|
|
Decellularized extracellular matrix mediates tissue construction and regeneration |
Chuanqi Liu1,2, Ming Pei3, Qingfeng Li2( ), Yuanyuan Zhang4( ) |
1. Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China 2. Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China 3. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA 4. Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27109, USA |
|
|
Abstract Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell–matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
|
Keywords
decellularized extracellular matrix
3D culture
organoids
tissue repair
|
Corresponding Author(s):
Qingfeng Li,Yuanyuan Zhang
|
Just Accepted Date: 02 December 2021
Online First Date: 27 December 2021
Issue Date: 28 March 2022
|
|
1 |
MC Prewitz, FP Seib, M von Bonin, J Friedrichs, A Stißel, C Niehage, K Müller, K Anastassiadis, C Waskow, B Hoflack, M Bornhäuser, C Werner. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat Methods 2013; 10(8): 788–794
https://doi.org/10.1038/nmeth.2523
pmid: 23793238
|
2 |
RO Hynes. The extracellular matrix: not just pretty fibrils. Science 2009; 326(5957): 1216–1219
https://doi.org/10.1126/science.1176009
pmid: 19965464
|
3 |
S Sart, R Jeske, X Chen, T Ma, Y Li. Engineering stem cell-derived extracellular matrices: decellularization, characterization, and biological function. Tissue Eng Part B Rev 2020; 26(5): 402–422
https://doi.org/10.1089/ten.teb.2019.0349
pmid: 32220216
|
4 |
S Sart, SN Agathos, Y Li. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 2013; 29(6): 1354–1366
https://doi.org/10.1002/btpr.1825
pmid: 24124017
|
5 |
C Bonnans, J Chou, Z Werb. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786–801
https://doi.org/10.1038/nrm3904
pmid: 25415508
|
6 |
J Jin, Q Saiding, X Wang, M Qin, Y Xiang, R Cheng, W Cui, X Chen. Rapid extracellular matrix remodeling via gene-electrospun fibers as a “Patch” for tissue regeneration. Adv Funct Mater 2021; 31(15): 2009879
https://doi.org/10.1002/adfm.202009879
|
7 |
D Correa, E Hesse, D Seriwatanachai, R Kiviranta, H Saito, K Yamana, L Neff, A Atfi, L Coillard, D Sitara, Y Maeda, S Warming, NA Jenkins, NG Copeland, WC Horne, B Lanske, R Baron. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell 2010; 19(4): 533–546
https://doi.org/10.1016/j.devcel.2010.09.008
pmid: 20951345
|
8 |
X Wang, J Chang, C Wu. Bioactive inorganic/organic nanocomposites for wound healing. Appl Mater Today 2018; 11: 308–319
https://doi.org/10.1016/j.apmt.2018.03.001
|
9 |
JF Mano, GA Silva, HS Azevedo, PB Malafaya, RA Sousa, SS Silva, LF Boesel, JM Oliveira, TC Santos, AP Marques, NM Neves, RL Reis. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2007; 4(17): 999–1030
https://doi.org/10.1098/rsif.2007.0220
pmid: 17412675
|
10 |
M Zhu, W Li, X Dong, X Yuan, AC Midgley, H Chang, Y Wang, H Wang, K Wang, PX Ma, H Wang, D Kong. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun 2019; 10(1): 4620
https://doi.org/10.1038/s41467-019-12545-3
pmid: 31604958
|
11 |
Y Li, Y Xiao, C Liu. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev 2017; 117(5): 4376–4421
https://doi.org/10.1021/acs.chemrev.6b00654
pmid: 28221776
|
12 |
W Zhang, Y Zhu, J Li, Q Guo, J Peng, S Liu, J Yang, Y Wang. Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng Part B Rev 2016; 22(3): 193–207
https://doi.org/10.1089/ten.teb.2015.0290
pmid: 26671674
|
13 |
MM Smoak, KJ Hogan, KJ Grande-Allen, AG Mikos. Bioinspired electrospun dECM scaffolds guide cell growth and control the formation of myotubes. Sci Adv 2021; 7(20): eabg4123
https://doi.org/10.1126/sciadv.abg4123
pmid: 33990336
|
14 |
J Jang, JY Park, G Gao, DW Cho. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156: 88–106
https://doi.org/10.1016/j.biomaterials.2017.11.030
pmid: 29190501
|
15 |
SV Murphy, A Atala. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773–785
https://doi.org/10.1038/nbt.2958
pmid: 25093879
|
16 |
BS Kim, S Das, J Jang, DW Cho. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev 2020; 120(19): 10608–10661
https://doi.org/10.1021/acs.chemrev.9b00808
pmid: 32786425
|
17 |
F Pati, J Jang, DH Ha, S Won Kim, JW Rhie, JH Shim, DH Kim, DW Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014; 5(1): 3935
https://doi.org/10.1038/ncomms4935
pmid: 24887553
|
18 |
Y Li, J Wang, D Qian, L Chen, X Mo, L Wang, Y Wang, W Cui. Electrospun fibrous sponge via short fiber for mimicking 3D ECM. J Nanobiotechnology 2021; 19(1): 131
https://doi.org/10.1186/s12951-021-00878-5
pmid: 33964948
|
19 |
AP Kishan, EM Cosgriff-Hernandez. Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res A 2017; 105(10): 2892–2905
https://doi.org/10.1002/jbm.a.36124
pmid: 28556551
|
20 |
Y Su, Y Shi, MA Stolow, YB Shi. Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix. J Cell Biol 1997; 139(6): 1533–1543
https://doi.org/10.1083/jcb.139.6.1533
pmid: 9396758
|
21 |
P Simon-Assmann, M Kedinger, A De Arcangelis, V Rousseau, P Simo. Extracellular matrix components in intestinal development. Experientia 1995; 51(9–10): 883–900
https://doi.org/10.1007/BF01921739
pmid: 7556570
|
22 |
ZX Mahoney, TS Stappenbeck, JH Miner. Laminin α 5 influences the architecture of the mouse small intestine mucosa. J Cell Sci 2008; 121(15): 2493–2502
https://doi.org/10.1242/jcs.025528
pmid: 18628307
|
23 |
HY Kim, CM Nelson. Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 2012; 8(2): 56–64
https://doi.org/10.4161/org.19813
pmid: 22609561
|
24 |
C Frantz, KM Stewart, VM Weaver. The extracellular matrix at a glance. J Cell Sci 2010; 123(24): 4195–4200
https://doi.org/10.1242/jcs.023820
pmid: 21123617
|
25 |
G Zhen, X Cao. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014; 35(5): 227–236
https://doi.org/10.1016/j.tips.2014.03.005
pmid: 24745631
|
26 |
CW Cheng, LD Solorio, E Alsberg. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32(2): 462–484
https://doi.org/10.1016/j.biotechadv.2013.12.012
pmid: 24417915
|
27 |
S Özbek, PG Balasubramanian, R Chiquet-Ehrismann, RP Tucker, JC Adams. The evolution of extracellular matrix. Mol Biol Cell 2010; 21(24): 4300–4305
https://doi.org/10.1091/mbc.e10-03-0251
pmid: 21160071
|
28 |
G Michel, T Tonon, D Scornet, JM Cock, B Kloareg. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 2010; 188(1): 82–97
https://doi.org/10.1111/j.1469-8137.2010.03374.x
pmid: 20618907
|
29 |
AD Theocharis, SS Skandalis, C Gialeli, NK Karamanos. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4–27
https://doi.org/10.1016/j.addr.2015.11.001
pmid: 26562801
|
30 |
L Li, G Liu, P Timashev, XS Sun, T Criswell, A Atala, Y Zhang. Biofabrication of tissue-specific extracellular matrix proteins to enhance the expansion and differentiation of skeletal muscle progenitor cells. Appl Phys Rev 2019; 6(2): 021309
https://doi.org/10.1063/1.5088726
|
31 |
S Ricard-Blum. The collagen family. Cold Spring Harb Perspect Biol 2011; 3(1): a004978
https://doi.org/10.1101/cshperspect.a004978
pmid: 21421911
|
32 |
VS LeBleu, B Macdonald, R Kalluri. Structure and function of basement membranes. Exp Biol Med (Maywood) 2007; 232(9): 1121–1129
https://doi.org/10.3181/0703-MR-72
pmid: 17895520
|
33 |
JE Wagenseil, RP Mecham. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 2007; 81(4): 229–240
https://doi.org/10.1002/bdrc.20111
pmid: 18228265
|
34 |
L Kjellén, U Lindahl. Specificity of glycosaminoglycan-protein interactions. Curr Opin Struct Biol 2018; 50: 101–108
https://doi.org/10.1016/j.sbi.2017.12.011
pmid: 29455055
|
35 |
CB Knudson, W Knudson. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 1993; 7(13): 1233–1241
https://doi.org/10.1096/fasebj.7.13.7691670
pmid: 7691670
|
36 |
LE Niklason. Understanding the extracellular matrix to enhance stem cell-based tissue regeneration. Cell Stem Cell 2018; 22(3): 302–305
https://doi.org/10.1016/j.stem.2018.02.001
pmid: 29499149
|
37 |
Z Avnur, B Geiger. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell 1981; 25(1): 121–132
https://doi.org/10.1016/0092-8674(81)90236-1
pmid: 6791830
|
38 |
S Vasvani, P Kulkarni, D Rawtani. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151: 1012–1029
https://doi.org/10.1016/j.ijbiomac.2019.11.066
pmid: 31715233
|
39 |
D Vigetti, M Viola, E Karousou, S Deleonibus, K Karamanou, G De Luca, A Passi. Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J 2014; 281(22): 4980–4992
https://doi.org/10.1111/febs.12938
