Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (2) : 157-175    https://doi.org/10.1007/s11684-021-0884-z
REVIEW
Biosensor-based assay of exosome biomarker for early diagnosis of cancer
Ying Deng, Zhaowei Sun, Lei Wang, Minghui Wang, Jie Yang, Genxi Li()
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
 Download: PDF(2667 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cancer imposes a severe threat to people’s health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.

Keywords biosensor      exosome      cancer diagnosis     
Corresponding Author(s): Genxi Li   
About author:

Mingsheng Sun and Mingxiao Yang contributed equally to this work.

Just Accepted Date: 13 August 2021   Online First Date: 27 September 2021    Issue Date: 26 April 2022
 Cite this article:   
Ying Deng,Zhaowei Sun,Lei Wang, et al. Biosensor-based assay of exosome biomarker for early diagnosis of cancer[J]. Front. Med., 2022, 16(2): 157-175.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0884-z
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I2/157
Exosomal proteins Pathophysiology Source Isolation method Year References
CD91, CD317, and EGFR Lung cancer Plasma Extracellular vehicles array 2015 [57]
LRG1 Lung cancer Urine Ultracentrifugation 2011 [69]
NY-ESO-1 Lung cancer Plasma Extracellular vehicles array 2016 [10]
LESP-1 Lung cancer Plasma Exclusion chromatography 2020 [70]
GPC1 Pancreatic cancer Serum Flow cytometry 2015 [58]
GKN1 Gastric cancer Serum Ultracentrifugation 2018 [59]
CEA Colorectal cancer Serum Ultracentrifugation 2012 [16]
CD147 Colorectal cancer Plasma Ultracentrifugation 2018 [71]
Survivin-2B Breast cancer Serum Ultracentrifugation 2014 [72]
FRα Ovarian cancer Plasma Microfluidic chip 2019 [61]
Tab.1  Exosomal proteins as tumor biomarkers
Exosomal miRNAs Pathophysiology Source Isolation method Year References
miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, and miR-214 Ovarian cancer Plasma Modified MACSa 2008 [73]
miR-19b-3p, miR-584-5p, miR-425-5p, miR-221-3p, miR-409-3p, and miR-21-5p Lung adenocarcinoma Plasma ExoQuick 2016 [74]
miR-141 Prostate cancer Serum ExoQuick 2015 [64]
miR-221-3p Cervical carcinoma Serum ExoQuick 2019 [65]
miR-301a-3p Pancreatic cancer Serum Ultracentrifugation 2018 [66]
Tab.2  Exosomal miRNAs as tumor biomarkers
Fig.1  Schematic of representative electrochemistry-based biosensors. (A) Detection of circulating exosomes by using zirconium-based metal-organic frameworks (Zr-MOFs). (a) Fabrication process of Zr-MOFs and Zr-MOFs loaded with methylene blue (MB@Zr-MOFs). (b) Process of electrochemical biosensor for exosome detection using MB@Zr-MOFs. (Reproduced with permission from Ref. [25]. Copyright 2020 American Chemical Society.) (B) Ultrasensitive electrochemical biosensor facilitated with DNA amplification-controlled pH decreases based on pH-responsive MOFs encapsulated with horseradish peroxidase (HRP). (Reproduced with permission from Ref. [92]. Copyright 2020 Elsevier.) (C) Novel nanoprobe-based electrochemical assay for colorectal cancer-derived exosomes. (a) Fabrication process of covalent organic frameworks (COFs)-based nanoprobes. (b) Process of exosomes detection by using HRP-pSC4-AuNPs@COFs nanoprobe. (Reproduced with permission from Ref. [94]. Copyright 2020 Elsevier.)
Detection method Target Type of cancer Sample Recognition element Signal element LOD References
Electrochemistry EGFRvIII/EGFR Glioblastoma Serum Peptide MB 7.83 × 103 particles/μL [25]
Electrochemistry CD63 Breast cancer Serum Aptamer HRP-OPD 96 particles/μL [82]
Electrochemistry EpCAM Breast cancer Serum Aptamer HRP-H2O2-TMB 285 particles/μL [81]
Electrochemistry MUC1 Gastric cancer Plasma Aptamer/antibody G-quadruplex/H2O2 954 particles/mL [85]
Electrochemistry EpCAM Colorectal
cancer
Plasma Aptamer MB 44 particles/μL [86]
Electrochemistry PD-L1/CD63 Breast cancer Serum Aptamer/antibody HRP-OPD 334 particles/mL [92]
Electrochemistry CD63 Colorectal cancer Serum Aptamer HRP-H2O2-TMB 160 particles/μL [94]
Electrochemistry CD9/CA-125 Ovarian cancer Antibody Fe2O3-H2O2-TMB 1.25 × 106 exosomes/mL [95]
Tab.3  Electrochemical biosensor for exosome detection
Fig.2  Schematic of representative fluorescence-based biosensors. (A) Fabricating a cationic liposome for signal amplification detection of exosomes. Only in the presence of exosomes, the electrostatic attraction between aptamers and liposome broke down and then the free aptamers could trigger enzyme-mediated DNA extension to form multiple G-quadruplex. (Reproduced with permission from Ref. [26]. Copyright 2019 American Chemical Society.) (B) Simple and sensitive strategy for exosome detection utilizing steric hindrance-to-control signal amplification. (Adapted from Ref. [101], with permission from the Royal Society of Chemistry.) (C) Dual-signal amplification constructed using GNP-DNA-FAM conjugates hybridized with RCA technique (Adapted from Ref. [103], with permission from the Royal Society of Chemistry.) (D) Construction of exosome-triggered enzyme-powered DNA motors for sensitive exosome assay. (Reproduced with permission from Ref. [107]. Copyright 2020 Elsevier.)
