2011; 2(1): 21–32
https://doi.org/10.1177/2040620710394474 pmid: 23556073
57 E Antonioli, A Carobbio, L Pieri, A Pancrazzi, P Guglielmelli, F Delaini, V Ponziani, N Bartalucci, L Tozzi, A Bosi, A Rambaldi, T Barbui, AM Vannucchi. Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica 2010; 95(8): 1435–1438
https://doi.org/10.3324/haematol.2009.021444 pmid: 20418246
58 IR Zalcberg, J Ayres-Silva, AM de Azevedo, C Solza, A Daumas, M Bonamino. Hydroxyurea dose impacts hematologic parameters in polycythemia vera and essential thrombocythemia but does not appreciably affect JAK2-V617F allele burden. Haematologica 2011; 96(3): e18–e20
https://doi.org/10.3324/haematol.2010.037846 pmid: 21357711
59 TS Larsen, N Pallisgaard, K de Stricker, MB Møller, HC Hasselbalch. Limited efficacy of hydroxyurea in lowering of the JAK2 V617F allele burden. Hematology 2009; 14(1): 11–15
https://doi.org/10.1179/102453309X385188 pmid: 19154659
60 CS Netherby, MN Messmer, L Burkard-Mandel, S Colligan, A Miller, E Cortes Gomez, J Wang, MJ Nemeth, SI Abrams. The granulocyte progenitor stage is a key target of irf8-mediated regulation of myeloid-derived suppressor cell production. J Immunol 2017; 198(10): 4129–4139
https://doi.org/10.4049/jimmunol.1601722 pmid: 28356386
61 S Nam, JS Lim. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39(11): 1548–1555
https://doi.org/10.1007/s12272-016-0854-1 pmid: 27826752
[1] FMD-21012-OF-RRB_suppl_1 Download
[1] LIU Hongxing, TONG Chunrong, CAI Peng, GU Jiangying, LIN Yuehui, TENG Wen, WANG He, ZHANG Ying, ZHU Ping. Observation of a higher JAK2 V617F homozygous mutated clone in polycythemia vera compared to essential thrombocythemia[J]. Front. Med., 2008, 2(3): 309-313.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed