|
|
|
Astrocytes in depression and Alzheimer’s disease |
Yang Liao1, Qu Xing2, Qianqian Li3, Jing Zhang1, Ruiyuan Pan1( ), Zengqiang Yuan1( ) |
1. The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China 2. School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China 3. School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China |
|
|
|
|
Abstract Astrocytes are an abundant subgroup of cells in the central nervous system (CNS) that play a critical role in controlling neuronal circuits involved in emotion, learning, and memory. In clinical cases, multiple chronic brain diseases may cause psychosocial and cognitive impairment, such as depression and Alzheimer’s disease (AD). For years, complex pathological conditions driven by depression and AD have been widely perceived to contribute to a high risk of disability, resulting in gradual loss of self-care ability, lower life qualities, and vast burden on human society. Interestingly, correlational research on depression and AD has shown that depression might be a prodrome of progressive degenerative neurological disease. As a kind of multifunctional glial cell in the CNS, astrocytes maintain physiological function via supporting neuronal cells, modulating pathologic niche, and regulating energy metabolism. Mounting evidence has shown that astrocytic dysfunction is involved in the progression of depression and AD. We herein review the current findings on the roles and mechanisms of astrocytes in the development of depression and AD, with an implication of potential therapeutic avenue for these diseases by targeting astrocytes.
|
| Keywords
astrocytes
depression
Alzheimer’s disease
roles
mechanisms
|
|
Corresponding Author(s):
Ruiyuan Pan,Zengqiang Yuan
|
|
Just Accepted Date: 09 November 2021
Online First Date: 23 November 2021
Issue Date: 27 December 2021
|
|
| 1 |
A Araque, V Parpura, RP Sanzgiri, PG Haydon. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22(5): 208–215
https://doi.org/10.1016/S0166-2236(98)01349-6
pmid: 10322493
|
| 2 |
A Volterra, J Meldolesi. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6(8): 626–640
https://doi.org/10.1038/nrn1722
pmid: 16025096
|
| 3 |
E Blanco-Suárez, AL Caldwell, NJ Allen. Role of astrocyte-synapse interactions in CNS disorders. J Physiol 2017; 595(6): 1903–1916
https://doi.org/10.1113/JP270988
pmid: 27381164
|
| 4 |
BS Khakh, MV Sofroniew. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 2015; 18(7): 942–952
https://doi.org/10.1038/nn.4043
pmid: 26108722
|
| 5 |
JA Stogsdill, J Ramirez, D Liu, YH Kim, KT Baldwin, E Enustun, T Ejikeme, RR Ji, C Eroglu. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017; 551(7679): 192–197
https://doi.org/10.1038/nature24638
pmid: 29120426
|
| 6 |
BS Khakh. Astrocyte-neuron interactions in the striatum: insights on identity, form, and function. Trends Neurosci 2019; 42(9): 617–630
https://doi.org/10.1016/j.tins.2019.06.003
pmid: 31351745
|
| 7 |
M Campisi, Y Shin, T Osaki, C Hajal, V Chiono, RD Kamm. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 180: 117–129
https://doi.org/10.1016/j.biomaterials.2018.07.014
pmid: 30032046
|
| 8 |
SA Liddelow, SE Marsh, B Stevens. Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol 2020; 41(9): 820–835
https://doi.org/10.1016/j.it.2020.07.006
pmid: 32819809
|
| 9 |
GS Alexopoulos. Depression in the elderly. Lancet 2005; 365(9475): 1961–1970
https://doi.org/10.1016/S0140-6736(05)66665-2
pmid: 15936426
|
| 10 |
R Cui. Editorial: a systematic review of depression. Curr Neuropharmacol 2015; 13(4): 480
https://doi.org/10.2174/1570159X1304150831123535
pmid: 26412067
|
| 11 |
B Gaynes. Assessing the risk factors for difficult-to-treat depression and treatment-resistant depression. J Clin Psychiatry 2016; 77(Suppl 1): 4–8
https://doi.org/10.4088/JCP.14077su1c.01
pmid: 26829431
|
| 12 |
J Wang, X Wu, W Lai, E Long, X Zhang, W Li, Y Zhu, C Chen, X Zhong, Z Liu, D Wang, H Lin. Prevalence of depression and depressive symptoms among outpatients: a systematic review and meta-analysis. BMJ Open 2017; 7(8): e017173
https://doi.org/10.1136/bmjopen-2017-017173
pmid: 28838903
|
| 13 |
World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization, 2017
|
| 14 |
GS Malhi, JJ Mann. Depression. Lancet 2018; 392(10161): 2299–2312
https://doi.org/10.1016/S0140-6736(18)31948-2
pmid: 30396512
|
| 15 |
S Boku, S Nakagawa, H Toda, A Hishimoto. Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72(1): 3–12
https://doi.org/10.1111/pcn.12604
pmid: 28926161
|
| 16 |
DJ David, AM Gardier. The pharmacological basis of the serotonin system: application to antidepressant response. Encephale 2016; 42(3): 255–263 (in French)
https://doi.org/10.1016/j.encep.2016.03.012
pmid: 27112704
|
| 17 |
G Oxenkrug. Serotonin-kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 2013; 14(5): 514–521
https://doi.org/10.2174/1389450111314050002
pmid: 23514379
|
| 18 |
S Takahashi. Reduction of blood platelet serotonin levels in manic and depressed patients. Folia Psychiatr Neurol Jpn 1976; 30(4): 475–486
https://doi.org/10.1111/j.1440-1819.1976.tb02670.x
pmid: 1021543
|
| 19 |