Fig.3  Schematic of representative colorimetry-based biosensors. (A) Enzymatic catalysis-based dopamine polymerization and in-situ deposition for the design of colorimetric aptasensor for exosome detection. (a) Capturing target exosomes with latex beads and then using biotin-labeled aptamers to introduce streptavidin-labeled HRP to accelerate the polymerization of dopamine. A distinguishable color change could be seen, which could be strengthened by in-situ deposition of polydopamine around exosome particles. (b) Process of dopamine polymerization and polydopamine deposition on the surface of exosomes. Polydopamine could link to amine, sulfhydryl, and the phenol groups of proteins. (Reproduced with permission from Ref. [111]. Copyright 2020 Elsevier.) (B) Sensitive multicolor visual biosensor using a dual-signal amplification strategy of enzyme-catalyzed metallization of Au nanorods and hybridization chain reaction. (Reproduced with permission from Ref. [118]. Copyright 2019 American Chemical Society.)
Fig.4  Schematic of representative SPR-based biosensors. (A) Determination of cancerous exosomes based on dual AuNP-assisted signal amplification. (Reproduced with permission from Ref. [129]. Copyright 2019 Elsevier.) (B) Detection of glioma cells derived exosomes via biotinylated anti-CD63 antibody functionalized with titanium nitride (TiN). (Reproduced with permission from Ref. [131]. Copyright 2019 Wiley.)
Fig.5  Schematic of representative SERS-based biosensors. (A) Detection of cancer cells secreted exosomes based on Au nanoparticles decorated with a Raman reporter and magnetic beads with Au shell. (Reproduced with permission from Ref. [135]. Copyright 2018 the Royal Society of Chemistry.) (B) Detection of tumor-derived exosomes by using SERS nanoprobes with a core–shell structure and magnetic nanobeads. Diagram of the fabrication of (a) magnetic nanobead and (b) SERS nanoprobe. (c) Sandwich-type immunocomplex structure composed of exosome, magnetic nanobead, and SERS nanoprobe. Images are not to scale. (Reproduced with permission from Ref. [136]. Copyright 2016 the Royal Society of Chemistry.) (C) Detection of exosomal miRNAs based on plasmonic head-flocked gold nanopillars. (a) Fabrication process of plasmonic gold nanopillar SERS substrate. SEM images of (b) prepared plasmonic gold nanopillar SERS substrates and (c) plasmonic head-flocked gold nanopillar SERS substrates after solvent evaporation. (Reproduced with permission from Ref. [139]. Copyright 2019 Wiley.)
Fig.6  Schematic of representative microfluidic-based biosensors. (A) Detection of circulating exosomes by using a nanostructured GO/polydopamine functionalized microfluidic platform. Description of (a) a single-channel PDMS/glass chip containing an array of Y-shaped microposts and (b) channel and microposts coated with GO and polydopamine (PDA) as a nanostructured interface. (c) Procedure for surface functionalization of microfluidic chips. (Reproduced with permission from Ref. [143]. Copyright 2016 the Royal Society of Chemistry.) (B) Colorimetric detection of exosomes by using a tunable alternating current electrohydrodynamic methodology. (Reproduced with permission from Ref. [144]. Copyright 2014 American Chemical Society.) (C) Detection of exosomes from urine by using an integrated double-filtration microfluidic device. (a) Diagram of a double-filtration microfluidic device for isolation and detection of exosomes. (b) Size description of an assembled double-filtration device. (c) Diagram of direct ELISA for on-chip exosome detection. (d) The ELISA result is imaged via a smart phone, and then data analysis is conducted on a laptop. (Reproduced with permission from Ref. [146]. Copyright 2017 Nature Publishing Group.)
1 KD Miller, RL Siegel, CC Lin, AB Mariotto, JL Kramer, JH Rowland, KD Stein, R Alteri, A Jemal. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271–289
https://doi.org/10.3322/caac.21349 pmid: 27253694
2 J Hou, X Li, KP Xie. Coupled liquid biopsy and bioinformatics for pancreatic cancer early detection and precision prognostication. Mol Cancer 2021; 20(1): 34
https://doi.org/10.1186/s12943-021-01309-7 pmid: 33593396
3 C Liu, Y Yang, Y Wu. Recent advances in exosomal protein detection via liquid biopsy biosensors for cancer screening, diagnosis, and prognosis. AAPS J 2018; 20(2): 41
https://doi.org/10.1208/s12248-018-0201-1 pmid: 29520676
4 G Siravegna, S Marsoni, S Siena, A Bardelli. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017; 14(9): 531–548
https://doi.org/10.1038/nrclinonc.2017.14 pmid: 28252003
5 N Soda, BHA Rehm, P Sonar, NT Nguyen, MJA Shiddiky. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B Mater Biol Med 2019; 7(43): 6670–6704
https://doi.org/10.1039/C9TB01490J pmid: 31646316
6 L Zhang, C Gu, J Wen, G Liu, H Liu, L Li. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 2021; 413(1): 83–102
https://doi.org/10.1007/s00216-020-03000-0 pmid: 33164151
7 VS LeBleu, R Kalluri. Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer 2020; 6(9): 767–774
https://doi.org/10.1016/j.trecan.2020.03.007 pmid: 32307267
8 A Sharma, A Johnson. Exosome DNA: critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol 2020; 235(3): 1921–1932
https://doi.org/10.1002/jcp.29153 pmid: 31512231
9 T Skotland, K Sagini, K Sandvig, A Llorente. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159: 308–321
https://doi.org/10.1016/j.addr.2020.03.002 pmid: 32151658
10 B Sandfeld-Paulsen, N Aggerholm-Pedersen, R Bæk, KR Jakobsen, P Meldgaard, BH Folkersen, TR Rasmussen, K Varming, MM Jørgensen, BS Sorensen. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 2016; 10(10): 1595–1602
https://doi.org/10.1016/j.molonc.2016.10.003 pmid: 27856179
11 M Colombo, G Raposo, C Théry. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255–289
https://doi.org/10.1146/annurev-cellbio-101512-122326 pmid: 25288114
12 R Kalluri, VS LeBleu. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977
https://doi.org/10.1126/science.aau6977 pmid: 32029601
13 S Maacha, AA Bhat, L Jimenez, A Raza, M Haris, S Uddin, JC Grivel. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019; 18(1): 55
https://doi.org/10.1186/s12943-019-0965-7 pmid: 30925923
14 J Meldolesi. Exosomes and ectosomes in intercellular communication. Curr Biol 2018; 28(8): R435–R444
https://doi.org/10.1016/j.cub.2018.01.059 pmid: 29689228
15 C Quek, AF Hill. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 2017; 483(4): 1178–1186
https://doi.org/10.1016/j.bbrc.2016.09.090 pmid: 27659705
16 J Silva, V Garcia, M Rodriguez, M Compte, E Cisneros, P Veguillas, JM Garcia, G Dominguez, Y Campos-Martin, J Cuevas, C Peña, M Herrera, R Diaz, N Mohammed, F Bonilla. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer 2012; 51(4): 409–418
https://doi.org/10.1002/gcc.21926 pmid: 22420032
17 W Yu, J Hurley, D Roberts, SK Chakrabortty, D Enderle, M Noerholm, XO Breakefield, JK Skog. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32(4): 466–477
https://doi.org/10.1016/j.annonc.2021.01.074 pmid: 33548389
18 S Khodashenas, S Khalili, M Forouzandeh Moghadam. A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol Lett 2019; 41(4–5): 523–531
https://doi.org/10.1007/s10529-019-02667-5 pmid: 30963341
19 RA Dragovic, GP Collett, P Hole, DJ Ferguson, CW Redman, IL Sargent, DS Tannetta. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence nanoparticle tracking analysis. Methods 2015; 87: 64–74
https://doi.org/10.1016/j.ymeth.2015.03.028 pmid: 25843788
20 BS Chia, YP Low, Q Wang, P Li, Z Gao. Advances in exosome quantification techniques. Trends Analyt Chem 2017; 86: 93–106
https://doi.org/10.1016/j.trac.2016.10.012
21 S Mastoridis, GM Bertolino, G Whitehouse, F Dazzi, A Sanchez-Fueyo, M Martinez-Llordella. Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol 2018; 9: 1583
https://doi.org/10.3389/fimmu.2018.01583 pmid: 30034401
22 X Luo, M An, KC Cuneo, DM Lubman, L Li. High-performance chemical isotope labeling liquid chromatography mass spectrometry for exosome metabolomics. Anal Chem 2018; 90(14): 8314–8319
https://doi.org/10.1021/acs.analchem.8b01726 pmid: 29920066
23 J Ko, E Carpenter, D Issadore. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst (Lond) 2016; 141(2): 450–460
https://doi.org/10.1039/C5AN01610J pmid: 26378496
24 KW Witwer, EI Buzás, LT Bemis, A Bora, C Lässer, J Lötvall, EN Nolte-’t Hoen, MG Piper, S Sivaraman, J Skog, C Théry, MH Wauben, F Hochberg. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2: 20360
https://doi.org/10.3402/jev.v2i0.20360 pmid: 24009894
25 Z Sun, L Wang, S Wu, Y Pan, Y Dong, S Zhu, J Yang, Y Yin, G Li. An electrochemical biosensor designed by using Zr-based metal-organic frameworks for the detection of glioblastoma-derived exosomes with practical application. Anal Chem 2020; 92(5): 3819–3826
https://doi.org/10.1021/acs.analchem.9b05241 pmid: 32024367
26 L Wang, Y Pan, Y Liu, Z Sun, Y Huang, J Li, J Yang, Y Xiang, G Li. Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification. ACS Appl Mater Interfaces 2020; 12(1): 322–329
https://doi.org/10.1021/acsami.9b18869 pmid: 31840492
27 E van der Pol, F A W Coumans, AE Grootemaat, C Gardiner, IL Sargent, P Harrison, A Sturk, TG van Leeuwen, R Nieuwland. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 2014; 12(7): 1182–1192
https://doi.org/10.1111/jth.12602 pmid: 24818656
28 S Lin, Z Yu, D Chen, Z Wang, J Miao, Q Li, D Zhang, J Song, D Cui. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): e1903916
https://doi.org/10.1002/smll.201903916 pmid: 31663295
29 SM Yoo, SY Lee. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol 2016; 34(1): 7–25
https://doi.org/10.1016/j.tibtech.2015.09.012 pmid: 26506111
30 MK Masud, J Na, M Younus, MSA Hossain, Y Bando, MJA Shiddiky, Y Yamauchi. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019; 48(24): 5717–5751
https://doi.org/10.1039/C9CS00174C pmid: 31720618
31 Y Huang, L Wang, L Sha, Y Wang, X Duan, G Li. Highly sensitive detection of lipopolysaccharide based on collaborative amplification of dual enzymes. Anal Chim Acta 2020; 1126: 31–37
https://doi.org/10.1016/j.aca.2020.06.013 pmid: 32736722
32 Y Geng, WJ Peveler, VM Rotello. Array-based “chemical nose” sensing in diagnostics and drug discovery. Angew Chem Int Ed Engl 2019; 58(16): 5190–5200
https://doi.org/10.1002/anie.201809607 pmid: 30347522