pmid: 25040101
|
40 |
L Huleihel, GS Hussey, JD Naranjo, L Zhang, JL Dziki, NJ Turner, DB Stolz, SF Badylak. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv 2016; 2(6): e1600502
https://doi.org/10.1126/sciadv.1600502
pmid: 27386584
|
41 |
CM Nelson, MJ Bissell. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22(1): 287–309
https://doi.org/10.1146/annurev.cellbio.22.010305.104315
pmid: 16824016
|
42 |
W Wei, J Li, S Chen, M Chen, Q Xie, H Sun, J Ruan, H Zhou, X Bi, A Zhuang, Z You, P Gu, X Fan. In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. J Mater Chem B Mater Biol Med 2017; 5(13): 2468–2482
https://doi.org/10.1039/C6TB03150A
pmid: 32264553
|
43 |
D Choudhury, HW Tun, T Wang, MW Naing. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol 2018; 36(8): 787–805
https://doi.org/10.1016/j.tibtech.2018.03.003
pmid: 29678431
|
44 |
A Satyam, MG Tsokos, JS Tresback, DI Zeugolis, GC Tsokos. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. Adv Funct Mater 2020; 30(44): 1908752
https://doi.org/10.1002/adfm.201908752
pmid: 33692659
|
45 |
KR Legate, SA Wickström, R Fässler. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 2009; 23(4): 397–418
https://doi.org/10.1101/gad.1758709
pmid: 19240129
|
46 |
Y Li, A Gautam, J Yang, L Qiu, Z Melkoumian, J Weber, L Telukuntla, R Srivastava, EM Whiteley, R Brandenberger. Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev 2013; 22(10): 1497–1505
https://doi.org/10.1089/scd.2012.0508
pmid: 23249362
|
47 |
S Mathews, R Bhonde, PK Gupta, S Totey. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 2012; 84(2): 185–192
https://doi.org/10.1016/j.diff.2012.05.001
pmid: 22664173
|
48 |
M Kanatsu-Shinohara, M Takehashi, S Takashima, J Lee, H Morimoto, S Chuma, A Raducanu, N Nakatsuji, R Fässler, T Shinohara. Homing of mouse spermatogonial stem cells to germline niche depends on β1-integrin. Cell Stem Cell 2008; 3(5): 533–542
https://doi.org/10.1016/j.stem.2008.08.002
pmid: 18983968
|
49 |
DA Brafman, C Phung, N Kumar, K Willert. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 2013; 20(3): 369–381
https://doi.org/10.1038/cdd.2012.138
pmid: 23154389
|
50 |
M Lu, R Xue, P Wang, X Wang, X Tian, Y Liu, S Wang, A Cui, J Xie, L Le, M Zhao, J Quan, N Li, D Meng, X Wang, N Sun, AF Chen, M Xiang, S Chen. Induced pluripotent stem cells attenuate chronic allogeneic vasculopathy in an integrin beta-1-dependent manner. Am J Transplant 2020; 20(10): 2755–2767
https://doi.org/10.1111/ajt.15900
pmid: 32277602
|
51 |
S Han, B Kang, HY Son, Y Choi, MK Shin, J Park, JK Min, D Park, EK Lim, YM Huh, S Haam. In vivo monitoring platform of transplanted human stem cells using magnetic resonance imaging. Biosens Bioelectron 2021; 178: 113039
https://doi.org/10.1016/j.bios.2021.113039
pmid: 33524707
|
52 |
MF Brizzi, G Tarone, P Defilippi. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 2012; 24(5): 645–651
https://doi.org/10.1016/j.ceb.2012.07.001
pmid: 22898530
|
53 |
M Ghaedi, Y Duan, MA Zern, A Revzin. Hepatic differentiation of human embryonic stem cells on growth factor-containing surfaces. J Tissue Eng Regen Med 2014; 8(11): 886–895
https://doi.org/10.1002/term.1595
pmid: 23086797
|
54 |
I Ullah, R Abu-Dawud, JF Busch, A Rabien, B Erguen, I Fischer, P Reinke, A Kurtz. VEGF-supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC. Biomaterials 2019; 216: 119283
https://doi.org/10.1016/j.biomaterials.2019.119283
pmid: 31247481
|
55 |
N Giamblanco, E Martines, G Marletta. Laminin adsorption on nanostructures: switching the molecular orientation by local curvature changes. Langmuir 2013; 29(26): 8335–8342
https://doi.org/10.1021/la304644z
pmid: 23742648
|
56 |
C González-García, SR Sousa, D Moratal, P Rico, M Salmerón-Sánchez. Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf B Biointerfaces 2010; 77(2): 181–190
https://doi.org/10.1016/j.colsurfb.2010.01.021
pmid: 20185279
|
57 |
AJ Engler, S Sen, HL Sweeney, DE Discher. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677–689
https://doi.org/10.1016/j.cell.2006.06.044
pmid: 16923388
|
58 |
LK Sthanam, A Barai, A Rastogi, VK Mistari, A Maria, R Kauthale, M Gatne, S Sen. Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices. Biomaterials 2017; 119: 9–22
https://doi.org/10.1016/j.biomaterials.2016.12.006
pmid: 27988407
|
59 |
PM Gilbert, KL Havenstrite, KE Magnusson, A Sacco, NA Leonardi, P Kraft, NK Nguyen, S Thrun, MP Lutolf, HM Blau. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010; 329(5995): 1078–1081
https://doi.org/10.1126/science.1191035
pmid: 20647425
|
60 |
S Gobaa, S Hoehnel, M Roccio, A Negro, S Kobel, MP Lutolf. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 2011; 8(11): 949–955
https://doi.org/10.1038/nmeth.1732
pmid: 21983923
|
61 |
YR Shih, KF Tseng, HY Lai, CH Lin, OK Lee. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 2011; 26(4): 730–738
https://doi.org/10.1002/jbmr.278
pmid: 20939067
|
62 |
M Hirata, T Yamaoka. Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomater 2018; 65: 44–52
https://doi.org/10.1016/j.actbio.2017.10.032
pmid: 29066419
|
63 |
JM Muncie, NME Ayad, JN Lakins, X Xue, J Fu, VM Weaver. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells. Dev Cell 2020; 55(6): 679–694.e11
https://doi.org/10.1016/j.devcel.2020.10.015
pmid: 33207224
|
64 |
H Guo, N Deng, L Dou, H Ding, T Criswell, A Atala, CM Furdui, Y Zhang. 3-D human renal tubular organoids generated from urine-derived stem cells for nephrotoxicity screening. ACS Biomater Sci Eng 2020; 6(12): 6701–6709
https://doi.org/10.1021/acsbiomaterials.0c01468
pmid: 33320634
|
65 |
SJ Morrison, AC Spradling. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598–611
https://doi.org/10.1016/j.cell.2008.01.038
pmid: 18295578
|
66 |
E Fuchs, T Tumbar, G Guasch. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116(6): 769–778
https://doi.org/10.1016/S0092-8674(04)00255-7
pmid: 15035980
|
67 |
SF Badylak, D Taylor, K Uygun. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011; 13(1): 27–53
https://doi.org/10.1146/annurev-bioeng-071910-124743
pmid: 21417722
|
68 |
AV Ngangan, TC McDevitt. Acellularization of embryoid bodies via physical disruption methods. Biomaterials 2009; 30(6): 1143–1149
https://doi.org/10.1016/j.biomaterials.2008.11.001
pmid: 19042017
|
69 |
M Hirata, T Yamaoka. Hepatocytic differentiation of iPS cells on decellularized liver tissue. J Artif Organs 2017; 20(4): 318–325
https://doi.org/10.1007/s10047-017-0977-2
pmid: 28776092
|
70 |
H Lu, T Hoshiba, N Kawazoe, G Chen. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 2011; 32(10): 2489–2499
https://doi.org/10.1016/j.biomaterials.2010.12.016
pmid: 21211834
|
71 |
R Nair, S Shukla, TC McDevitt. Acellular matrices derived from differentiating embryonic stem cells. J Biomed Mater Res A 2008; 87A(4): 1075–1085
https://doi.org/10.1002/jbm.a.31851
pmid: 18260134
|
72 |
HC Ott, B Clippinger, C Conrad, C Schuetz, I Pomerantseva, L Ikonomou, D Kotton, JP Vacanti. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 2010; 16(8): 927–933
https://doi.org/10.1038/nm.2193
pmid: 20628374
|
73 |
JE Reing, BN Brown, KA Daly, JM Freund, TW Gilbert, SX Hsiong, A Huber, KE Kullas, S Tottey, MT Wolf, SF Badylak. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010; 31(33): 8626–8633
https://doi.org/10.1016/j.biomaterials.2010.07.083
pmid: 20728934
|
74 |
R Haas, LA Culp. Binding of fibronectin to gelatin and heparin: effect of surface denaturation and detergents. FEBS Lett 1984; 174(2): 279–283
https://doi.org/10.1016/0014-5793(84)81173-4
pmid: 6468662
|
75 |
S Sart, T Ma, Y Li. Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Eng Part A 2014; 20(1–2): 54–66
https://doi.org/10.1089/ten.tea.2012.0690
pmid: 23848515
|
76 |
PM Crapo, TW Gilbert, SF Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233–3243
https://doi.org/10.1016/j.biomaterials.2011.01.057
pmid: 21296410
|
77 |
M Parmaksiz, AE Elçin, YM Elçin. Decellularized cell culture ECMs act as cell differentiation inducers. Stem Cell Rev Rep 2020; 16(3): 569–584
https://doi.org/10.1007/s12015-020-09963-y
pmid: 32170583
|
78 |
DO Freytes, RM Stoner, SF Badylak. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater 2008; 84B(2): 408–414
https://doi.org/10.1002/jbm.b.30885
pmid: 17618508
|
79 |
B Yang, Y Zhang, L Zhou, Z Sun, J Zheng, Y Chen, Y Dai. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods 2010; 16(5): 1201–1211