PS Rojas, JL Fiedler. What do we really know about 5-HT1A receptor signaling in neuronal cells? Front Cell Neurosci 2016; 10: 272
https://doi.org/10.3389/fncel.2016.00272
pmid: 27932955
|
| 20 |
CM Teixeira, ZB Rosen, D Suri, Q Sun, M Hersh, D Sargin, I Dincheva, AA Morgan, S Spivack, AC Krok, T Hirschfeld-Stoler, EK Lambe, SA Siegelbaum, MS Ansorge. Hippocampal 5-HT input regulates memory formation and Schaffer collateral excitation. Neuron 2018; 98(5): 992–1004.e4
https://doi.org/10.1016/j.neuron.2018.04.030
pmid: 29754752
|
| 21 |
MI Naharci, O Buyukturan, U Cintosun, H Doruk, I Tasci. Functional status of older adults with dementia at the end of life: is there still anything to do? Indian J Palliat Care 2019; 25(2): 197–202
https://doi.org/10.4103/IJPC.IJPC_156_18
pmid: 31114103
|
| 22 |
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459–509
https://doi.org/10.1016/j.jalz.2016.03.001
pmid: 27570871
|
| 23 |
J Jia, C Wei, S Chen, F Li, Y Tang, W Qin, L Zhao, H Jin, H Xu, F Wang, A Zhou, X Zuo, L Wu, Y Han, Y Han, L Huang, Q Wang, D Li, C Chu, L Shi, M Gong, Y Du, J Zhang, J Zhang, C Zhou, J Lv, Y Lv, H Xie, Y Ji, F Li, E Yu, B Luo, Y Wang, S Yang, Q Qu, Q Guo, F Liang, J Zhang, L Tan, L Shen, K Zhang, J Zhang, D Peng, M Tang, P Lv, B Fang, L Chu, L Jia, S Gauthier. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement 2018; 14(4): 483–491
https://doi.org/10.1016/j.jalz.2017.12.006
pmid: 29433981
|
| 24 |
RY Pan, J Ma, XX Kong, XF Wang, SS Li, XL Qi, YH Yan, J Cheng, Q Liu, W Jin, CH Tan, Z Yuan. Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv 2019; 5(2): eaau6328
https://doi.org/10.1126/sciadv.aau6328
pmid: 30820451
|
| 25 |
O Realdon, F Rossetto, M Nalin, I Baroni, M Cabinio, R Fioravanti, FL Saibene, M Alberoni, F Mantovani, M Romano, R Nemni, F Baglio. Technology-enhanced multi-domain at home continuum of care program with respect to usual care for people with cognitive impairment: the Ability-TelerehABILITation study protocol for a randomized controlled trial. BMC Psychiatry 2016; 16(1): 425
https://doi.org/10.1186/s12888-016-1132-y
pmid: 27887597
|
| 26 |
SH Barage, KD Sonawane. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015; 52: 1–18
https://doi.org/10.1016/j.npep.2015.06.008
pmid: 26149638
|
| 27 |
EN Cline, MA Bicca, KL Viola, WL Klein. The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567–S610
https://doi.org/10.3233/JAD-179941
pmid: 29843241
|
| 28 |
DJ Selkoe, J Hardy. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595–608
https://doi.org/10.15252/emmm.201606210
pmid: 27025652
|
| 29 |
L Bakota, R Brandt. Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs 2016; 76(3): 301–313
https://doi.org/10.1007/s40265-015-0529-0
pmid: 26729186
|
| 30 |
B Eftekharzadeh, JG Daigle, LE Kapinos, A Coyne, J Schiantarelli, Y Carlomagno, C Cook, SJ Miller, S Dujardin, AS Amaral, JC Grima, RE Bennett, K Tepper, M DeTure, CR Vanderburg, BT Corjuc, SL DeVos, JA Gonzalez, J Chew, S Vidensky, FH Gage, J Mertens, J Troncoso, E Mandelkow, X Salvatella, RYH Lim, L Petrucelli, S Wegmann, JD Rothstein, BT Hyman. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 2018; 99(5): 925–940.e7
https://doi.org/10.1016/j.neuron.2018.07.039
pmid: 30189209
|
| 31 |
SS Mirza, FJ Wolters, SA Swanson, PJ Koudstaal, A Hofman, H Tiemeier, MA Ikram. 10-year trajectories of depressive symptoms and risk of dementia: a population-based study. Lancet Psychiatry 2016; 3(7): 628–635
https://doi.org/10.1016/S2215-0366(16)00097-3
pmid: 27138970
|
| 32 |
AD Burke, D Goldfarb, P Bollam, S Khokher. Diagnosing and treating depression in patients with Alzheimer’s disease. Neurol Ther 2019; 8(2): 325–350
https://doi.org/10.1007/s40120-019-00148-5
pmid: 31435870
|
| 33 |
F Novais, S Starkstein. Phenomenology of depression in Alzheimer’s disease. J Alzheimers Dis 2015; 47(4): 845–855
https://doi.org/10.3233/JAD-148004
pmid: 26401763
|
| 34 |
JA Cobb, K O’Neill, J Milner, GJ Mahajan, TJ Lawrence, WL May, J Miguel-Hidalgo, G Rajkowska, CA Stockmeier. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 2016; 316: 209–220
https://doi.org/10.1016/j.neuroscience.2015.12.044
pmid: 26742791
|
| 35 |
L Lemoine, L Saint-Aubert, I Nennesmo, PG Gillberg, A Nordberg. Cortical laminar tau deposits and activated astrocytes in Alzheimer’s disease visualised by 3H-THK5117 and 3H-deprenyl autoradiography. Sci Rep 2017; 7(1): 45496
https://doi.org/10.1038/srep45496
pmid: 28374768
|
| 36 |
AM Arranz, B De Strooper. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 2019; 18(4): 406–414
https://doi.org/10.1016/S1474-4422(18)30490-3
pmid: 30795987
|
| 37 |
C Escartin, O Guillemaud, MA Carrillo-de Sauvage. Questions and (some) answers on reactive astrocytes. Glia 2019; 67(12): 2221–2247
https://doi.org/10.1002/glia.23687
pmid: 31429127
|
| 38 |
C Howarth, P Gleeson, D Attwell. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 2012; 32(7): 1222–1232
https://doi.org/10.1038/jcbfm.2012.35
pmid: 22434069
|
| 39 |
CM Alberini, E Cruz, G Descalzi, B Bessières, V Gao. Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 2018; 66(6): 1244–1262
https://doi.org/10.1002/glia.23250
pmid: 29076603
|
| 40 |
C Giaume, A Koulakoff, L Roux, D Holcman, N Rouach. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11(2): 87–99
https://doi.org/10.1038/nrn2757
pmid: 20087359
|
| 41 |
H Koepsell. Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472(9): 1299–1343
https://doi.org/10.1007/s00424-020-02441-x
pmid: 32789766
|
| 42 |
C Calì, A Tauffenberger, P Magistretti. The strategic location of glycogen and lactate: from body energy reserve to brain plasticity. Front Cell Neurosci 2019; 13: 82
https://doi.org/10.3389/fncel.2019.00082
pmid: 30894801
|
| 43 |
PJ Magistretti, I Allaman. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 2018; 19(4): 235–249
https://doi.org/10.1038/nrn.2018.19
pmid: 29515192
|
| 44 |
SC Cunnane, E Trushina, C Morland, A Prigione, G Casadesus, ZB Andrews, MF Beal, LH Bergersen, RD Brinton, S de la Monte, A Eckert, J Harvey, R Jeggo, JH Jhamandas, O Kann, CM la Cour, WF Martin, G Mithieux, PI Moreira, MP Murphy, KA Nave, T Nuriel, SHR Oliet, F Saudou, MP Mattson, RH Swerdlow, MJ Millan. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19(9): 609–633
https://doi.org/10.1038/s41573-020-0072-x
pmid: 32709961
|
| 45 |
I Juaristi, L Contreras, P González-Sánchez, I Pérez-Liébana, L González-Moreno, B Pardo, A Del Arco, J Satrústegui. The response to stimulation in neurons and astrocytes. Neurochem Res 2019; 44(10): 2385–2391
https://doi.org/10.1007/s11064-019-02803-7
pmid: 31016552
|
| 46 |
LF Barros, A Brown, RA Swanson. Glia in brain energy metabolism: a perspective. Glia 2018; 66(6): 1134–1137
https://doi.org/10.1002/glia.23316
pmid: 29476554
|
| 47 |
GA Dienel. Brain glucose metabolism: integration of energetics with function. Physiol Rev 2019; 99(1): 949–1045
https://doi.org/10.1152/physrev.00062.2017
pmid: 30565508
|
| 48 |
P Mächler, MT Wyss, M Elsayed, J Stobart, R Gutierrez, A von Faber-Castell, V Kaelin, M Zuend, A San Martín, I Romero-Gómez, F Baeza-Lehnert, S Lengacher, BL Schneider, P Aebischer, PJ Magistretti, LF Barros, B Weber. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 2016; 23(1): 94–102
https://doi.org/10.1016/j.cmet.2015.10.010
pmid: 26698914
|
| 49 |
A Suzuki, SA Stern, O Bozdagi, GW Huntley, RH Walker, PJ Magistretti, CM Alberini. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144(5): 810–823
https://doi.org/10.1016/j.cell.2011.02.018
pmid: 21376239
|
| 50 |
GA Brooks. The science and translation of lactate shuttle theory. Cell Metab 2018; 27(4): 757–785
https://doi.org/10.1016/j.cmet.2018.03.008
pmid: 29617642
|
| 51 |
J Detka, A Kurek, M Kucharczyk, K Głombik, A Basta-Kaim, M Kubera, W Lasoń, B Budziszewska. Brain glucose metabolism in an animal model of depression. Neuroscience 2015; 295: 198–208
https://doi.org/10.1016/j.neuroscience.2015.03.046
pmid: 25819664
|
| 52 |
YN Yin, J Hu, YL Wei, ZL Li, ZC Luo, RQ Wang, KX Yang, SJ Li, XW Li, JM Yang, TM Gao. Astrocyte-derived lactate modulates the passive coping response to behavioral challenge in male mice. Neurosci Bull 2021; 37(1): 1–14
https://doi.org/10.1007/s12264-020-00553-z
pmid: 32785834
|
| 53 |
C Murphy-Royal, AD Johnston, AKJ Boyce, B Diaz-Castro, A Institoris, G Peringod, O Zhang, RF Stout, DC Spray, RJ Thompson, BS Khakh, JS Bains, GR Gordon. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat Commun 2020; 11(1): 2014
https://doi.org/10.1038/s41467-020-15778-9
pmid: 32332733
|
| 54 |
A Carrard, M Elsayed, M Margineanu, B Boury-Jamot, L Fragnière, EM Meylan, JM Petit, H Fiumelli, PJ Magistretti, JL Martin. Peripheral administration of lactate produces antidepressant-like effects. Mol Psychiatry 2018; 23(2): 392–399
https://doi.org/10.1038/mp.2016.179
pmid: 27752076
|
| 55 |
J Yang, E Ruchti, JM Petit, P Jourdain, G Grenningloh, I Allaman, PJ Magistretti. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci USA 2014; 111(33): 12228–12233
https://doi.org/10.1073/pnas.1322912111
pmid: 25071212
|
| 56 |
CL Powell, AR Davidson, AM Brown. Universal glia to neurone lactate transfer in the nervous system: physiological functions and pathological consequences. Biosensors (Basel) 2020; 10(11): E183
https://doi.org/10.3390/bios10110183
pmid: 33228235
|
| 57 |
N Karnib, R El-Ghandour, L El Hayek, P Nasrallah, M Khalifeh, N Barmo, V Jabre, P Ibrahim, M Bilen, JS Stephan, EB Holson, RR Ratan, SF Sleiman. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology 2019; 44(6):1152–1162
https://doi.org/10.1038/s41386-019-0313-z
pmid: 30647450
|
| 58 |
LK Bak, AB Walls. CrossTalk opposing view: lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J Physiol 2018; 596(3): 351–353
https://doi.org/10.1113/JP274945
pmid: 29292507
|
| 59 |
GA Dienel. Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95(11): 2103–2125
https://doi.org/10.1002/jnr.24015
pmid: 28151548
|
| 60 |
F Lipmann. Metabolic Generation and Utilization of Phosphate Bond Energy. John Wiley & Sons, Inc., 2006
|
| 61 |
M Mori, C Heuss, BH Gähwiler, U Gerber. Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 2001; 535(1): 115–123
https://doi.org/10.1111/j.1469-7793.2001.t01-1-00115.x
pmid: 11507162
|
| 62 |
Y Pankratov, U Lalo, O Krishtal, A Verkhratsky. Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 2002; 542(2): 529–536
https://doi.org/10.1113/jphysiol.2002.021956
pmid: 12122150
|
| 63 |
X Cao, LP Li, Q Wang, Q Wu, HH Hu, M Zhang, YY Fang, J Zhang, SJ Li, WC Xiong, HC Yan, YB Gao, JH Liu, XW Li, LR Sun, YN Zeng, XH Zhu, TM Gao. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 2013; 19(6): 773–777
https://doi.org/10.1038/nm.3162
pmid: 23644515
|
| 64 |
Y Bansal, A Kuhad. Mitochondrial dysfunction in depression. Curr Neuropharmacol 2016; 14(6): 610–618
https://doi.org/10.2174/1570159X14666160229114755
pmid: 26923778
|
| 65 |
Y Nakamura, JH Park, K Hayakawa. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol 2020; 324: 113114
https://doi.org/10.1016/j.expneurol.2019.113114
pmid: 31734316
|
| 66 |
P Illes, P Rubini, H Yin, Y Tang. Impaired ATP release from brain astrocytes may be a cause of major depression. Neurosci Bull 2020; 36(11): 1281–1284
https://doi.org/10.1007/s12264-020-00494-7
pmid: 32279193
|
| 67 |
V Rajani, Y Zhang, V Jalubula, V Rancic, S SheikhBahaei, JD Zwicker, S Pagliardini, CT Dickson, K Ballanyi, S Kasparov, AV Gourine, GD Funk. Release of ATP by pre-Bötzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca2+-dependent P2Y1 receptor mechanism. J Physiol 2018; 596(15): 3245–3269
https://doi.org/10.1113/JP274727
pmid: 28678385
|
| 68 |
MM Halassa, T Fellin, PG Haydon. Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 2009; 57(4): 343–346
https://doi.org/10.1016/j.neuropharm.2009.06.031
pmid: 19577581
|
| 69 |
W Cai, C Xue, M Sakaguchi, M Konishi, A Shirazian, HA Ferris, ME Li, R Yu, A Kleinridders, EN Pothos, CR Kahn. Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest 2018; 128(7): 2914–2926
https://doi.org/10.1172/JCI99366
pmid: 29664737
|
| 70 |
W Choi, N Clemente, W Sun, J Du, W Lü. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 2019; 576(7785): 163–167
https://doi.org/10.1038/s41586-019-1781-3
pmid: 31776515
|
| 71 |
JL Syrjanen, K Michalski, TH Chou, T Grant, S Rao, N Simorowski, SJ Tucker, N Grigorieff, H Furukawa. Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol 2020; 27(2): 150–159
https://doi.org/10.1038/s41594-019-0369-9
pmid: 31988524
|
| 72 |
J Ma, X Qi, C Yang, R Pan, S Wang, J Wu, L Huang, H Chen, J Cheng, R Wu, Y Liao, L Mao, FC Wang, Z Wu, JX An, Y Wang, X Zhang, C Zhang, Z Yuan. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 2018; 23(4): 883–891
https://doi.org/10.1038/mp.2017.229
pmid: 29180673
|
| 73 |
U Dreses-Werringloer, JC Lambert, V Vingtdeux, H Zhao, H Vais, A Siebert, A Jain, J Koppel, A Rovelet-Lecrux, D Hannequin, F Pasquier, D Galimberti, E Scarpini, D Mann, C Lendon, D Campion, P Amouyel, P Davies, JK Foskett, F Campagne, P Marambaud. A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 2008; 133(7): 1149–1161
https://doi.org/10.1016/j.cell.2008.05.048
pmid: 18585350
|
| 74 |
A Taruno, V Vingtdeux, M Ohmoto, Z Ma, G Dvoryanchikov, A Li, L Adrien, H Zhao, S Leung, M Abernethy, J Koppel, P Davies, MM Civan, N Chaudhari, I Matsumoto, G Hellekant, MG Tordoff, P Marambaud, JK Foskett. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013; 495(7440): 223–226
https://doi.org/10.1038/nature11906
pmid: 23467090
|
| 75 |
D Rial, C Lemos, H Pinheiro, JM Duarte, FQ Gonçalves, JI Real, RD Prediger, N Gonçalves, CA Gomes, PM Canas, P Agostinho, RA Cunha. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 2016; 9: 521
https://doi.org/10.3389/fncel.2015.00521
pmid: 26834566
|
| 76 |
A Trautmann. Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2009; 2(56): pe6
https://doi.org/10.1126/scisignal.256pe6
pmid: 19193605
|
| 77 |
L Janks, CVR Sharma, TM Egan. A central role for P2X7 receptors in human microglia. J Neuroinflammation 2018; 15(1): 325
https://doi.org/10.1186/s12974-018-1353-8
pmid: 30463629
|
| 78 |
M Iwata, KT Ota, XY Li, F Sakaue, N Li, S Dutheil, M Banasr, V Duric, T Yamanashi, K Kaneko, K Rasmussen, A Glasebrook, A Koester, D Song, KA Jones, S Zorn, G Smagin, RS Duman. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry 2016; 80(1): 12–22
https://doi.org/10.1016/j.biopsych.2015.11.026
pmid: 26831917
|
| 79 |
P Illes, A Verkhratsky, Y Tang. Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci 2020; 12: 331
https://doi.org/10.3389/fnmol.2019.00331
pmid: 32076399
|
| 80 |
RK Farooq, A Tanti, S Ainouche, S Roger, C Belzung, V Camus. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology 2018; 97: 120–130
https://doi.org/10.1016/j.psyneuen.2018.07.016
pmid: 30015007
|
| 81 |
N Yue, H Huang, X Zhu, Q Han, Y Wang, B Li, Q Liu, G Wu, Y Zhang, J Yu. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 2017; 14(1): 102
https://doi.org/10.1186/s12974-017-0865-y
pmid: 28486969
|
| 82 |
RJ Rodrigues, AR Tomé, RA Cunha. ATP as a multi-target danger signal in the brain. Front Neurosci 2015; 9: 148
https://doi.org/10.3389/fnins.2015.00148
pmid: 25972780
|
| 83 |
C Wang, Q Yin, Z Su, L. Xia Progress on role of extracellular ATP and its metabolite adenosine in immunoregulation: review. Chin J Cell Mol Immunol (Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi) 2020; 36(12):1134–1140 (in Chinese)
|
| 84 |
M Schain, WC Kreisl. Neuroinflammation in neurodegenerative disorders—a review. Curr Neurol Neurosci Rep 2017; 17(3): 25
https://doi.org/10.1007/s11910-017-0733-2
pmid: 28283959
|
| 85 |
T Shabab, R Khanabdali, SZ Moghadamtousi, HA Kadir, G Mohan. Neuroinflammation pathways: a general review. Int J Neurosci 2017; 127(7): 624–633
https://doi.org/10.1080/00207454.2016.1212854
pmid: 27412492
|
| 86 |
E Colombo, C Farina. Astrocytes: key regulators of neuroinflammation. Trends Immunol 2016; 37(9): 608–620
https://doi.org/10.1016/j.it.2016.06.006
pmid: 27443914
|
| 87 |
JR Faulkner, JE Herrmann, MJ Woo, KE Tansey, NB Doan, MV Sofroniew. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004; 24(9): 2143–2155
https://doi.org/10.1523/JNEUROSCI.3547-03.2004
pmid: 14999065
|
| 88 |
DJ Myer, GG Gurkoff, SM Lee, DA Hovda, MV Sofroniew. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 2006; 129(10): 2761–2772
https://doi.org/10.1093/brain/awl165
pmid: 16825202
|
| 89 |
RR Voskuhl, RS Peterson, B Song, Y Ao, LB Morales, S Tiwari-Woodruff, MV Sofroniew. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 2009; 29(37): 11511–11522
https://doi.org/10.1523/JNEUROSCI.1514-09.2009
pmid: 19759299
|
| 90 |
L Mayo, SA Trauger, M Blain, M Nadeau, B Patel, JI Alvarez, ID Mascanfroni, A Yeste, P Kivisäkk, K Kallas, B Ellezam, R Bakshi, A Prat, JP Antel, HL Weiner, FJ Quintana. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 2014; 20(10): 1147–1156
https://doi.org/10.1038/nm.3681
pmid: 25216636
|
| 91 |
D Brites, A Fernandes. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476
https://doi.org/10.3389/fncel.2015.00476
pmid: 26733805
|
| 92 |
R Troubat, P Barone, S Leman, T Desmidt, A Cressant, B Atanasova, B Brizard, W El Hage, A Surget, C Belzung, V Camus. Neuroinflammation and depression: a review. Eur J Neurosci 2021; 53(1): 151–171
https://doi.org/10.1111/ejn.14720
pmid: 32150310
|
| 93 |
A Cernackova, Z Durackova, J Trebaticka, B Mravec. Neuroinflammation and depressive disorder: the role of the hypothalamus. J Clin Neurosci 2020; 75: 5–10
https://doi.org/10.1016/j.jocn.2020.03.005
pmid: 32217047
|
| 94 |
ZH Zheng, JL Tu, XH Li, Q Hua, WZ Liu, Y Liu, BX Pan, P Hu, WH Zhang. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 2021; 91: 505–518
https://doi.org/10.1016/j.bbi.2020.11.007
pmid: 33161163
|
| 95 |
T Ali, SU Rahman, Q Hao, W Li, Z Liu, F Ali Shah, I Murtaza, Z Zhang, X Yang, G Liu, S Li. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2): e12667
https://doi.org/10.1111/jpi.12667
pmid: 32375205
|
| 96 |
W Li, T Ali, K He, Z Liu, FA Shah, Q Ren, Y Liu, A Jiang, S Li. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021; 92: 10–24
pmid: 33181270
|
| 97 |
AK Walker, EE Wing, WA Banks, R Dantzer. Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Mol Psychiatry 2019; 24(10): 1523–1532
https://doi.org/10.1038/s41380-018-0076-7
pmid: 29988087
|
| 98 |
Y Zhang, L Du, Y Bai, B Han, C He, L Gong, R Huang, L Shen, J Chao, P Liu, H Zhang, H Zhang, L Gu, J Li, G Hu, C Xie, Z Zhang, H Yao. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020; 25(6): 1175–1190
https://doi.org/10.1038/s41380-018-0285-0
pmid: 30413800
|
| 99 |
L Leng, K Zhuang, Z Liu, C Huang, Y Gao, G Chen, H Lin, Y Hu, D Wu, M Shi, W Xie, H Sun, Z Shao, H Li, K Zhang, W Mo, TY Huang, M Xue, Z Yuan, X Zhang, G Bu, H Xu, Q Xu, J Zhang. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 2018; 100(3): 551–563.e7
https://doi.org/10.1016/j.neuron.2018.08.031
pmid: 30220511
|
| 100 |
Y Wu, A Qiu, Z Yang, J Wu, X Li, K Bao, M Wang, B Wu. Malva sylvestris extract alleviates the astrogliosis and inflammatory stress in LPS-induced depression mice. J Neuroimmunol 2019; 336: 577029
https://doi.org/10.1016/j.jneuroim.2019.577029
pmid: 31487612
|
| 101 |
Y Wang, J Ni, L Zhai, C Gao, L Xie, L Zhao, X Yin. Inhibition of activated astrocyte ameliorates lipopolysaccharide-induced depressive-like behaviors. J Affect Disord 2019; 242: 52–59
https://doi.org/10.1016/j.jad.2018.08.015
pmid: 30172225
|
| 102 |
HY Zhang, Y Wang, Y He, T Wang, XH Huang, CM Zhao, L Zhang, SW Li, C Wang, YN Qu, XX Jiang. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation 2020; 17(1): 200
https://doi.org/10.1186/s12974-020-01871-9
pmid: 32611425
|
| 103 |
ER Zimmer, A Leuzy, AL Benedet, J Breitner, S Gauthier, P Rosa-Neto. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation 2014; 11(1): 120
https://doi.org/10.1186/1742-2094-11-120
pmid: 25005532
|
| 104 |
GR Frost, YM Li. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 2017; 7(12): 170228
https://doi.org/10.1098/rsob.170228
pmid: 29237809
|
| 105 |
F Panza, M Lozupone, G Logroscino, BP Imbimbo. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73–88
https://doi.org/10.1038/s41582-018-0116-6
pmid: 30610216
|
| 106 |
A Verkhratsky, V Parpura, JJ Rodriguez-Arellano, R Zorec. Astroglia in Alzheimer’s disease. Adv Exp Med Biol 2019; 1175: 273–324
https://doi.org/10.1007/978-981-13-9913-8_11
pmid: 31583592
|
| 107 |
A Serrano-Pozo, A Muzikansky, T Gómez-Isla, JH Growdon, RA Betensky, MP Frosch, BT Hyman. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 2013; 72(6): 462–471
https://doi.org/10.1097/NEN.0b013e3182933788
pmid: 23656989
|
| 108 |
Y Okabe, T Takahashi, C Mitsumasu, K Kosai, E Tanaka, T Matsuishi. Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome. PLoS One 2012; 7(4): e35354