33 J Wu, S Hu, L Zhang, J Xin, C Sun, L Wang, K Ding, B Wang. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020; 10(10): 4544–4556
https://doi.org/10.7150/thno.40532 pmid: 32292514
34 SC Guo, SC Tao, H Dawn. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J Extracell Vesicles 2018; 7(1): 1508271
https://doi.org/10.1080/20013078.2018.1508271 pmid: 30151077
35 N Cheng, D Du, X Wang, D Liu, W Xu, Y Luo, Y Lin. Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol 2019; 37(11): 1236–1254
https://doi.org/10.1016/j.tibtech.2019.04.008 pmid: 31104858
36 W Wen, X Yan, C Zhu, D Du, Y Lin. Recent advances in electrochemical immunosensors. Anal Chem 2017; 89(1): 138–156
https://doi.org/10.1021/acs.analchem.6b04281 pmid: 28105820
37 S Ogino, JA Nowak, T Hamada Jr, DA Milner Jr, R Nishihara. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019; 14(1): 83–103
https://doi.org/10.1146/annurev-pathmechdis-012418-012818 pmid: 30125150
38 L Zhang, C Gu, J Wen, G Liu, H Liu, L Li. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 2021; 413(1): 83–102
https://doi.org/10.1007/s00216-020-03000-0 pmid: 33164151
39 L Balaj, R Lessard, L Dai, YJ Cho, SL Pomeroy, XO Breakefield, J Skog. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011; 2(1): 180
https://doi.org/10.1038/ncomms1180 pmid: 21285958
40 M Mathieu, L Martin-Jaular, G Lavieu, C Théry. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9–17
https://doi.org/10.1038/s41556-018-0250-9 pmid: 30602770
41 P Wolf. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13(3): 269–288
https://doi.org/10.1111/j.1365-2141.1967.tb08741.x pmid: 6025241
42 RM Johnstone, M Adam, JR Hammond, L Orr, C Turbide. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412–9420
https://doi.org/10.1016/S0021-9258(18)48095-7 pmid: 3597417
43 J Kowal, M Tkach, C Théry. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116–125
https://doi.org/10.1016/j.ceb.2014.05.004 pmid: 24959705
44 BP Foster, T Balassa, TD Benen, M Dominovic, GK Elmadjian, V Florova, MD Fransolet, A Kestlerova, G Kmiecik, IA Kostadinova, C Kyvelidou, M Meggyes, MN Mincheva, L Moro, J Pastuschek, V Spoldi, P Wandernoth, M Weber, B Toth, UR Markert. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci 2016; 53(6): 379–395
https://doi.org/10.1080/10408363.2016.1190682 pmid: 27191915
45 E Delorme-Axford, RB Donker, JF Mouillet, T Chu, A Bayer, Y Ouyang, T Wang, DB Stolz, SN Sarkar, AE Morelli, Y Sadovsky, CB Coyne. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA 2013; 110(29): 12048–12053
https://doi.org/10.1073/pnas.1304718110 pmid: 23818581
46 U Gehrmann, TI Näslund, S Hiltbrunner, P Larssen, S Gabrielsson. Harnessing the exosome-induced immune response for cancer immunotherapy. Semin Cancer Biol 2014; 28: 58–67
https://doi.org/10.1016/j.semcancer.2014.05.003 pmid: 24859748
47 Y Cheng, JS Schorey. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep 2019; 20(3): e46613
https://doi.org/10.15252/embr.201846613 pmid: 30683680
48 JV de Carvalho, RO de Castro, EZ da Silva, PP Silveira, ME da Silva-Januário, E Arruda, MC Jamur, C Oliver, RS Aguiar, LL daSilva. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS One 2014; 9(11): e113691
https://doi.org/10.1371/journal.pone.0113691 pmid: 25423108
49 C Guay, R Regazzi. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 2017; 19(Suppl 1): 137–146
https://doi.org/10.1111/dom.13027 pmid: 28880477
50 Y Zhang, YW Hu, L Zheng, Q Wang. Characteristics and roles of exosomes in cardiovascular disease. DNA Cell Biol 2017; 36(3): 202–211
https://doi.org/10.1089/dna.2016.3496 pmid: 28112546
51 V Budnik, C Ruiz-Cañada, F Wendler. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 2016; 17(3): 160–172
https://doi.org/10.1038/nrn.2015.29 pmid: 26891626
52 V Sundararajan, FH Sarkar, TS Ramasamy. The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell Oncol (Dordr) 2018; 41(3): 223–252
https://doi.org/10.1007/s13402-018-0378-4 pmid: 29667069
53 Y Yang, CW Li, LC Chan, Y Wei, JM Hsu, W Xia, JH Cha, J Hou, JL Hsu, L Sun, MC Hung. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 2018; 28(8): 862–864
https://doi.org/10.1038/s41422-018-0060-4 pmid: 29959401
54 T Fang, H Lv, G Lv, T Li, C Wang, Q Han, L Yu, B Su, L Guo, S Huang, D Cao, L Tang, S Tang, M Wu, W Yang, H Wang. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 2018; 9(1): 191
https://doi.org/10.1038/s41467-017-02583-0 pmid: 29335551
55 X Liu, Y Lu, Y Xu, S Hou, J Huang, B Wang, J Zhao, S Xia, S Fan, X Yu, Y Du, L Hou, Z Li, Z Ding, S An, B Huang, L Li, J Tang, J Ju, H Guan, B Song. Exosomal transfer of miR-501 confers doxorubicin resistance and tumorigenesis via targeting of BLID in gastric cancer. Cancer Lett 2019; 459: 122–134
https://doi.org/10.1016/j.canlet.2019.05.035 pmid: 31173853
56 K Al-Nedawi, B Meehan, J Micallef, V Lhotak, L May, A Guha, J Rak. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5): 619–624
https://doi.org/10.1038/ncb1725 pmid: 18425114
57 KR Jakobsen, BS Paulsen, R Bæk, K Varming, BS Sorensen, MM Jørgensen. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 2015; 4(1): 26659
https://doi.org/10.3402/jev.v4.26659 pmid: 25735706
58 SA Melo, LB Luecke, C Kahlert, AF Fernandez, ST Gammon, J Kaye, VS LeBleu, EA Mittendorf, J Weitz, N Rahbari, C Reissfelder, C Pilarsky, MF Fraga, D Piwnica-Worms, R Kalluri. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177–182
https://doi.org/10.1038/nature14581 pmid: 26106858
59 JH Yoon, IH Ham, O Kim, H Ashktorab, DT Smoot, SW Nam, JY Lee, H Hur, WS Park. Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer 2018; 21(6): 956–967
https://doi.org/10.1007/s10120-018-0828-8 pmid: 29704153
60 S Khan, HF Bennit, D Turay, M Perez, S Mirshahidi, Y Yuan, NR Wall. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 2014; 14(1): 176
https://doi.org/10.1186/1471-2407-14-176 pmid: 24620748
61 P Zhang, X Zhou, M He, Y Shang, AL Tetlow, AK Godwin, Y Zeng. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng 2019; 3(6): 438–451
https://doi.org/10.1038/s41551-019-0356-9 pmid: 31123323
62 PS Mitchell, RK Parkin, EM Kroh, BR Fritz, SK Wyman, EL Pogosova-Agadjanyan, A Peterson, J Noteboom, KC O’Briant, A Allen, DW Lin, N Urban, CW Drescher, BS Knudsen, DL Stirewalt, R Gentleman, RL Vessella, PS Nelson, DB Martin, M Tewari. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513–10518
https://doi.org/10.1073/pnas.0804549105 pmid: 18663219
63 Z Sun, K Shi, S Yang, J Liu, Q Zhou, G Wang, J Song, Z Li, Z Zhang, W Yuan. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 2018; 17(1): 147
https://doi.org/10.1186/s12943-018-0897-7 pmid: 30309355
64 Z Li, YY Ma, J Wang, XF Zeng, R Li, W Kang, XK Hao. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther 2015; 9: 139–148
pmid: 26770063
65 CF Zhou, J Ma, L Huang, HY Yi, YM Zhang, XG Wu, RM Yan, L Liang, M Zhong, YH Yu, S Wu, W Wang. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 2019; 38(8): 1256–1268
https://doi.org/10.1038/s41388-018-0511-x pmid: 30254211
66 X Wang, G Luo, K Zhang, J Cao, C Huang, T Jiang, B Liu, L Su, Z Qiu. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res 2018; 78(16): 4586–4598 doi:10.1158/0008-5472.CAN-17-3841
pmid: 29880482
67 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013 pmid: 21376230
68 K Boriachek, M Umer, MN Islam, V Gopalan, AK Lam, NT Nguyen, MJA Shiddiky. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst (Lond) 2018; 143(7): 1662–1669
https://doi.org/10.1039/C7AN01843F pmid: 29512659
69 Y Li, Y Zhang, F Qiu, Z Qiu. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 2011; 32(15): 1976–1983
https://doi.org/10.1002/elps.201000598 pmid: 21557262
70 HK Kim, H Jeong, BH Choi, YH Quan, J Rho, JH Park, Y Park, Y Choi, KN Han, YH Choi, S Hong. Lung cancer exosome specific protein 1 (LESP-1) as a potential factor for diagnosis and treatment of non-small cell lung cancer. J Clin Oncol 2020; 38(15_suppl): e15550
https://doi.org/10.1200/JCO.2020.38.15_suppl.e15550
71 Y Tian, L Ma, M Gong, G Su, S Zhu, W Zhang, S Wang, Z Li, C Chen, L Li, L Wu, X Yan. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 2018; 12(1): 671–680
https://doi.org/10.1021/acsnano.7b07782 pmid: 29300458
72 S Khan, HF Bennit, D Turay, M Perez, S Mirshahidi, Y Yuan, NR Wall. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 2014; 14(1): 176
https://doi.org/10.1186/1471-2407-14-176 pmid: 24620748
73 DD Taylor, C Gercel-Taylor. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110(1): 13–21
https://doi.org/10.1016/j.ygyno.2008.04.033 pmid: 18589210
74 X Zhou, W Wen, X Shan, W Zhu, J Xu, R Guo, W Cheng, F Wang, LW Qi, Y Chen, Z Huang, T Wang, D Zhu, P Liu, Y Shu. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis. Oncotarget 2017; 8(4): 6513–6525
pmid: 28036284
75 R Miranda-Castro, I Palchetti, N de-Los-Santos-Álvarez. The translational potential of electrochemical DNA-based liquid biopsy. Front Chem 2020; 8: 143
https://doi.org/10.3389/fchem.2020.00143 pmid: 32266206
76 A Díaz-Fernández, R Lorenzo-Gómez, R Miranda-Castro, N de-Los-Santos-Álvarez, MJ Lobo-Castañón. Electrochemical aptasensors for cancer diagnosis in biological fluids—a review. Anal Chim Acta 2020; 1124: 1–19
https://doi.org/10.1016/j.aca.2020.04.022 pmid: 32534661
77 A Abi, Z Mohammadpour, X Zuo, A Safavi. Nucleic acid-based electrochemical nanobiosensors. Biosens Bioelectron 2018; 102: 479–489
https://doi.org/10.1016/j.bios.2017.11.019 pmid: 29195218
78 X Yin, T Hou, B Huang, L Yang, F Li. Aptamer recognition-trigged label-free homogeneous electrochemical strategy for an ultrasensitive cancer-derived exosome assay. Chem Commun (Camb) 2019; 55(91): 13705–13708
https://doi.org/10.1039/C9CC07253E pmid: 31657371
79 H Dong, H Chen, J Jiang, H Zhang, C Cai, Q Shen. Highly sensitive electrochemical detection of tumor exosomes based on aptamer recognition-induced multi-DNA release and cyclic enzymatic amplification. Anal Chem 2018; 90(7): 4507–4513
https://doi.org/10.1021/acs.analchem.7b04863 pmid: 29512380
80 L Zhao, R Sun, P He, X Zhang. Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking machine and exonuclease III-assisted electrochemical ratiometric biosensing. Anal Chem 2019; 91(22): 14773–14779
https://doi.org/10.1021/acs.analchem.9b04282 pmid: 31660712
81 L Wang, L Zeng, Y Wang, T Chen, W Chen, G Chen, C Li, J Chen. Electrochemical aptasensor based on multidirectional hybridization chain reaction for detection of tumorous exosomes. Sens Actuators B Chem 2021; 332: 129471
https://doi.org/10.1016/j.snb.2021.129471
82 Y An, T Jin, Y Zhu, F Zhang, P He. An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry. Biosens Bioelectron 2019; 142: 111503
https://doi.org/10.1016/j.bios.2019.111503 pmid: 31376716
83 Y Cao, L Li, B Han, Y Wang, Y Dai, J Zhao. A catalytic molecule machine-driven biosensing method for amplified electrochemical detection of exosomes. Biosens Bioelectron 2019; 141: 111397
https://doi.org/10.1016/j.bios.2019.111397 pmid: 31200334
84 MH McLean, EM El-Omar. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol 2014; 11(11): 664–674
https://doi.org/10.1038/nrgastro.2014.143 pmid: 25134511
85 R Huang, L He, Y Xia, H Xu, C Liu, H Xie, S Wang, L Peng, Y Liu, Y Liu, N He, Z Li. A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small 2019; 15(19): e1900735
https://doi.org/10.1002/smll.201900735 pmid: 30963720
86 L Wang, Y Deng, J Wei, Y Huang, Z Wang, G Li. Spherical nucleic acids-based cascade signal amplification for highly sensitive detection of exosomes. Biosens Bioelectron 2021; 191: 113465
https://doi.org/10.1016/j.bios.2021.113465 pmid: 34218177
87 G Maduraiveeran, M Sasidharan, V Ganesan. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103: 113–129
https://doi.org/10.1016/j.bios.2017.12.031 pmid: 29289816
88 LE Kreno, K Leong, OK Farha, M Allendorf, RP Van Duyne, JT Hupp. Metal-organic framework materials as chemical sensors. Chem Rev 2012; 112(2): 1105–1125
https://doi.org/10.1021/cr200324t pmid: 22070233
89 JG Heck, J Napp, S Simonato, J Möllmer, M Lange, HM Reichardt, R Staudt, F Alves, C Feldmann. Multifunctional phosphate-based inorganic-organic hybrid nanoparticles. J Am Chem Soc 2015; 137(23): 7329–7336
https://doi.org/10.1021/jacs.5b01172 pmid: 26018463
90 J Mao, D Ran, C Xie, Q Shen, S Wang, W Lu. EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy. ACS Appl Mater Interfaces 2017; 9(29): 24462–24475
https://doi.org/10.1021/acsami.7b05617 pmid: 28685576
91 G Cheng, W Li, L Ha, X Han, S Hao, Y Wan, Z Wang, F Dong, X Zou, Y Mao, SY Zheng. Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins. J Am Chem Soc 2018; 140(23): 7282–7291
https://doi.org/10.1021/jacs.8b03584 pmid: 29809001
92 Y Cao, Y Wang, X Yu, X Jiang, G Li, J Zhao. Identification of programmed death ligand-1 positive exosomes in breast cancer based on DNA amplification-responsive metal-organic frameworks. Biosens Bioelectron 2020; 166: 112452
https://doi.org/10.1016/j.bios.2020.112452 pmid: 32738648
93 S Kandambeth, K Dey, R Banerjee. Covalent organic frameworks: chemistry beyond the structure. J Am Chem Soc 2019; 141(5): 1807–1822
https://doi.org/10.1021/jacs.8b10334 pmid: 30485740
94 M Wang, Y Pan, S Wu, Z Sun, L Wang, J Yang, Y Yin, G Li. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens Bioelectron 2020; 169: 112638
https://doi.org/10.1016/j.bios.2020.112638 pmid: 32987328
95 FZ Farhana, M Umer, A Saeed, AS Pannu, M Shahbazi, A Jabur, HJ Nam, K Ostrikov, P Sonar, SH Firoz, MJA Shiddiky. Isolation and detection of exosomes using Fe2O3 nanoparticles. ACS Appl Nano Mater 2021; 4(2): 1175–1186
https://doi.org/10.1021/acsanm.0c02807
96 L Xu, N Shoaie, F Jahanpeyma, J Zhao, M Azimzadeh, KT Al Jamal. Optical, electrochemical and electrical (nano)biosensors for detection of exosomes: a comprehensive overview. Biosens Bioelectron 2020; 161: 112222
https://doi.org/10.1016/j.bios.2020.112222 pmid: 32365010
97 H Kholafazad Kordasht, M Hasanzadeh. Biomedical analysis of exosomes using biosensing methods: recent progress. Anal Methods 2020; 12(22): 2795–2811
https://doi.org/10.1039/D0AY00722F pmid: 32930202
98 MS Panagopoulou, AW Wark, DJS Birch, CD Gregory. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles 2020; 9(1): 1710020
https://doi.org/10.1080/20013078.2019.1710020 pmid: 32002172
99 L Wang, Y Yang, Y Liu, L Ning, Y Xiang, G Li. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection. Chem Commun (Camb) 2019; 55(18): 2708–2711
https://doi.org/10.1039/C9CC00220K pmid: 30758019
100 X Yu, L He, M Pentok, H Yang, Y Yang, Z Li, N He, Y Deng, S Li, T Liu, X Chen, H Luo. An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 2019; 11(33): 15589–15595
https://doi.org/10.1039/C9NR04050A pmid: 31403149
101 Y Pan, L Wang, Y Deng, M Wang, Y Peng, J Yang, G Li. A simple and sensitive method for exosome detection based on steric hindrance-controlled signal amplification. Chem Commun (Camb) 2020; 56(89): 13768–13771
https://doi.org/10.1039/D0CC06113A pmid: 33084644
102 W Tian, P Li, W He, C Liu, Z Li. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens Bioelectron 2019; 128: 17–22
https://doi.org/10.1016/j.bios.2018.12.041 pmid: 30616213
103 L Huang, DB Wang, N Singh, F Yang, N Gu, XE Zhang. A dual-signal amplification platform for sensitive fluorescence biosensing of leukemia-derived exosomes. Nanoscale 2018; 10(43): 20289–20295
https://doi.org/10.1039/C8NR07720G pmid: 30371719
104 R Huang, L He, S Li, H Liu, L Jin, Z Chen, Y Zhao, Z Li, Y Deng, N He. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification. Nanoscale 2020; 12(4): 2445–2451
https://doi.org/10.1039/C9NR08747H pmid: 31894795