https://doi.org/10.1089/ten.tec.2009.0311
pmid: 20170425
|
80 |
TW Gilbert, TL Sellaro, SF Badylak. Decellularization of tissues and organs. Biomaterials 2006; 27(19): 3675–3683
pmid: 16519932
|
81 |
ER Gafarova, EA Grebenik, AE Lazhko, AA Frolova, AS Kuryanova, AV Kurkov, IA Bazhanov, BS Kapomba, NV Kosheleva, IA Novikov, AB Shekhter, EN Golubeva, AB Soloviova, PS Timashev. Evaluation of supercritical CO2-assisted protocols in a model of ovine aortic root decellularization. Molecules 2020; 25(17): 3923
https://doi.org/10.3390/molecules25173923
pmid: 32867356
|
82 |
AM Seddon, P Curnow, PJ Booth. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 2004; 1666(1–2): 105–117
https://doi.org/10.1016/j.bbamem.2004.04.011
pmid: 15519311
|
83 |
RW Grauss, MG Hazekamp, S van Vliet, AC Gittenberger-de Groot, MC DeRuiter. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003; 126(6): 2003–2010
https://doi.org/10.1016/S0022-5223(03)00956-5
pmid: 14688719
|
84 |
A Hopkinson, VA Shanmuganathan, T Gray, AM Yeung, J Lowe, DK James, HS Dua. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods 2008; 14(4): 371–381
https://doi.org/10.1089/ten.tec.2008.0315
pmid: 18821842
|
85 |
TH Petersen, EA Calle, L Zhao, EJ Lee, L Gui, MB Raredon, K Gavrilov, T Yi, ZW Zhuang, C Breuer, E Herzog, LE Niklason. Tissue-engineered lungs for in vivo implantation. Science 2010; 329(5991): 538–541
https://doi.org/10.1126/science.1189345
pmid: 20576850
|
86 |
L Gui, SA Chan, CK Breuer, LE Niklason. Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 2010; 16(2): 173–184
https://doi.org/10.1089/ten.tec.2009.0120
pmid: 19419244
|
87 |
D Zhang, Y Zhang, Y Zhang, H Yi, Z Wang, R Wu, D He, G Wei, S Wei, Y Hu, J Deng, T Criswell, J Yoo, Y Zhou, A Atala. Tissue-specific extracellular matrix enhances skeletal muscle precursor cell expansion and differentiation for potential application in cell therapy. Tissue Eng Part A 2017; 23(15–16): 784–794
https://doi.org/10.1089/ten.tea.2016.0489
pmid: 28463580
|
88 |
H Yi, S Forsythe, Y He, Q Liu, G Xiong, S Wei, G Li, A Atala, A Skardal, Y Zhang. Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels. Acta Biomater 2017; 62: 222–233
https://doi.org/10.1016/j.actbio.2017.08.022
pmid: 28823716
|
89 |
MJ Buckenmeyer, TJ Meder, TA Prest, BN Brown. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2020; 171: 41–61
https://doi.org/10.1016/j.ymeth.2019.07.023
pmid: 31398392
|
90 |
PM Crapo, CJ Medberry, JE Reing, S Tottey, Y van der Merwe, KE Jones, SF Badylak. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 2012; 33(13): 3539–3547
https://doi.org/10.1016/j.biomaterials.2012.01.044
pmid: 22341938
|
91 |
T Jiang, XJ Ren, JL Tang, H Yin, KJ Wang, CL Zhou. Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C 2013; 33(6): 3514–3521
https://doi.org/10.1016/j.msec.2013.04.046
pmid: 23706241
|
92 |
BN Brown, JE Valentin, AM Stewart-Akers, GP McCabe, SF Badylak. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009; 30(8): 1482–1491
https://doi.org/10.1016/j.biomaterials.2008.11.040
pmid: 19121538
|
93 |
JM Wainwright, CA Czajka, UB Patel, DO Freytes, K Tobita, TW Gilbert, SF Badylak. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 2010; 16(3): 525–532
https://doi.org/10.1089/ten.tec.2009.0392
pmid: 19702513
|
94 |
J Cortiella, J Niles, A Cantu, A Brettler, A Pham, G Vargas, S Winston, J Wang, S Walls, JE Nichols. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 2010; 16(8): 2565–2580
https://doi.org/10.1089/ten.tea.2009.0730
pmid: 20408765
|
95 |
I Prasertsung, S Kanokpanont, T Bunaprasert, V Thanakit, S Damrongsakkul. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater 2008; 85B(1): 210–219
https://doi.org/10.1002/jbm.b.30938
pmid: 17853423
|
96 |
CV Montoya, PS McFetridge. Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 2009; 15(2): 191–200
https://doi.org/10.1089/ten.tec.2008.0372
pmid: 19196128
|
97 |
F Bolland, S Korossis, SP Wilshaw, E Ingham, J Fisher, JN Kearney, J Southgate. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 2007; 28(6): 1061–1070
https://doi.org/10.1016/j.biomaterials.2006.10.005
pmid: 17092557
|
98 |
MB Sano, RE Neal 2nd, PA Garcia, D Gerber, J Robertson, RV Davalos. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 2010; 9(1): 83
https://doi.org/10.1186/1475-925X-9-83
pmid: 21143979
|
99 |
M Phillips, E Maor, B Rubinsky. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 2010; 132(9): 091003
https://doi.org/10.1115/1.4001882
pmid: 20815637
|
100 |
X Dong, X Wei, W Yi, C Gu, X Kang, Y Liu, Q Li, D Yi. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med 2009; 20(11): 2327–2336
https://doi.org/10.1007/s10856-009-3791-4
pmid: 19507006
|
101 |
BE Uygun, A Soto-Gutierrez, H Yagi, ML Izamis, MA Guzzardi, C Shulman, J Milwid, N Kobayashi, A Tilles, F Berthiaume, M Hertl, Y Nahmias, ML Yarmush, K Uygun. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16(7): 814–820
https://doi.org/10.1038/nm.2170
pmid: 20543851
|
102 |
KH Nakayama, CA Batchelder, CI Lee, AF Tarantal. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010; 16(7): 2207–2216
https://doi.org/10.1089/ten.tea.2009.0602
pmid: 20156112
|
103 |
PS McFetridge, JW Daniel, T Bodamyali, M Horrocks, JB Chaudhuri. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 2004; 70A(2): 224–234
https://doi.org/10.1002/jbm.a.30060
pmid: 15227667
|
104 |
OE Teebken, A Bader, G Steinhoff, A Haverich. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 2000; 19(4): 381–386
https://doi.org/10.1053/ejvs.1999.1004
pmid: 10801371
|
105 |
PG Gamba, MT Conconi, R Lo Piccolo, G Zara, R Spinazzi, PP Parnigotto. Experimental abdominal wall defect repaired with acellular matrix. Pediatr Surg Int 2002; 18(5–6): 327–331
https://doi.org/10.1007/s00383-002-0849-5
pmid: 12415348
|
106 |
RN Chen, HO Ho, YT Tsai, MT Sheu. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004; 25(13): 2679–2686
https://doi.org/10.1016/j.biomaterials.2003.09.070
pmid: 14751754
|
107 |
E Rieder, MT Kasimir, G Silberhumer, G Seebacher, E Wolner, P Simon, G Weigel. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004; 127(2): 399–405
https://doi.org/10.1016/j.jtcvs.2003.06.017
pmid: 14762347
|
108 |
SLM Dahl, J Koh, V Prabhakar, LE Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 2003; 12(6): 659–666
https://doi.org/10.3727/000000003108747136
|
109 |
T Woods, PF Gratzer. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 2005; 26(35): 7339–7349
https://doi.org/10.1016/j.biomaterials.2005.05.066
pmid: 16023194
|
110 |
A Shakouri-Motlagh, AJ O’Connor, SP Brennecke, B Kalionis, DE Heath. Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater 2017; 55: 1–12
https://doi.org/10.1016/j.actbio.2017.04.014
pmid: 28412553
|
111 |
M Assunção, D Dehghan-Baniani, CHK Yiu, T Später, S Beyer, A Blocki. Cell-derived extracellular matrix for tissue engineering and regenerative medicine. Front Bioeng Biotechnol 2020; 8: 602009
https://doi.org/10.3389/fbioe.2020.602009
pmid: 33344434
|
112 |
M Pei, JT Li, M Shoukry, Y Zhang. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater 2011; 22: 333–343
https://doi.org/10.22203/eCM.v022a25
pmid: 22116651
|
113 |
M Pei. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials 2017; 117: 10–23
https://doi.org/10.1016/j.biomaterials.2016.11.049
pmid: 27923196
|
114 |
Y Sun, L Yan, S Chen, M Pei. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources. Acta Biomater 2018; 74: 56–73
https://doi.org/10.1016/j.actbio.2018.04.048
pmid: 29702288
|
115 |
F He, X Chen, M Pei. Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2009; 15(12): 3809–3821
https://doi.org/10.1089/ten.tea.2009.0188
pmid: 19545204
|
116 |
J Li, M Pei. Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2011; 17(5–6): 703–712
https://doi.org/10.1089/ten.tea.2010.0339
pmid: 20929284
|
117 |
J Li, F He, M Pei. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis. Cell Tissue Res 2011; 345(3): 357–365
https://doi.org/10.1007/s00441-011-1212-8
pmid: 21805113
|
118 |
J Li, F He, M Pei. Chondrogenic priming of human fetal synovium-derived stem cells in an adult stem cell matrix microenvironment. Genes Dis 2015; 2(4): 337–346
https://doi.org/10.1016/j.gendis.2015.06.004
pmid: 30258873
|
119 |
J Li, K Narayanan, Y Zhang, RC Hill, F He, KC Hansen, M Pei. Role of lineage-specific matrix in stem cell chondrogenesis. Biomaterials 2020; 231: 119681
https://doi.org/10.1016/j.biomaterials.2019.119681
pmid: 31864016
|
120 |
M Pei, Y Zhang, J Li, D Chen. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells Dev 2013; 22(6): 889–900
https://doi.org/10.1089/scd.2012.0495
pmid: 23092115
|
121 |
Y Zhang, J Li, ME Davis, M Pei. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Acta Biomater 2015; 20: 39–50
https://doi.org/10.1016/j.actbio.2015.04.001
pmid: 25861949
|
122 |
Y Zhang, T Pizzute, J Li, F He, M Pei. sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment—a feasible approach for autologous stem cell based osteoarthritic cartilage repair. Biomaterials 2015; 64: 88–97
https://doi.org/10.1016/j.biomaterials.2015.06.038
pmid: 26122165
|
123 |
F He, X Liu, K Xiong, S Chen, L Zhou, W Cui, G Pan, ZP Luo, M Pei, Y Gong. Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. J Endocrinol 2014; 223(2): 167–180
https://doi.org/10.1530/JOE-14-0430
pmid: 25210047
|
124 |
M Pei, F He, VL Kish. Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng Part A 2011; 17(23–24): 3067–3076
https://doi.org/10.1089/ten.tea.2011.0158
pmid: 21740327
|
125 |
M Pei, J Li, Y Zhang, G Liu, L Wei, Y Zhang. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res 2014; 356(2): 391–403
https://doi.org/10.1007/s00441-014-1801-4
pmid: 24705582
|
126 |
X Liu, L Zhou, X Chen, T Liu, G Pan, W Cui, M Li, ZP Luo, M Pei, H Yang, Y Gong, F He. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Mater Sci Eng C 2016; 61: 437–448
https://doi.org/10.1016/j.msec.2015.12.090
pmid: 26838870
|
127 |
L Zhou, X Chen, T Liu, C Zhu, M Si, J Jargstorf, M Li, G Pan, Y Gong, ZP Luo, H Yang, M Pei, F He. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12(2): e1008–e1021
https://doi.org/10.1002/term.2422
pmid: 28107614
|
128 |
F He, M Pei. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis. J Tissue Eng Regen Med 2013; 7(1): 73–84
https://doi.org/10.1002/term.505
pmid: 22095700
|
129 |
Y Wang, Y Fu, Z Yan, XB Zhang, M Pei. Impact of fibronectin knockout on proliferation and differentiation of human infrapatellar fat pad-derived stem cells. Front Bioeng Biotechnol 2019; 7: 321
https://doi.org/10.3389/fbioe.2019.00321
pmid: 31803729
|
130 |
Y Wang, G Hu, RC Hill, M Dzieciatkowska, KC Hansen, XB Zhang, Z Yan, M Pei. Matrix reverses immortalization-mediated stem cell fate determination. Biomaterials 2021; 265: 120387
https://doi.org/10.1016/j.biomaterials.2020.120387
pmid: 32987274
|
131 |
SK Goh, P Olsen, I Banerjee. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS One 2013; 8(4): e61856
https://doi.org/10.1371/journal.pone.0061856
pmid: 23637919
|
132 |
X Xiong, X Yang, H Dai, G Feng, Y Zhang, J Zhou, W Zhou. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res Ther 2019; 10(1): 396
https://doi.org/10.1186/s13287-019-1483-7
pmid: 31852539
|
133 |
T Hoshiba, Y Sugano, N Yokoyama. Murine neural stem cell (NSC) line, MEB5-derived decellularized matrix as an in vitro extracellular matrix model in NSC niche. Chem Lett 2018; 47(12): 1498–1501
https://doi.org/10.1246/cl.180788
|
134 |
M Pei, F He. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. J Cell Physiol 2012; 227(5): 2163–2174
https://doi.org/10.1002/jcp.22950
pmid: 21792932
|
135 |
J Yan, X Chen, C Pu, Y Zhao, X Liu, T Liu, G Pan, J Lin, M Pei, H Yang, F He. Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway. Mater Sci Eng C 2020; 106: 110286
https://doi.org/10.1016/j.msec.2019.110286
pmid: 31753397
|
136 |
F He, M Pei. Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine 2012; 37(6): 459–469
https://doi.org/10.1097/BRS.0b013e31821fcc64
pmid: 21540772
|
137 |
M Pei, M Shoukry, J Li, SD Daffner, JC France, SE Emery. Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine 2012; 37(18): 1538–1547
https://doi.org/10.1097/BRS.0b013e31825150bf
pmid: 22391443
|
138 |
LK Kanninen, P Porola, J Niklander, MM Malinen, A Corlu, C Guguen-Guillouzo, A Urtti, ML Yliperttula, YR Lou. Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 2016; 341(2): 207–217
https://doi.org/10.1016/j.yexcr.2016.02.006
pmid: 26854693
|
139 |
M Pei, F He, J Li, JE Tidwell, AC Jones, EB McDonough. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A 2013; 19(9–10): 1144–1154
https://doi.org/10.1089/ten.tea.2012.0351
pmid: 23216161
|
140 |
J Li, KC Hansen, Y Zhang, C Dong, CZ Dinu, M Dzieciatkowska, M Pei. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35(2): 642–653
https://doi.org/10.1016/j.biomaterials.2013.09.099
pmid: 24148243
|
141 |
CP Ng, AR Sharif, DE Heath, JW Chow, CB Zhang, MB Chan-Park, PT Hammond, JK Chan, LG Griffith. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 2014; 35(13): 4046–4057
https://doi.org/10.1016/j.biomaterials.2014.01.081
pmid: 24560460
|
142 |
Y Xu, GY Xu, C Tang, B Wei, X Pei, JC Gui, BH Min, CZ Jin, LM Wang. Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103(3): 670–678
https://doi.org/10.1002/jbm.b.33231
pmid: 25045062
|
143 |
XD Chen, V Dusevich, JQ Feng, SC Manolagas, RL Jilka. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 2007; 22(12): 1943–1956
https://doi.org/10.1359/jbmr.070725
pmid: 17680726
|
144 |
Y Lai, Y Sun, CM Skinner, EL Son, Z Lu, RS Tuan, RL Jilka, J Ling, XD Chen. Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells Dev 2010; 19(7): 1095–1107
https://doi.org/10.1089/scd.2009.0217
pmid: 19737070
|
145 |
Y Gu, J Zhu, C Xue, Z Li, F Ding, Y Yang, X Gu. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014; 35(7): 2253–2263
https://doi.org/10.1016/j.biomaterials.2013.11.087
pmid: 24360577
|
146 |
SH Kwon, TJ Lee, J Park, JE Hwang, M Jin, HK Jang, NS Hwang, BS Kim. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Eng Part A 2013; 19(1–2): 49–58
https://doi.org/10.1089/ten.tea.2012.0245
pmid: 23088504
|
147 |
Y Zhang, Y He, S Bharadwaj, N Hammam, K Carnagey, R Myers, A Atala, M Van Dyke. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
https://doi.org/10.1016/j.biomaterials.2009.04.005
pmid: 19410290
|
148 |
RA Thibault, L Scott Baggett, AG Mikos, FK Kasper. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A 2010; 16(2): 431–440
https://doi.org/10.1089/ten.tea.2009.0583
pmid: 19863274
|
149 |
J De Waele, K Reekmans, J Daans, H Goossens, Z Berneman, P Ponsaerts. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 2015; 41: 122–131
https://doi.org/10.1016/j.biomaterials.2014.11.025
pmid: 25522971
|
150 |
V Navarro-Tableros, MB Herrera Sanchez, F Figliolini, R Romagnoli, C Tetta, G Camussi. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng Part A 2015; 21(11–12): 1929–1939
https://doi.org/10.1089/ten.tea.2014.0573
pmid: 25794768
|
151 |
Q Yao, YW Zheng, QH Lan, L Kou, HL Xu, YZ Zhao. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C 2019; 104: 109942
https://doi.org/10.1016/j.msec.2019.109942
pmid: 31499951
|
152 |
A Imle, P Kumberger, ND Schnellbächer, J Fehr, P Carrillo-Bustamante, J Ales, P Schmidt, C Ritter, WJ Godinez, B Müller, K Rohr, FA Hamprecht, US Schwarz, F Graw, OT Fackler. Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nat Commun 2019; 10(1): 2144
https://doi.org/10.1038/s41467-019-09879-3
pmid: 31086185
|
153 |
LT Saldin, MC Cramer, SS Velankar, LJ White, SF Badylak. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater 2017; 49: 1–15
https://doi.org/10.1016/j.actbio.2016.11.068
pmid: 27915024
|
154 |
EC González-Díaz, S Varghese. Hydrogels as extracellular matrix analogs. Gels 2016; 2(3): 20
https://doi.org/10.3390/gels2030020
pmid: 30674152
|
155 |
Y Zhang, Y He, S Bharadwaj, N Hammam, K Carnagey, R Myers, A Atala, M Van Dyke. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
https://doi.org/10.1016/j.biomaterials.2009.04.005
pmid: 19410290
|
156 |
H, S. F Yi, Y Zhang, A. Skardal Bio-functionalized alginate hydrogels for improved cell-matrix interactions and growth factor sequestration kinetics. Tissue Eng Part A 2015; 21(Suppl 1): S187
|
157 |
A Skardal, L Smith, S Bharadwaj, A Atala, S Soker, Y Zhang. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 2012; 33(18): 4565–4575
https://doi.org/10.1016/j.biomaterials.2012.03.034
pmid: 22475531
|
158 |
R Lang, MM Stern, L Smith, Y Liu, S Bharadwaj, G Liu, PM Baptista, CR Bergman, S Soker, JJ Yoo, A Atala, Y Zhang. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32(29): 7042–7052
https://doi.org/10.1016/j.biomaterials.2011.06.005
pmid: 21723601
|
159 |
G Xiong, W Tang, D Zhang, D He, G Wei, A Atala, XJ Liang, AJ Bleyer, ME Bleyer, J Yu, JA Aloi, JX Ma, CM Furdui, Y Zhang. Impaired regeneration potential in urinary stem cells diagnosed from the patients with diabetic nephropathy. Theranostics 2019; 9(14): 4221–4232
https://doi.org/10.7150/thno.34050
pmid: 31281543
|
160 |
GS Hussey, JL Dziki, SF Badylak. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018; 3(7): 159–173
https://doi.org/10.1038/s41578-018-0023-x
|
161 |
I Juhasz, B Kiss, L Lukacs, I Erdei, Z Peter, E Remenyik. Long-term followup of dermal substitution with acellular dermal implant in burns and postburn scar corrections. Dermatol Res Pract 2010; 2010(1): 210150
https://doi.org/10.1155/2010/210150
pmid: 21234359
|
162 |
AS Landsman, J Cook, E Cook, AR Landsman, P Garrett, J Yoon, A Kirkwood, E Desman. A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (TheraSkin®) on the treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec 2011; 4(1): 29–41
https://doi.org/10.1177/1938640010387417
pmid: 21135263
|
163 |
DJ Wainwright. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21(4): 243–248
https://doi.org/10.1016/0305-4179(95)93866-I
pmid: 7662122
|
164 |
E Yoeruek, T Bayyoud, C Maurus, J Hofmann, MS Spitzer, KU Bartz-Schmidt, P Szurman. Reconstruction of corneal stroma with decellularized porcine xenografts in a rabbit model. Acta Ophthalmol 2012; 90(3): e206–e210
https://doi.org/10.1111/j.1755-3768.2011.02300.x
pmid: 22136520
|
165 |
Y Hashimoto, S Hattori, S Sasaki, T Honda, T Kimura, S Funamoto, H Kobayashi, A Kishida. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep 2016; 6(1): 27734
https://doi.org/10.1038/srep27734
pmid: 27291975
|
166 |
Y Liu, W Ma, B Liu, Y Wang, J Chu, G Xiong, L Shen, C Long, T Lin, D He, D Butnaru, L Alexey, Y Zhang, D Zhang, G Wei. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther 2017; 8(1): 63
https://doi.org/10.1186/s13287-017-0500-y
pmid: 28279224
|
167 |
Y Zhang, G Liu, BP Kropp. Re-epithelialization of demucosalized stomach patch with tissue-engineered urothelial mucosa combined with Botox A in bladder augmentation. BJU Int 2012; 110(2b): E106–E112
https://doi.org/10.1111/j.1464-410X.2011.10845.x
pmid: 22288946
|
168 |
Y Zhang, HK Lin, D Frimberger, RB Epstein, BP Kropp. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int 2005; 96(7): 1120–1125
https://doi.org/10.1111/j.1464-410X.2005.05741.x
pmid: 16225540
|
169 |
LM Nherera, M Romanelli, P Trueman, V Dini. An overview of clinical and health economic evidence regarding porcine small intestine submucosa extracellular matrix in the management of chronic wounds and burns. Ostomy Wound Manage 2017; 63(12): 38–47
pmid: 29324432
|
170 |
Y Hashimoto, S Funamoto, S Sasaki, T Honda, S Hattori, K Nam, T Kimura, M Mochizuki, T Fujisato, H Kobayashi, A Kishida. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010; 31(14): 3941–3948
https://doi.org/10.1016/j.biomaterials.2010.01.122
pmid: 20163852
|
171 |
T Matsumoto, RHO Holmes, CO Burdick, CA Heisterkamp 3rd, TJ O’Connell Jr. Replacement of large veins with free inverted segments of small bowel: autografts of submucosal membrane in dogs and clinical use. Ann Surg 1966; 164(5): 845–848
https://doi.org/10.1097/00000658-196611000-00009
pmid: 5923109
|
172 |
T Matsumoto, RH Holmes, CO Burdick, CA Heisterkamp 3rd, TJ O’Connell Jr. The fate of the inverted segment of small bowel used for the replacement of major veins. Surgery 1966; 60(3): 739–743
pmid: 5913805
|
173 |
T Matsumoto, RH Holmes, CO Burdick, JF Metzger, CA Heisterkamp 3rd, TJ O’Connell Jr. A study of inverted intestinal graft in the major veins. Angiology 1966; 17(11): 842–850
https://doi.org/10.1177/000331976601701106
pmid: 5925993
|
174 |
SF Badylak, GC Lantz, A Coffey, LA Geddes. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989; 47(1): 74–80
https://doi.org/10.1016/0022-4804(89)90050-4
pmid: 2739401
|
175 |
MC Hiles, SF Badylak, GC Lantz, K Kokini, LA Geddes, RJ Morff. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J Biomed Mater Res 1995; 29(7): 883–891
https://doi.org/10.1002/jbm.820290714
pmid: 7593028
|
176 |
A Bader, G Steinhoff, K Strobl, T Schilling, G Brandes, H Mertsching, D Tsikas, J Froelich, A Haverich. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 2000; 70(1): 7–14
pmid: 10919568
|
177 |
DA Taylor, LC Sampaio, Z Ferdous, AS Gobin, LJ Taite. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74: 74–89
https://doi.org/10.1016/j.actbio.2018.04.044
pmid: 29702289
|
178 |
M Kimicata, JD Allbritton-King, J Navarro, M Santoro, T Inoue, N Hibino, JP Fisher. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110: 68–81
https://doi.org/10.1016/j.actbio.2020.04.013
pmid: 32305447
|
179 |
S Badylak, S Meurling, M Chen, A Spievack, A Simmons-Byrd. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 2000; 35(7): 1097–1103
https://doi.org/10.1053/jpsu.2000.7834
pmid: 10917304
|
180 |
SF Badylak, T Hoppo, A Nieponice, TW Gilbert, JM Davison, BA Jobe. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 2011; 17(11–12): 1643–1650
https://doi.org/10.1089/ten.tea.2010.0739
pmid: 21306292
|
181 |
A Clough, J Ball, GS Smith, S Leibman. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg 2011; 91(2): e99–e100
https://doi.org/10.1016/j.athoracsur.2010.10.011
pmid: 21256256
|
182 |
O Syed, NJ Walters, RM Day, HW Kim, JC Knowles. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 2014; 10(12): 5043–5054
https://doi.org/10.1016/j.actbio.2014.08.024
pmid: 25173840
|
183 |
G Luc, G Charles, C Gronnier, M Cabau, C Kalisky, M Meulle, R Bareille, S Roques, L Couraud, J Rannou, L Bordenave, D Collet, M Durand. Decellularized and matured esophageal scaffold for circumferential esophagus replacement: proof of concept in a pig model. Biomaterials 2018; 175: 1–18
https://doi.org/10.1016/j.biomaterials.2018.05.023
pmid: 29793088
|
184 |
L Arakelian, C Caille, L Faivre, L Corté, P Bruneval, S Shamdani, C Flageollet, P Albanese, T Domet, M Jarraya, N Setterblad, S Kellouche, J Larghero, P Cattan, V Vanneaux. A clinical-grade acellular matrix for esophageal replacement. J Tissue Eng Regen Med 2019; 13(12): 2191–2203
https://doi.org/10.1002/term.2983
pmid: 31670903
|
185 |
Y Zhang, D Frimberger, EY Cheng, HK Lin, BP Kropp. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 2006; 98(5): 1100–1105
https://doi.org/10.1111/j.1464-410X.2006.06447.x
pmid: 17034611
|
186 |
BP Kropp, BL Eppley, CD Prevel, MK Rippy, RC Harruff, SF Badylak, MC Adams, RC Rink, MA Keating. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 1995; 46(3): 396–400
https://doi.org/10.1016/S0090-4295(99)80227-1
pmid: 7660517
|
187 |
XZ Zhang, YL Jiang, JG Hu, LM Zhao, QZ Chen, Y Liang, Y Zhang, XX Lei, R Wang, Y Lei, QY Zhang, J Li-Ling, HQ Xie. Procyanidins-crosslinked small intestine submucosa: a bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6(6): 1827–1838
https://doi.org/10.1016/j.bioactmat.2020.11.023
pmid: 33336114
|
188 |
BP Kropp, JK Ludlow, D Spicer, MK Rippy, SF Badylak, MC Adams, MA Keating, RC Rink, R Birhle, KB Thor. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998; 52(1): 138–142
https://doi.org/10.1016/S0090-4295(98)00114-9
pmid: 9671888
|
189 |
NF Davis, A Callanan, BB McGuire, HD Flood, TM McGloughlin. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology 2011; 77(4): 1007.e1–1007.e7
https://doi.org/10.1016/j.urology.2010.11.036
pmid: 21256541
|
190 |
HP Janke, PKJD de Jonge, WFJ Feitz, E Oosterwijk. Reconstruction strategies of the ureter and urinary diversion using tissue engineering approaches. Tissue Eng Part B Rev 2019; 25(3): 237–248
https://doi.org/10.1089/ten.teb.2018.0345
pmid: 30794111
|
191 |
J Adamowicz, SV Van Breda, T Kloskowski, K Juszczak, M Pokrywczynska, T Drewa. Constructing artificial urinary conduits: current capabilities and future potential. Expert Rev Med Devices 2019; 16(2): 135–144
https://doi.org/10.1080/17434440.2019.1562901
pmid: 30588868
|
192 |
G Totonelli, P Maghsoudlou, M Garriboli, J Riegler, G Orlando, AJ Burns, NJ Sebire, VV Smith, JM Fishman, M Ghionzoli, M Turmaine, MA Birchall, A Atala, S Soker, MF Lythgoe, A Seifalian, A Pierro, S Eaton, P De Coppi. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 2012; 33(12): 3401–3410
https://doi.org/10.1016/j.biomaterials.2012.01.012
pmid: 22305104
|
193 |
AS Arunkalaivanan, JW Barrington. Randomized trial of porcine dermal sling (Pelvicol implant) vs. tension-free vaginal tape (TVT) in the surgical treatment of stress incontinence: a questionnaire-based study. Int Urogynecol J Pelvic Floor Dysfunct 2003; 14(1): 17–23
https://doi.org/10.1007/s00192-002-1000-9
pmid: 12601511
|
194 |
B Andrée, A Bär, A Haverich, A Hilfiker. Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng Part B Rev 2013; 19(4): 279–291
https://doi.org/10.1089/ten.teb.2012.0583
pmid: 23216258
|
195 |
RA Roeder, GC Lantz, LA Geddes. Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts—a preliminary report. Biomed Instrum Technol 2001; 35(2): 110–120
pmid: 11383308
|
196 |
HC Ott, TS Matthiesen, SK Goh, LD Black, SM Kren, TI Netoff, DA Taylor. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2): 213–221
https://doi.org/10.1038/nm1684
pmid: 18193059
|
197 |
RP Mecham. Overview of extracellular matrix. Current Protocols in Cell Biology 2012; Chapter 10: Unit 10.11
|
198 |
N Plunkett, FJ O'Brien. Bioreactors in tissue engineering. Technol Health Care 2011; 19(1): 55–69
https://doi.org/10.3233/THC-2011-0605
pmid: 21248413
|
199 |
ME Scarritt, NC Pashos, BA Bunnell. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 2015; 3: 43
https://doi.org/10.3389/fbioe.2015.00043
pmid: 25870857
|
200 |
GA Nari, C Mariana, C Romina, R Laura, J Gustavo, T Ricardo, NA Salvatierra. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers. Rev Esp Enferm Dig 2013; 105(3): 138–143
https://doi.org/10.4321/s1130-01082013000300004
pmid: 23735020
|
201 |
PM Baptista, MM Siddiqui, G Lozier, SR Rodriguez, A Atala, S Soker. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53(2): 604–617
https://doi.org/10.1002/hep.24067
pmid: 21274881
|
202 |
Y Wang, CB Cui, M Yamauchi, P Miguez, M Roach, R Malavarca, MJ Costello, V Cardinale, E Wauthier, C Barbier, DA Gerber, D Alvaro, LM Reid. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 2011; 53(1): 293–305
https://doi.org/10.1002/hep.24012
pmid: 21254177
|
203 |
A Soto-Gutierrez, L Zhang, C Medberry, K Fukumitsu, D Faulk, H Jiang, J Reing, R Gramignoli, J Komori, M Ross, M Nagaya, E Lagasse, D Stolz, SC Strom, IJ Fox, SF Badylak. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011; 17(6): 677–686
https://doi.org/10.1089/ten.tec.2010.0698
pmid: 21375407
|
204 |
G Mazza, K Rombouts, A Rennie Hall, L Urbani, T Vinh Luong, W Al-Akkad, L Longato, D Brown, P Maghsoudlou, AP Dhillon, B Fuller, B Davidson, K Moore, D Dhar, P De Coppi, M Malago, M Pinzani. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 2015; 5(1): 13079
https://doi.org/10.1038/srep13079
pmid: 26248878
|
205 |
MMA Verstegen, J Willemse, S van den Hoek, GJ Kremers, TM Luider, NA van Huizen, FEJA Willemssen, HJ Metselaar, JNM IJzermans, LJW van der Laan, J de Jonge. Decellularization of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds. Stem Cells Dev 2017; 26(18): 1304–1315
https://doi.org/10.1089/scd.2017.0095
pmid: 28665233
|
206 |
JJ Song, SS Kim, Z Liu, JC Madsen, DJ Mathisen, JP Vacanti, HC Ott. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg 2011; 92(3): 998–1006
https://doi.org/10.1016/j.athoracsur.2011.05.018
pmid: 21871290
|
207 |
TH Petersen, EA Calle, MB Colehour, LE Niklason. Bioreactor for the long-term culture of lung tissue. Cell Transplant 2011; 20(7): 1117–1126
https://doi.org/10.3727/096368910X544933
pmid: 21092411
|
208 |
H Zhou, K Kitano, X Ren, TK Rajab, M Wu, SE Gilpin, T Wu, L Baugh, LD Black, DJ Mathisen, HC Ott. Bioengineering human lung grafts on porcine matrix. Ann Surg 2018; 267(3): 590–598
https://doi.org/10.1097/SLA.0000000000002129
pmid: 28085694
|
209 |
JP Zambon, IK Ko, M Abolbashari, J Huling, C Clouse, TH Kim, C Smith, A Atala, JJ Yoo. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater 2018; 75: 226–234
https://doi.org/10.1016/j.actbio.2018.06.004
pmid: 29883813
|
210 |
JJ Song, JP Guyette, SE Gilpin, G Gonzalez, JP Vacanti, HC Ott. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 2013; 19(5): 646–651
https://doi.org/10.1038/nm.3154
pmid: 23584091
|
211 |
C Mandrycky, K Phong, Y Zheng. Tissue engineering toward organ-specific regeneration and disease modeling. MRS Commun 2017; 7(3): 332–347
https://doi.org/10.1557/mrc.2017.58
pmid: 29750131
|
212 |
K Tsuji, A Bandyopadhyay, BD Harfe, K Cox, S Kakar, L Gerstenfeld, T Einhorn, CJ Tabin, V Rosen. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006; 38(12): 1424–1429
https://doi.org/10.1038/ng1916
pmid: 17099713
|
213 |
K Tsuji, K Cox, A Bandyopadhyay, BD Harfe, CJ Tabin, V Rosen. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am 2008; 90(Suppl 1): 14–18
https://doi.org/10.2106/JBJS.G.01109
pmid: 18292351
|
214 |
K Tsuji, K Cox, L Gamer, D Graf, A Economides, V. RosenConditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res 2010; 28(3): 384–389
https://doi.org/10.1002/jor.20996
pmid: 19780203
|
215 |
S Minear, P Leucht, J Jiang, B Liu, A Zeng, C Fuerer, R Nusse, JA Helms. Wnt proteins promote bone regeneration. Sci Transl Med 2010; 2(29): 29ra30
https://doi.org/10.1126/scitranslmed.3000231
pmid: 20427820
|
216 |
S Kakar, TA Einhorn, S Vora, LJ Miara, G Hon, NA Wigner, D Toben, KA Jacobsen, MO Al-Sebaei, M Song, PC Trackman, EF Morgan, LC Gerstenfeld, GL Barnes. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 2007; 22(12): 1903–1912
https://doi.org/10.1359/jbmr.070724
pmid: 17680724
|
217 |
Z Saidak, C Le Henaff, S Azzi, C Marty, S Da Nascimento, P Sonnet, PJ Marie. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem 2015; 290(11): 6903–6912
https://doi.org/10.1074/jbc.M114.621219
pmid: 25631051
|
218 |
F Zhu, MT Sweetwyne, KD Hankenson. PKCδ is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells 2013; 31(6): 1181–1192
https://doi.org/10.1002/stem.1353
pmid: 23404789
|
219 |
MI Dishowitz, F Zhu, HG Sundararaghavan, JL Ifkovits, JA Burdick, KD Hankenson. Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 2014; 102(5): 1558–1567
https://doi.org/10.1002/jbm.a.34825
pmid: 23775982
|
220 |
Y Tian, Y Xu, T Xue, L Chen, B Shi, B Shu, C Xie, M Max Morandi, T Jaeblon, JV Marymont, Y Dong. Notch activation enhances mesenchymal stem cell sheet osteogenic potential by inhibition of cellular senescence. Cell Death Dis 2017; 8(2): e2595
https://doi.org/10.1038/cddis.2017.2
pmid: 28151468
|
221 |
TF Day, X Guo, L Garrett-Beal, Y Yang. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8(5): 739–750
https://doi.org/10.1016/j.devcel.2005.03.016
pmid: 15866164
|
222 |
JH Ryu, SJ Kim, SH Kim, CD Oh, SG Hwang, CH Chun, SH Oh, JK Seong, TL Huh, JS Chun. Regulation of the chondrocyte phenotype by beta-catenin. Development 2002; 129(23): 5541–5550
https://doi.org/10.1242/dev.00110
pmid: 12403723
|
223 |
Y Chaly, HC Blair, SM Smith, DS Bushnell, AD Marinov, BT Campfield, R Hirsch. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Ann Rheum Dis 2015; 74(7): 1467–1473
https://doi.org/10.1136/annrheumdis-2013-204822
pmid: 24641944
|
224 |
L Delhon, C Mahaut, N Goudin, E Gaudas, K Piquand, W Le Goff, V Cormier-Daire, C Le Goff. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency. FASEB J 2019; 33(2): 2707–2718
https://doi.org/10.1096/fj.201800753RR
pmid: 30303737
|
225 |
J Fischer, N Knoch, T Sims, N Rosshirt, W Richter. Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis. J Cell Physiol 2018; 233(11): 8962–8970
https://doi.org/10.1002/jcp.26832
pmid: 29856487
|
226 |
MK Murphy, DJ Huey, JC Hu, KA Athanasiou. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 2015; 33(3): 762–773
https://doi.org/10.1002/stem.1890
pmid: 25377511
|
227 |
NJ Kovermann, V Basoli, E Della Bella, M Alini, C Lischer, H Schmal, EJ Kubosch, MJ Stoddart. BMP2 and TGF-β cooperate differently during synovial-derived stem-cell chondrogenesis in a dexamethasone-dependent manner. Cells 2019; 8(6): 636
https://doi.org/10.3390/cells8060636
pmid: 31242641
|
228 |
UI Chung, E Schipani, AP McMahon, HM Kronenberg. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001; 107(3): 295–304
https://doi.org/10.1172/JCI11706
pmid: 11160153
|
229 |
L Chen, G Liu, W Li, X Wu. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells following transfection with Indian hedgehog and sonic hedgehog using a rotary cell culture system. Cell Mol Biol Lett 2019; 24(1): 16
https://doi.org/10.1186/s11658-019-0144-2
pmid: 30858866
|
230 |
A Parisi, F Lacour, L Giordani, S Colnot, P Maire, F Le Grand. APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. J Cell Biol 2015; 210(5): 717–726
https://doi.org/10.1083/jcb.201501053
pmid: 26304725
|
231 |
K Zhang, Y Zhang, L Gu, M Lan, C Liu, M Wang, Y Su, M Ge, T Wang, Y Yu, C Liu, L Li, Q Li, Y Zhao, Z Yu, F Wang, N Li, Q Meng. Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nat Commun 2018; 9(1): 5129
https://doi.org/10.1038/s41467-018-07638-4
pmid: 30510196
|
232 |
A Rochat, A Fernandez, M Vandromme, JP Molès, T Bouschet, G Carnac, NJ Lamb. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 2004; 15(10): 4544–4555
https://doi.org/10.1091/mbc.e03-11-0816
pmid: 15282335
|
233 |
MB Baghdadi, D Castel, L Machado, SI Fukada, DE Birk, F Relaix, S Tajbakhsh, P Mourikis. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 2018; 557(7707): 714–718
https://doi.org/10.1038/s41586-018-0144-9
pmid: 29795344
|
234 |
A Pisconti, DD Cornelison, HC Olguín, TL Antwine, BB Olwin. Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 2010; 190(3): 427–441
https://doi.org/10.1083/jcb.201003081
pmid: 20696709
|
235 |
AA Pollen, A Bhaduri, MG Andrews, TJ Nowakowski, OS Meyerson, MA Mostajo-Radji, E Di Lullo, B Alvarado, M Bedolli, ML Dougherty, IT Fiddes, ZN Kronenberg, J Shuga, AA Leyrat, JA West, M Bershteyn, CB Lowe, BJ Pavlovic, SR Salama, D Haussler, EE Eichler, AR Kriegstein. Establishing cerebral organoids as models of human-specific brain evolution. Cell 2019; 176(4): 743–756.e17
https://doi.org/10.1016/j.cell.2019.01.017
pmid: 30735633
|
236 |
IT Fiddes, GA Lodewijk, M Mooring, CM Bosworth, AD Ewing, GL Mantalas, AM Novak, A van den Bout, A Bishara, JL Rosenkrantz, R Lorig-Roach, AR Field, M Haeussler, L Russo, A Bhaduri, TJ Nowakowski, AA Pollen, ML Dougherty, X Nuttle, MC Addor, S Zwolinski, S Katzman, A Kriegstein, EE Eichler, SR Salama, FMJ Jacobs, D Haussler. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 2018; 173(6): 1356–1369.e22
https://doi.org/10.1016/j.cell.2018.03.051
pmid: 29856954
|
237 |
J Andersen, O Revah, Y Miura, N Thom, ND Amin, KW Kelley, M Singh, X Chen, MV Thete, EM Walczak, H Vogel, HC Fan, SP Paşca. Generation of functional human 3D cortico-motor assembloids. Cell 2020;183(7):1913–1929.e1926
https://doi.org/DOI: 10.1016/j.cell.2020.11.017
|
238 |
M Gouti, A Tsakiridis, FJ Wymeersch, Y Huang, J Kleinjung, V Wilson, J Briscoe. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 2014; 12(8): e1001937
https://doi.org/10.1371/journal.pbio.1001937
pmid: 25157815
|
239 |
P Rivetti di Val Cervo, RA Romanov, G Spigolon, D Masini, E Martín-Montañez, EM Toledo, G La Manno, M Feyder, C Pifl, YH Ng, SP Sánchez, S Linnarsson, M Wernig, T Harkany, G Fisone, E Arenas. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol 2017; 35(5): 444–452
https://doi.org/10.1038/nbt.3835
pmid: 28398344
|
240 |
JJ Ma, X Ju, RJ Xu, WH Wang, ZP Luo, CM Liu, L Yang, B Li, JQ Chen, B Meng, HL Yang, FQ Zhou, . SaijilafuTelomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc. J Neurosci 2019; 39(46): 9107–9118
https://doi.org/10.1523/JNEUROSCI.0419-19.2019
pmid: 31597725
|
241 |
RJ Mills, DM Titmarsh, X Koenig, BL Parker, JG Ryall, GA Quaife-Ryan, HK Voges, MP Hodson, C Ferguson, L Drowley, AT Plowright, EJ Needham, QD Wang, P Gregorevic, M Xin, WG Thomas, RG Parton, LK Nielsen, BS Launikonis, DE James, DA Elliott, ER Porrello, JE Hudson. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA 2017; 114(40): E8372–E8381
https://doi.org/10.1073/pnas.1707316114
pmid: 28916735
|
242 |
DM Titmarsh, NR Glass, RJ Mills, A Hidalgo, EJ Wolvetang, ER Porrello, JE Hudson, JJ Cooper-White. Induction of human iPSC-derived cardiomyocyte proliferation revealed by combinatorial screening in high density microbioreactor arrays. Sci Rep 2016; 6(1): 24637
https://doi.org/10.1038/srep24637
pmid: 27097795
|
243 |
L Drakhlis, S Biswanath, CM Farr, V Lupanow, J Teske, K Ritzenhoff, A Franke, F Manstein, E Bolesani, H Kempf, S Liebscher, K Schenke-Layland, J Hegermann, L Nolte, H Meyer, J de la Roche, S Thiemann, C Wahl-Schott, U Martin, R Zweigerdt. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 2021; 39(6): 737–746
https://doi.org/10.1038/s41587-021-00815-9
pmid: 33558697
|
244 |
K Kodo, SG Ong, F Jahanbani, V Termglinchan, K Hirono, K InanlooRahatloo, AD Ebert, P Shukla, OJ Abilez, JM Churko, I Karakikes, G Jung, F Ichida, SM Wu, MP Snyder, D Bernstein, JC Wu. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016; 18(10): 1031–1042
https://doi.org/10.1038/ncb3411
pmid: 27642787
|
245 |
TMA Mohamed, YS Ang, E Radzinsky, P Zhou, Y Huang, A Elfenbein, A Foley, S Magnitsky, D Srivastava. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 2018; 173(1): 104–116.e12
https://doi.org/10.1016/j.cell.2018.02.014
pmid: 29502971
|
246 |
AA Mikryukov, A Mazine, B Wei, D Yang, Y Miao, M Gu, GM Keller. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell 2021; 28(1): 96–111.e7
https://doi.org/10.1016/j.stem.2020.10.003
pmid: 33142114
|
247 |
RA Wimmer, A Leopoldi, M Aichinger, N Wick, B Hantusch, M Novatchkova, J Taubenschmid, M Hämmerle, C Esk, JA Bagley, D Lindenhofer, G Chen, M Boehm, CA Agu, F Yang, B Fu, J Zuber, JA Knoblich, D Kerjaschki, JM Penninger. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019; 565(7740): 505–510
https://doi.org/10.1038/s41586-018-0858-8
pmid: 30651639
|
248 |
RA Wimmer, A Leopoldi, M Aichinger, D Kerjaschki, JM Penninger. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 2019; 14(11): 3082–3100
https://doi.org/10.1038/s41596-019-0213-z
pmid: 31554955
|
249 |
N Barker, M Huch, P Kujala, M van de Wetering, HJ Snippert, JH van Es, T Sato, DE Stange, H Begthel, M van den Born, E Danenberg, S van den Brink, J Korving, A Abo, PJ Peters, N Wright, R Poulsom, H Clevers. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010; 6(1): 25–36
https://doi.org/10.1016/j.stem.2009.11.013
pmid: 20085740
|
250 |
M Sigal, CY Logan, M Kapalczynska, HJ Mollenkopf, H Berger, B Wiedenmann, R Nusse, MR Amieva, TF Meyer. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 2017; 548(7668): 451–455
https://doi.org/10.1038/nature23642
pmid: 28813421
|
251 |
KS Yan, CY Janda, J Chang, GXY Zheng, KA Larkin, VC Luca, LA Chia, AT Mah, A Han, JM Terry, A Ootani, K Roelf, M Lee, J Yuan, X Li, CR Bolen, J Wilhelmy, PS Davies, H Ueno, RJ von Furstenberg, P Belgrader, SB Ziraldo, H Ordonez, SJ Henning, MH Wong, MP Snyder, IL Weissman, AJ Hsueh, TS Mikkelsen, KC Garcia, CJ Kuo. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 2017; 545(7653): 238–242
https://doi.org/10.1038/nature22313
pmid: 28467820
|
252 |
KA Kim, M Kakitani, J Zhao, T Oshima, T Tang, M Binnerts, Y Liu, B Boyle, E Park, P Emtage, WD Funk, K Tomizuka. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 2005; 309(5738): 1256–1259
https://doi.org/10.1126/science.1112521
pmid: 16109882
|
253 |
J Schuijers, JP Junker, M Mokry, P Hatzis, BK Koo, V Sasselli, LG van der Flier, E Cuppen, A van Oudenaarden, H Clevers. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 2015; 16(2): 158–170
https://doi.org/10.1016/j.stem.2014.12.006
pmid: 25620640
|
254 |
X Yin, HF Farin, JH van Es, H Clevers, R Langer, JM Karp. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 2014; 11(1): 106–112
https://doi.org/10.1038/nmeth.2737
pmid: 24292484
|
255 |
D Serra, U Mayr, A Boni, I Lukonin, M Rempfler, L Challet Meylan, MB Stadler, P Strnad, P Papasaikas, D Vischi, A Waldt, G Roma, P Liberali. Self-organization and symmetry breaking in intestinal organoid development. Nature 2019; 569(7754): 66–72
https://doi.org/10.1038/s41586-019-1146-y
pmid: 31019299
|
256 |
M Huch, C Dorrell, SF Boj, JH van Es, VS Li, M van de Wetering, T Sato, K Hamer, N Sasaki, MJ Finegold, A Haft, RG Vries, M Grompe, H Clevers. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013; 494(7436): 247–250
https://doi.org/10.1038/nature11826
pmid: 23354049
|
257 |
Y Lin, ZP Fang, HJ Liu, LJ Wang, Z Cheng, N Tang, T Li, T Liu, HX Han, G Cao, L Liang, YQ Ding, WJ Zhou. HGF/R-spondin1 rescues liver dysfunction through the induction of Lgr5+ liver stem cells. Nat Commun 2017; 8(1): 1175
https://doi.org/10.1038/s41467-017-01341-6
pmid: 29079780
|
258 |
B Ochoa, WK Syn, I Delgado, GF Karaca, Y Jung, J Wang, AM Zubiaga, O Fresnedo, A Omenetti, M Zdanowicz, SS Choi, AM Diehl. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 2010; 51(5): 1712–1723
https://doi.org/10.1002/hep.23525
pmid: 20432255
|
259 |
M Langiewicz, R Graf, B Humar, PA Clavien. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol 2018; 69(3): 666–675
https://doi.org/10.1016/j.jhep.2018.04.017
pmid: 29709677
|
260 |
N Barker, MB Rookmaaker, P Kujala, A Ng, M Leushacke, H Snippert, M van de Wetering, S Tan, JH Van Es, M Huch, R Poulsom, MC Verhaar, PJ Peters, H Clevers. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep 2012; 2(3): 540–552
https://doi.org/10.1016/j.celrep.2012.08.018
pmid: 22999937
|
261 |
JH Low, P Li, EGY Chew, B Zhou, K Suzuki, T Zhang, MM Lian, M Liu, E Aizawa, C Rodriguez Esteban, KSM Yong, Q Chen, JM Campistol, M Fang, CC Khor, JN Foo, JC Izpisua Belmonte, Y Xia. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 2019; 25(3): 373–387.e9
https://doi.org/10.1016/j.stem.2019.06.009
pmid: 31303547
|
262 |
H Wu, K Uchimura, EL Donnelly, Y Kirita, SA Morris, BD Humphreys. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 2018; 23(6): 869–881.e8
https://doi.org/10.1016/j.stem.2018.10.010
pmid: 30449713
|
263 |
TA Forbes, SE Howden, K Lawlor, B Phipson, J Maksimovic, L Hale, S Wilson, C Quinlan, G Ho, K Holman, B Bennetts, J Crawford, P Trnka, A Oshlack, C Patel, A Mallett, C Simons, MH Little. Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am J Hum Genet 2018; 102(5): 816–831
https://doi.org/10.1016/j.ajhg.2018.03.014
pmid: 29706353
|
264 |
K Shin, J Lee, N Guo, J Kim, A Lim, L Qu, IU Mysorekar, PA Beachy. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 2011; 472(7341): 110–114
https://doi.org/10.1038/nature09851
pmid: 21389986
|
265 |
E Kim, S Choi, B Kang, J Kong, Y Kim, WH Yoon, HR Lee, S Kim, HM Kim, H Lee, C Yang, YJ Lee, M Kang, TY Roh, S Jung, S Kim, JH Ku, K Shin. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 2020; 588(7839): 664–669
https://doi.org/10.1038/s41586-020-3034-x
pmid: 33328632
|
266 |
CP Santos, E Lapi, J Martínez de Villarreal, L Álvaro-Espinosa, A Fernández-Barral, A Barbáchano, O Domínguez, AM Laughney, D Megías, A Muñoz, FX Real. Urothelial organoids originating from Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 2019; 10(1): 4407
https://doi.org/10.1038/s41467-019-12307-1
pmid: 31562298
|
267 |
M Kessler, K Hoffmann, V Brinkmann, O Thieck, S Jackisch, B Toelle, H Berger, HJ Mollenkopf, M Mangler, J Sehouli, C Fotopoulou, TF Meyer. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 2015; 6(1): 8989
https://doi.org/10.1038/ncomms9989
pmid: 26643275
|
268 |
Y Xie, ES Park, D Xiang, Z Li. Long-term organoid culture reveals enrichment of organoid-forming epithelial cells in the fimbrial portion of mouse fallopian tube. Stem Cell Res (Amst) 2018; 32: 51–60
https://doi.org/10.1016/j.scr.2018.08.021
pmid: 30176443
|
269 |
M Boretto, N Maenhoudt, X Luo, A Hennes, B Boeckx, B Bui, R Heremans, L Perneel, H Kobayashi, I Van Zundert, H Brems, B Cox, M Ferrante, H Uji-I, KP Koh, T D’Hooghe, A Vanhie, I Vergote, C Meuleman, C Tomassetti, D Lambrechts, J Vriens, D Timmerman, H Vankelecom. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 2019; 21(8): 1041–1051
https://doi.org/10.1038/s41556-019-0360-z
pmid: 31371824
|
270 |
M Boretto, B Cox, M Noben, N Hendriks, A Fassbender, H Roose, F Amant, D Timmerman, C Tomassetti, A Vanhie, C Meuleman, M Ferrante, H Vankelecom. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144(10): 1775–1786
https://doi.org/10.1242/dev.148478
pmid: 28442471
|
271 |
A Ali, SM Syed, MFB Jamaluddin, Y Colino-Sanguino, D Gallego-Ortega, PS Tanwar. Cell lineage tracing identifies hormone-regulated and Wnt-responsive vaginal epithelial stem cells. Cell Rep 2020; 30(5): 1463–1477.e7
https://doi.org/10.1016/j.celrep.2020.01.003
pmid: 32023462
|
272 |
B Zhang, X Ci, R Tao, JJ Ni, X Xuan, JL King, S Xia, Y Li, HF Frierson, DK Lee, J Xu, AO Osunkoya, JT Dong. Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat Commun 2020; 11(1): 997
https://doi.org/10.1038/s41467-020-14737-8
pmid: 32081850
|
273 |
Y Wang, A Yu, FX Yu. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8(5): 349–359
https://doi.org/10.1007/s13238-017-0371-0
pmid: 28130761
|
274 |
IM Moya, G Halder. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20(4): 211–226
https://doi.org/10.1038/s41580-018-0086-y
pmid: 30546055
|
275 |
I Lian, J Kim, H Okazawa, J Zhao, B Zhao, J Yu, A Chinnaiyan, MA Israel, LS Goldstein, R Abujarour, S Ding, KL Guan. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 2010; 24(11): 1106–1118
https://doi.org/10.1101/gad.1903310
pmid: 20516196
|
276 |
H Qin, K Blaschke, G Wei, Y Ohi, L Blouin, Z Qi, J Yu, RF Yeh, M Hebrok, M Ramalho-Santos. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 2012; 21(9): 2054–2067
https://doi.org/10.1093/hmg/dds023
pmid: 22286172
|
277 |
H Qin, M Hejna, Y Liu, M Percharde, M Wossidlo, L Blouin, J Durruthy-Durruthy, P Wong, Z Qi, J Yu, LS Qi, V Sebastiano, JS Song, M Ramalho-Santos. YAP induces human naive pluripotency. Cell Rep 2016; 14(10): 2301–2312
https://doi.org/10.1016/j.celrep.2016.02.036
pmid: 26947063
|
278 |
BC Heng, X Zhang, D Aubel, Y Bai, X Li, Y Wei, M Fussenegger, X Deng. Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front Cell Dev Biol 2020; 8: 735
https://doi.org/10.3389/fcell.2020.00735
pmid: 32850847
|
279 |
AW Hong, Z Meng, KL Guan. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol 2016; 13(6): 324–337
https://doi.org/10.1038/nrgastro.2016.59
pmid: 27147489
|
280 |
JH Driskill, D Pan. The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol 2021; 16(1): 299–322
https://doi.org/10.1146/annurev-pathol-030420-105050
pmid: 33234023
|
281 |
A Elbediwy, ZI Vincent-Mistiaen, B Spencer-Dene, RK Stone, S Boeing, SK Wculek, J Cordero, EH Tan, R Ridgway, VG Brunton, E Sahai, H Gerhardt, A Behrens, I Malanchi, OJ Sansom, BJ Thompson. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143(10): 1674–1687
pmid: 26989177
|
282 |
J Wang, S Liu, T Heallen, JF Martin. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 2018; 15(11): 672–684
https://doi.org/10.1038/s41569-018-0063-3
pmid: 30111784
|
283 |
X He, L Zhang, LF Queme, X Liu, A Lu, RR Waclaw, X Dong, W Zhou, G Kidd, SO Yoon, A Buonanno, JB Rubin, M Xin, KA Nave, BD Trapp, MP Jankowski, QR Lu. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 2018; 24(3): 338–351
https://doi.org/10.1038/nm.4483
pmid: 29431744
|
284 |
F Zanconato, M Cordenonsi, S Piccolo. YAP/TAZ at the roots of cancer. Cancer Cell 2016; 29(6): 783–803
https://doi.org/10.1016/j.ccell.2016.05.005
pmid: 27300434
|
285 |
JR Erickson, K Echeverri. Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev Biol 2018; 433(2): 144–154
https://doi.org/10.1016/j.ydbio.2017.09.025
pmid: 29179946
|
286 |
IN Taha, A Naba. Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63(3): 417–432
https://doi.org/10.1042/EBC20190001
pmid: 31462529
|
287 |
JJ Doyle, EE Gerber, HC Dietz. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 2012; 586(14): 2003–2015
https://doi.org/10.1016/j.febslet.2012.05.027
pmid: 22641039
|
288 |
AJ Argyropoulos, P Robichaud, RM Balimunkwe, GJ Fisher, C Hammerberg, Y Yan, T Quan. Alterations of dermal connective tissue collagen in diabetes: molecular basis of aged-appearing skin. PLoS One 2016; 11(4): e0153806
https://doi.org/10.1371/journal.pone.0153806
pmid: 27104752
|
289 |
S Vigneswari, JM Chai, KH Kamarudin, AA Amirul, ML Focarete, S Ramakrishna. Elucidating the surface functionality of biomimetic RGD peptides immobilized on nano-P(3HB-co-4HB) for H9c2 myoblast cell proliferation. Front Bioeng Biotechnol 2020; 8: 567693
https://doi.org/10.3389/fbioe.2020.567693
pmid: 33195129
|
290 |
E Masaeli, MH Nasr-Esfahani. An in vivo evaluation of induced chondrogenesis by decellularized extracellular matrix particles. J Biomed Mater Res A 2021; 109(5): 627–636
https://doi.org/10.1002/jbm.a.37047
pmid: 32608181
|
291 |
YH Yen, CM Pu, CW Liu, YC Chen, YC Chen, CJ Liang, JH Hsieh, HF Huang, YL Chen. Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J 2018; 15(4): 605–617
https://doi.org/10.1111/iwj.12904
pmid: 29659146
|
292 |
MB Fisher, R Liang, HJ Jung, KE Kim, G Zamarra, AJ Almarza, PJ McMahon, SL Woo. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc 2012; 20(7): 1357–1365
https://doi.org/10.1007/s00167-011-1800-x
pmid: 22143425
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|