https://doi.org/10.1371/journal.pone.0035354
pmid: 22532851
|
| 109 |
A Tagarelli, A Piro, G Tagarelli, P Lagonia, A Quattrone. Alois Alzheimer: a hundred years after the discovery of the eponymous disorder. Int J Biomed Sci 2006; 2(2): 196–204
pmid: 23674983
|
| 110 |
MH Ahmad, M Fatima, AC Mondal. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: rational insights for the therapeutic approaches. J Clin Neurosci 2019; 59: 6–11
https://doi.org/DOI: 10.1016/j.jocn.2018.10.034
pmid: 30385170
|
| 111 |
SF Carter, K Herholz, P Rosa-Neto, L Pellerin, A Nordberg, ER Zimmer. Astrocyte biomarkers in Alzheimer’s disease. Trends Mol Med 2019; 25(2): 77–95
https://doi.org/10.1016/j.molmed.2018.11.006
pmid: 30611668
|
| 112 |
S Li, M Jin, T Koeglsperger, NE Shepardson, GM Shankar, DJ Selkoe. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 2011; 31(18): 6627–6638
https://doi.org/10.1523/JNEUROSCI.0203-11.2011
pmid: 21543591
|
| 113 |
SA Liddelow, KA Guttenplan, LE Clarke, FC Bennett, CJ Bohlen, L Schirmer, ML Bennett, AE Münch, WS Chung, TC Peterson, DK Wilton, A Frouin, BA Napier, N Panicker, M Kumar, MS Buckwalter, DH Rowitch, VL Dawson, TM Dawson, B Stevens, BA Barres. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481–487
https://doi.org/10.1038/nature21029
pmid: 28099414
|
| 114 |
S Rossner, C Lange-Dohna, U Zeitschel, JR Perez-Polo. Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005; 92(2): 226–234
https://doi.org/10.1111/j.1471-4159.2004.02857.x
pmid: 15663471
|
| 115 |
K Veeraraghavalu, C Zhang, X Zhang, RE Tanzi, SS Sisodia. Age-dependent, non-cell-autonomous deposition of amyloid from synthesis of β-amyloid by cells other than excitatory neurons. J Neurosci 2014; 34(10): 3668–3673
https://doi.org/10.1523/JNEUROSCI.5079-13.2014
pmid: 24599465
|
| 116 |
CA Brunello, M Merezhko, RL Uronen, HJ Huttunen. Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 2020; 77(9): 1721–1744
https://doi.org/10.1007/s00018-019-03349-1
pmid: 31667556
|
| 117 |
Y Gao, L Tan, JT Yu, L Tan. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 2018; 15(3): 283–300
https://doi.org/10.2174/1567205014666170417111859
pmid: 28413986
|
| 118 |
R van der Kant, LSB Goldstein, R Ossenkoppele. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 2020; 21(1): 21–35
https://doi.org/10.1038/s41583-019-0240-3
pmid: 31780819
|
| 119 |
GG Kovacs. Astroglia and tau: new perspectives. Front Aging Neurosci 2020; 12: 96
https://doi.org/10.3389/fnagi.2020.00096
pmid: 32327993
|
| 120 |
M Allen, X Wang, DJ Serie, SL Strickland, JD Burgess, S Koga, CS Younkin, TT Nguyen, KG Malphrus, SJ Lincoln, M Alamprese, K Zhu, R Chang, MM Carrasquillo, N Kouri, ME Murray, JS Reddy, C Funk, ND Price, TE Golde, SG Younkin, YW Asmann, JE Crook, DW Dickson, N Ertekin-Taner. Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathol 2018; 136(5): 709–727
https://doi.org/10.1007/s00401-018-1900-5
pmid: 30136084
|
| 121 |
L Buée, T Bussière, V Buée-Scherrer, A Delacourte, PR Hof. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33(1): 95–130
https://doi.org/10.1016/S0165-0173(00)00019-9
pmid: 10967355
|
| 122 |
SJ Adams, MA DeTure, M McBride, DW Dickson, L Petrucelli. Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PLoS One 2010; 5(5): e10810
https://doi.org/10.1371/journal.pone.0010810
pmid: 20520830
|
| 123 |
K Richetin, P Steullet, M Pachoud, R Perbet, E Parietti, M Maheswaran, S Eddarkaoui, S Bégard, C Pythoud, M Rey, R Caillierez, K Q Do, S Halliez, P Bezzi, L Buée, G Leuba, M Colin, N Toni, N Déglon. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat Neurosci 2020; 23(12): 1567–1579
https://doi.org/10.1038/s41593-020-00728-x
pmid: 33169029
|
| 124 |
TJ Bussian, A Aziz, CF Meyer, BL Swenson, JM van Deursen, DJ Baker. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018; 562(7728): 578–582
https://doi.org/10.1038/s41586-018-0543-y
pmid: 30232451
|
| 125 |
JT Newington, RA Harris, RC Cumming. Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodegener Dis 2013; 2013: 234572
https://doi.org/10.1155/2013/234572
pmid: 26316984
|
| 126 |
M Zhang, X Cheng, R Dang, W Zhang, J Zhang, Z Yao. Lactate deficit in an Alzheimer disease mouse model: the relationship with neuronal damage. J Neuropathol Exp Neurol 2018; 77(12): 1163–1176
https://doi.org/10.1093/jnen/nly102
pmid: 30383244
|
| 127 |
S Pal, S Paul. ATP controls the aggregation of Aβ16-22 peptides. J Phys Chem B 2020; 124(1): 210–223
https://doi.org/10.1021/acs.jpcb.9b10175
pmid: 31830415
|
| 128 |
ES Jung, K An, HS Hong, JH Kim, I Mook-Jung. Astrocyte-originated ATP protects Aβ(1-42)-induced impairment of synaptic plasticity. J Neurosci 2012; 32(9): 3081–3087
https://doi.org/10.1523/JNEUROSCI.6357-11.2012
pmid: 22378880
|
| 129 |
JC Park, SH Han, I Mook-Jung. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep 2020; 53(1): 10–19
https://doi.org/10.5483/BMBRep.2020.53.1.309
pmid: 31865964
|
| 130 |
MT Heneka, MJ Carson, J El Khoury, GE Landreth, F Brosseron, DL Feinstein, AH Jacobs, T Wyss-Coray, J Vitorica, RM Ransohoff, K Herrup, SA Frautschy, B Finsen, GC Brown, A Verkhratsky, K Yamanaka, J Koistinaho, E Latz, A Halle, GC Petzold, T Town, D Morgan, ML Shinohara, VH Perry, C Holmes, NG Bazan, DJ Brooks, S Hunot, B Joseph, N Deigendesch, O Garaschuk, E Boddeke, CA Dinarello, JC Breitner, GM Cole, DT Golenbock, MP Kummer. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388–405
https://doi.org/10.1016/S1474-4422(15)70016-5
pmid: 25792098
|
| 131 |
M Fakhoury. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 2018; 16(5): 508–518
https://doi.org/10.2174/1570159X15666170720095240
pmid: 28730967
|
| 132 |
CF Pereira, AE Santos, PI Moreira, AC Pereira, FJ Sousa, SM Cardoso, MT Cruz. Is Alzheimer’s disease an inflammasomopathy? Ageing Res Rev 2019; 56: 100966
https://doi.org/10.1016/j.arr.2019.100966
pmid: 31577960
|
| 133 |
D Kaur, V Sharma, R Deshmukh. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 2019; 27(4): 663–677
https://doi.org/10.1007/s10787-019-00580-x
pmid: 30874945
|
| 134 |
JL Furman, DM Sama, JC Gant, TL Beckett, MP Murphy, AD Bachstetter, LJ Van Eldik, CM Norris. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(46): 16129–16140
https://doi.org/10.1523/JNEUROSCI.2323-12.2012
pmid: 23152597
|
| 135 |
L Katsouri, AM Birch, AWJ Renziehausen, C Zach, Y Aman, H Steeds, A Bonsu, EOC Palmer, N Mirzaei, M Ries, M Sastre. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease. Glia 2020; 68(5): 1017–1030
https://doi.org/10.1002/glia.23759
pmid: 31799735
|
| 136 |
X Shu, Y Sun, X Sun, Y Zhou, Y Bian, Z Shu, J Ding, M Lu, G Hu. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 2019; 10(8): 577
https://doi.org/10.1038/s41419-019-1813-9
pmid: 31371719
|
| 137 |
P Belujon, AA Grace. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 2017; 20(12): 1036–1046
https://doi.org/10.1093/ijnp/pyx056
pmid: 29106542
|
| 138 |
I Koppel, K Jaanson, A Klasche, J Tuvikene, T Tiirik, A Pärn, T Timmusk. Dopamine cross-reacts with adrenoreceptors in cortical astrocytes to induce BDNF expression, CREB signaling and morphological transformation. Glia 2018; 66(1): 206–216
https://doi.org/10.1002/glia.23238
pmid: 28983964
|
| 139 |
W Shao, SZ Zhang, M Tang, XH Zhang, Z Zhou, YQ Yin, QB Zhou, YY Huang, YJ Liu, E Wawrousek, T Chen, SB Li, M Xu, JN Zhou, G Hu, JW Zhou. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 2013; 494(7435): 90–94
https://doi.org/10.1038/nature11748
pmid: 23242137
|
| 140 |
M Shimizu, A Nishida, H Zensho, S Yamawaki. Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor-mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes. J Pharmacol Exp Ther 1996; 279(3): 1551–1558
pmid: 8968382
|
| 141 |
PM Whitaker-Azmitia, C Clarke, EC Azmitia. Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal-glial interactions and psychoactive drug mechanism of action. Synapse 1993; 14(3): 201–205
https://doi.org/10.1002/syn.890140303
pmid: 8211706
|
| 142 |
M Corkrum, A Covelo, J Lines, L Bellocchio, M Pisansky, K Loke, R Quintana, PE Rothwell, R Lujan, G Marsicano, ED Martin, MJ Thomas, P Kofuji, A Araque. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 2020; 105(6): 1036–1047.e5
https://doi.org/10.1016/j.neuron.2019.12.026
pmid: 31954621
|
| 143 |
M Inazu, H Takeda, H Ikoshi, M Sugisawa, Y Uchida, T Matsumiya. Pharmacological characterization and visualization of the glial serotonin transporter. Neurochem Int 2001; 39(1): 39–49
https://doi.org/10.1016/S0197-0186(01)00010-9
pmid: 11311448
|
| 144 |
X Zhou, Q Xiao, L Xie, F Yang, L Wang, J Tu. Astrocyte, a promising target for mood disorder interventions. Front Mol Neurosci 2019; 12: 136
https://doi.org/10.3389/fnmol.2019.00136
pmid: 31231189
|
| 145 |
M Kinoshita, Y Hirayama, K Fujishita, K Shibata, Y Shinozaki, E Shigetomi, A Takeda, HPN Le, H Hayashi, M Hiasa, Y Moriyama, K Ikenaka, KF Tanaka, S Koizumi. Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine 2018; 32: 72–83
https://doi.org/10.1016/j.ebiom.2018.05.036
pmid: 29887330
|
| 146 |
YM Park, BH Lee. Alterations in serum BDNF and GDNF levels after 12 weeks of antidepressant treatment in female outpatients with major depressive disorder. Psychiatry Investig 2018; 15(8): 818–823
https://doi.org/10.30773/pi.2018.03.31
pmid: 29945425
|
| 147 |
M Niwa, A Nitta, Y Yamada, A Nakajima, K Saito, M Seishima, L Shen, Y Noda, S Furukawa, T Nabeshima. An inducer for glial cell line-derived neurotrophic factor and tumor necrosis factor-α protects against methamphetamine-induced rewarding effects and sensitization. Biol Psychiatry 2007; 61(7): 890–901
https://doi.org/10.1016/j.biopsych.2006.06.016
pmid: 17046726
|
| 148 |
L Lu, X Wang, P Wu, C Xu, M Zhao, M Morales, BK Harvey, BJ Hoffer, Y Shaham. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psychiatry 2009; 66(2): 137–145
https://doi.org/10.1016/j.biopsych.2009.02.009
pmid: 19345340
|
| 149 |
JR Fisher, CE Wallace, DL Tripoli, YI Sheline, JR Cirrito. Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo. Mol Neurodegener 2016; 11(1): 45
https://doi.org/10.1186/s13024-016-0112-5
pmid: 27315796
|
| 150 |
J Ma, Y Gao, L Jiang, FL Chao, W Huang, CN Zhou, W Tang, L Zhang, CX Huang, Y Zhang, YM Luo, Q Xiao, HR Yu, R Jiang, Y Tang. Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer’s disease mice. Oncotarget 2017; 8(17): 27676–27692
https://doi.org/10.18632/oncotarget.15398
pmid: 28430602
|
| 151 |
CN Zhou, FL Chao, Y Zhang, L Jiang, L Zhang, JH Fan, YX Wu, XY Dou, Y Tang. Fluoxetine delays the cognitive function decline and synaptic changes in a transgenic mouse model of early Alzheimer’s disease. J Comp Neurol 2019; 527(8): 1378–1387
https://doi.org/10.1002/cne.24616
pmid: 30592045
|
| 152 |
GS Alexopoulos. Mechanisms and treatment of late-life depression. Transl Psychiatry 2019; 9(1): 188
https://doi.org/10.1038/s41398-019-0514-6
pmid: 31383842
|
| 153 |
AA Grace. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016; 17(8): 524–532
https://doi.org/10.1038/nrn.2016.57
pmid: 27256556
|
| 154 |
K Pytka, K Podkowa, A Rapacz, A Podkowa, E Żmudzka, A Olczyk, J Sapa, B Filipek. The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacol Rep 2016; 68(2): 263–274
https://doi.org/10.1016/j.pharep.2015.08.007
pmid: 26922526
|
| 155 |
U Kumar, SC Patel. Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res 2007; 1131(1): 187–196
https://doi.org/10.1016/j.brainres.2006.10.049
pmid: 17182012
|
| 156 |
X Pan, AC Kaminga, SW Wen, X Wu, K Acheampong, A Liu. Dopamine and dopamine receptors in Alzheimer’s disease: a systematic review and network meta-analysis. Front Aging Neurosci 2019; 11: 175
https://doi.org/10.3389/fnagi.2019.00175
pmid: 31354471
|
| 157 |
G Koch, F Di Lorenzo, S Bonnì, V Giacobbe, M Bozzali, C Caltagirone, A Martorana. Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology. 2014; 39(11): 2654–2661
https://doi.org/10.1038/npp.2014.119
pmid: 24859851
|
| 158 |
M D’Amelio, S Puglisi-Allegra, N Mercuri. The role of dopaminergic midbrain in Alzheimer’s disease: translating basic science into clinical practice. Pharmacol Res 2018; 130: 414–419
https://doi.org/10.1016/j.phrs.2018.01.016
pmid: 29391234
|
| 159 |
P Krashia, A Nobili, M D’Amelio. Unifying hypothesis of dopamine neuron loss in neurodegenerative diseases: focusing on Alzheimer’s disease. Front Mol Neurosci 2019; 12: 123
https://doi.org/10.3389/fnmol.2019.00123
pmid: 31156387
|
| 160 |
MK Jha, M Jo, JH Kim, K Suk. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 2019; 25(3): 227–240
https://doi.org/10.1177/1073858418783959
pmid: 29931997
|
| 161 |
AV Molofsky, B Deneen. Astrocyte development: a guide for the perplexed. Glia 2015; 63(8): 1320–1329
https://doi.org/10.1002/glia.22836
pmid: 25963996
|
| 162 |
J Herbert, PJ Lucassen. Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis—what do we need to know? Front Neuroendocrinol 2016; 41: 153–171
https://doi.org/10.1016/j.yfrne.2015.12.001
pmid: 26746105
|
| 163 |
RL Ownby, E Crocco, A Acevedo, V John, D Loewenstein. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 2006; 63(5): 530–538
https://doi.org/10.1001/archpsyc.63.5.530
pmid: 16651510
|
| 164 |
K Barlinn, J Kepplinger, V Puetz, BM Illigens, U Bodechtel, T Siepmann. Exploring the risk-factor association between depression and incident stroke: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 2014; 11: 1–14
https://doi.org/10.2147/NDT.S63904
pmid: 25565846
|
| 165 |
Y Gan, Y Gong, X Tong, H Sun, Y Cong, X Dong, Y Wang, X Xu, X Yin, J Deng, L Li, S Cao, Z Lu. Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC Psychiatry 2014; 14(1): 371
https://doi.org/10.1186/s12888-014-0371-z
pmid: 25540022
|
| 166 |
R Troubat, P Barone, S Leman, T Desmidt, A Cressant, B Atanasova, B Brizard, W El Hage, A Surget, C Belzung, V Camus. Neuroinflammation and depression: a review. Eur J Neurosci 2021; 53(1): 151–171
pmid: 32150310
|
| 167 |
MS Uddin, MT Kabir, MS Rahman, T Behl, P Jeandet, GM Ashraf, A Najda, MN Bin-Jumah, HR El-Seedi, MM Abdel-Daim. Revisiting the amyloid cascade hypothesis: from anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int J Mol Sci 2020; 21(16): E5858
https://doi.org/10.3390/ijms21165858
pmid: 32824102
|
| 168 |
Q Wang, W Jie, JH Liu, JM Yang, TM Gao. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65(8): 1227–1250
https://doi.org/10.1002/glia.23143
pmid: 28317185
|
| 169 |
X Han, M Chen, F Wang, M Windrem, S Wang, S Shanz, Q Xu, NA Oberheim, L Bekar, S Betstadt, AJ Silva, T Takano, SA Goldman, M Nedergaard. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013; 12(3): 342–353
https://doi.org/10.1016/j.stem.2012.12.015
pmid: 23472873
|
| 170 |
AC Lepore, B Rauck, C Dejea, AC Pardo, MS Rao, JD Rothstein, NJ Maragakis. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 2008; 11(11): 1294–1301
https://doi.org/10.1038/nn.2210
pmid: 18931666
|
| 171 |
H Qian, X Kang, J Hu, D Zhang, Z Liang, F Meng, X Zhang, Y Xue, R Maimon, SF Dowdy, NK Devaraj, Z Zhou, WC Mobley, DW Cleveland, XD Fu. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020; 582(7813): 550–556
https://doi.org/10.1038/s41586-020-2388-4
pmid: 32581380
|
| 172 |
H Zhou, J Su, X Hu, C Zhou, H Li, Z Chen, Q Xiao, B Wang, W Wu, Y Sun, Y Zhou, C Tang, F Liu, L Wang, C Feng, M Liu, S Li, Y Zhang, H Xu, H Yao, L Shi, H Yang. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 2020; 181(3): 590–603.e16
https://doi.org/10.1016/j.cell.2020.03.024
pmid: 32272060
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|