105 J Zhang, J Shi, W Liu, K Zhang, H Zhao, H Zhang, Z Zhang. A simple, specific and “on-off” type MUC1 fluorescence aptasensor based on exosomes for detection of breast cancer. Sens Actuators B Chem 2018; 276: 552–559
https://doi.org/10.1016/j.snb.2018.08.056
106 P Li, X Yu, W Han, Y Kong, W Bao, J Zhang, W Zhang, Y Gu. Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis. ACS Sens 2019; 4(5): 1433–1441
https://doi.org/10.1021/acssensors.9b00621 pmid: 31017389
107 Y Yu, WS Zhang, Y Guo, H Peng, M Zhu, D Miao, G Su. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens Bioelectron 2020; 167: 112482
https://doi.org/10.1016/j.bios.2020.112482 pmid: 32795917
108 B Li, C Liu, W Pan, J Shen, J Guo, T Luo, J Feng, B Situ, T An, Y Zhang, L Zheng. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens Bioelectron 2020; 168: 112520
https://doi.org/10.1016/j.bios.2020.112520 pmid: 32866725
109 Z Zhang, C Tang, L Zhao, L Xu, W Zhou, Z Dong, Y Yang, Q Xie, X Fang. Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 2019; 11(20): 10106–10113
https://doi.org/10.1039/C9NR01589B pmid: 31089660
110 X Liang, L Han. White peroxidase-mimicking nanozymes: colorimetric pesticide assay without interferences of O2 and color. Adv Funct Mater 2020; 30(28): 2001933
https://doi.org/10.1002/adfm.202001933
111 L Xu, R Chopdat, D Li, KT Al-Jamal. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens Bioelectron 2020; 169: 112576
https://doi.org/10.1016/j.bios.2020.112576 pmid: 32919211
112 A Mokhtarzadeh, J Ezzati Nazhad Dolatabadi, K Abnous, M de la Guardia, M Ramezani. Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 2015; 68: 95–106
https://doi.org/10.1016/j.bios.2014.12.052 pmid: 25562736
113 W Liu, J Li, Y Wu, S Xing, Y Lai, G Zhang. Target-induced proximity ligation triggers recombinase polymerase amplification and transcription-mediated amplification to detect tumor-derived exosomes in nasopharyngeal carcinoma with high sensitivity. Biosens Bioelectron 2018; 102: 204–210 PMID:29145073
https://doi.org/10.1016/j.bios.2017.11.033
114 J Li, MA Baird, MA Davis, W Tai, LS Zweifel, KM Adams Waldorf, M Gale Jr, L Rajagopal, RH Pierce, X Gao. Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nat Biomed Eng 2017; 1: 0082
https://doi.org/10.1038/s41551-017-0082 pmid: 29082104
115 H Lee, J Rho, PB Messersmith. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 2009; 21(4): 431–434
https://doi.org/10.1002/adma.200801222 pmid: 19802352
116 Z Chen, SB Cheng, P Cao, QF Qiu, Y Chen, M Xie, Y Xu, WH Huang. Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device. Biosens Bioelectron 2018; 122: 211–216
https://doi.org/10.1016/j.bios.2018.09.033 pmid: 30265971
117 F He, H Liu, X Guo, BC Yin, BC Ye. Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal Chem 2017; 89(23): 12968–12975
https://doi.org/10.1021/acs.analchem.7b03919 pmid: 29139297
118 Y Zhang, D Wang, S Yue, Y Lu, C Yang, J Fang, Z Xu. Sensitive multicolor visual detection of exosomes via dual signal amplification strategy of enzyme-catalyzed metallization of Au nanorods and hybridization chain reaction. ACS Sens 2019; 4(12): 3210–3218
https://doi.org/10.1021/acssensors.9b01644 pmid: 31820935
119 Y Zhang, J Jiao, Y Wei, D Wang, C Yang, Z Xu. Plasmonic colorimetric biosensor for sensitive exosome detection via enzyme-induced etching of gold nanobipyramid@MnO2 nanosheet nanostructures. Anal Chem 2020; 92(22): 15244–15252
https://doi.org/10.1021/acs.analchem.0c04136 pmid: 33108733
120 S Munir, AA Shah, H Rahman, M Bilal, MSR Rajoka, AA Khan, M Khurshid. Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol Lett 2020; 42(3): 357–373
https://doi.org/10.1007/s10529-020-02795-3 pmid: 31950406
121 J Chen, Y Xu, Y Lu, W Xing. Isolation and visible detection of tumor-derived exosomes from plasma. Anal Chem 2018; 90(24): 14207–14215
https://doi.org/10.1021/acs.analchem.8b03031 pmid: 30372048
122 K Boriachek, MK Masud, C Palma, HP Phan, Y Yamauchi, MSA Hossain, NT Nguyen, C Salomon, MJA Shiddiky. Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal Chem 2019; 91(6): 3827–3834
https://doi.org/10.1021/acs.analchem.8b03619 pmid: 30735354
123 YM Wang, JW Liu, GB Adkins, W Shen, MP Trinh, LY Duan, JH Jiang, W Zhong. Enhancement of the intrinsic peroxidase-like activity of graphitic carbon nitride nanosheets by ssDNAs and its application for detection of exosomes. Anal Chem 2017; 89(22): 12327–12333
https://doi.org/10.1021/acs.analchem.7b03335 pmid: 29069893
124 Y Xia, M Liu, L Wang, A Yan, W He, M Chen, J Lan, J Xu, L Guan, J Chen. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron 2017; 92: 8–15
https://doi.org/10.1016/j.bios.2017.01.063 pmid: 28167415
125 Y Zhou, H Xu, H Wang, BC Ye. Detection of breast cancer-derived exosomes using the horseradish peroxidase-mimicking DNAzyme as an aptasensor. Analyst (Lond) 2020; 145: 107–114
https://doi.org/10.1039/C9AN01653H pmid: 31746830
126 JF Masson. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens 2017; 2(1): 16–30
https://doi.org/10.1021/acssensors.6b00763 pmid: 28722437
127 P Singh, SPR Biosensors. Historical perspectives and current challenges. Sens Actuators B Chem 2016; 229: 110–130
https://doi.org/10.1016/j.snb.2016.01.118
128 AV Kabashin, P Evans, S Pastkovsky, W Hendren, GA Wurtz, R Atkinson, R Pollard, VA Podolskiy, AV Zayats. Plasmonic nanorod metamaterials for biosensing. Nat Mater 2009; 8(11): 867–871
https://doi.org/10.1038/nmat2546 pmid: 19820701
129 Q Wang, L Zou, X Yang, X Liu, W Nie, Y Zheng, Q Cheng, K Wang. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron 2019; 135: 129–136
https://doi.org/10.1016/j.bios.2019.04.013 pmid: 31004923
130 A Thakur, G Qiu, SP Ng, J Guan, J Yue, Y Lee, CL Wu. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron 2017; 94: 400–407
https://doi.org/10.1016/j.bios.2017.03.036 pmid: 28324860
131 G Qiu, A Thakur, C Xu, SP Ng, Y Lee, CML Wu. Detection of glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv Funct Mater 2019; 29(9): 1806761
https://doi.org/10.1002/adfm.201806761
132 H Im, H Shao, YI Park, VM Peterson, CM Castro, R Weissleder, H Lee. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 2014; 32(5): 490–495
https://doi.org/10.1038/nbt.2886 pmid: 24752081
133 S Zong, Z Wang, H Chen, Y Cui. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Small 2013; 9(24): 4215–4220
https://doi.org/10.1002/smll.201301372 pmid: 23852668
134 D Cialla-May, XS Zheng, K Weber, J Popp. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 2017; 46(13): 3945–3961
https://doi.org/10.1039/C7CS00172J pmid: 28639667
135 Z Wang, S Zong, Y Wang, N Li, L Li, J Lu, Z Wang, B Chen, Y Cui. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 2018; 10(19): 9053–9062
https://doi.org/10.1039/C7NR09162A pmid: 29718044
136 S Zong, L Wang, C Chen, J Lu, D Zhu, Y Zhang, Z Wang, Y Cui. Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal Methods 2016; 8(25): 5001–5008
https://doi.org/10.1039/C6AY00406G
137 EA Kwizera, R O’Connor, V Vinduska, M Williams, ER Butch, SE Snyder, X Chen, X Huang. Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 2018; 8(10): 2722–2738
https://doi.org/10.7150/thno.21358 pmid: 29774071
138 D Ma, C Huang, J Zheng, J Tang, J Li, J Yang, R Yang. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens Bioelectron 2018; 101: 167–173
https://doi.org/10.1016/j.bios.2017.08.062 pmid: 29073517
139 JU Lee, WH Kim, HS Lee, KH Park, SJ Sim. Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced Raman scattering sensor based on plasmonic head-flocked gold nanopillars. Small 2019; 15(17): e1804968
https://doi.org/10.1002/smll.201804968 pmid: 30828996
140 EK Sackmann, AL Fulton, DJ Beebe. The present and future role of microfluidics in biomedical research. Nature 2014; 507(7491): 181–189
https://doi.org/10.1038/nature13118 pmid: 24622198
141 W Chen, F Shao, Y Xianyu. Microfluidics-implemented biochemical assays: from the perspective of readout. Small 2020; 16(9): e1903388
https://doi.org/10.1002/smll.201903388 pmid: 31532891
142 SS Kanwar, CJ Dunlay, DM Simeone, S Nagrath. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 2014; 14(11): 1891–1900
https://doi.org/10.1039/C4LC00136B pmid: 24722878
143 P Zhang, M He, Y Zeng. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016; 16(16): 3033–3042
https://doi.org/10.1039/C6LC00279J pmid: 27045543
144 R Vaidyanathan, M Naghibosadat, S Rauf, D Korbie, LG Carrascosa, MJA Shiddiky, M Trau. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem 2014; 86(22): 11125–11132
https://doi.org/10.1021/ac502082b pmid: 25324037
145 HK Woo, V Sunkara, J Park, TH Kim, JR Han, CJ Kim, HI Choi, YK Kim, YK Cho. Exodisc for rapid, size-selective, and efficient isolation and analysis of nanoscale extracellular vesicles from biological samples. ACS Nano 2017; 11(2): 1360–1370
https://doi.org/10.1021/acsnano.6b06131 pmid: 28068467
146 LG Liang, MQ Kong, S Zhou, YF Sheng, P Wang, T Yu, F Inci, WP Kuo, LJ Li, U Demirci, S Wang. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep 2017; 7(1): 46224
https://doi.org/10.1038/srep46224 pmid: 28436447
147 L Zhu, K Wang, J Cui, H Liu, X Bu, H Ma, W Wang, H Gong, C Lausted, L Hood, G Yang, Z Hu. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem 2014; 86(17): 8857–8864
https://doi.org/10.1021/ac5023056 pmid: 25090139
148 H Shao, J Chung, L Balaj, A Charest, DD Bigner, BS Carter, FH Hochberg, XO Breakefield, R Weissleder, H Lee. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 2012; 18(12): 1835–1840
https://doi.org/10.1038/nm.2994 pmid: 23142818
149 SR Shin, T Kilic, YS Zhang, H Avci, N Hu, D Kim, C Branco, J Aleman, S Massa, A Silvestri, J Kang, A Desalvo, MA Hussaini, SK Chae, A Polini, N Bhise, MA Hussain, H Lee, MR Dokmeci, A Khademhosseini. Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv Sci (Weinh) 2017; 4(5): 1600522
https://doi.org/10.1002/advs.201600522 pmid: 28546915
150 T Hamada, N Keum, R Nishihara, S Ogino. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol 2017; 52(3): 265–275
https://doi.org/10.1007/s00535-016-1272-3 pmid: 27738762
[1] Junyun Wang, Shuang Chang, Guochao Li, Yingli Sun. Application of liquid biopsy in precision medicine: opportunities and challenges[J]. Front. Med., 2017, 11(4): 522-527.
[2] Qi WANG, Hongzhi JIANG, Shengli CHEN, Mingmin ZHANG, Mingxing DING, Esheng KONG, Guangying HUANG. Effect of Ca2+ complexation on oxygen partial pressure in the urinary bladder meridian of goats[J]. Front Med Chin, 2009, 3(1): 96-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed