Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2021, Vol. 15 Issue (6) : 783-804    https://doi.org/10.1007/s11684-021-0904-z
REVIEW
CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies
Jianqing Mi1, Jie Xu1,2, Jianfeng Zhou3, Weili Zhao1, Zhu Chen1, J. Joseph Melenhorst2(), Saijuan Chen1()
1. State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, National Research Centre for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
3. Immunotherapy Research Centre for Hematologic Diseases of Hubei Province, Department of Haematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(866 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current standard of care in hematological malignancies has brought considerable clinical benefits to patients. However, important bottlenecks still limit optimal achievements following a current medical practice. The genetic complexity of the diseases and the heterogeneity of tumor clones cause difficulty in ensuring long-term efficacy of conventional treatments for most hematological disorders. Consequently, new treatment strategies are necessary to improve clinical outcomes. Chimeric antigen receptor T-cell (CAR T) immunotherapy opens a new path for targeted therapy of hematological malignancies. In this review, through a representative case study, we summarize the current experience of CAR T-cell therapy, the management of common side effects, the causative mechanisms of therapy resistance, and new strategies to improve the efficacy of CAR T-cell therapy.

Keywords CAR T cells      hematological malignancies      review     
Corresponding Author(s): J. Joseph Melenhorst,Saijuan Chen   
Just Accepted Date: 29 November 2021   Online First Date: 13 December 2021    Issue Date: 27 December 2021
 Cite this article:   
Jianqing Mi,Jie Xu,Jianfeng Zhou, et al. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies[J]. Front. Med., 2021, 15(6): 783-804.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-021-0904-z
https://academic.hep.com.cn/fmd/EN/Y2021/V15/I6/783
Study Disease Number of cases infused Dose Lymphodepletion MRD-CR for ALL or CR for CLL Relapse rate CD19-relapse rate Proceeding to allo-HSCTn Median follow-up (months) High-grade/severe CRS High-grade/severe neurotoxicity Reference and NCT number
University of Pennsylvania and Children’s Hospital of Philadelphia B-ALL 30 (0.76–20.6)×106 cells/kg Flu/Cy 79% 26% 43% 3 7 27% NR [4]
Cy/VP (22/28) (7/27) (3/7) (8/30) NCT01626495
CVAD-B NCT01029366
CVAD-A
Cy
Etoposide/cytarabine
Clofarabine
ELIANA trial B-ALL 75 (0.2–5.4)×106 cells/kg Flu/Cy 81% 36% 68% 8 13.1 47% 13% [5]
Etoposide/cytarabine (61/75) (22/61) (15/22) (35/75) (10/75) NCT02435849
Memorial Sloan Kettering Cancer Center B-ALL 53 (1–3)×106 cells/kg Flu/Cy 67% 61% 16% 17 29 26% 42% [6]
Cy (32/48) (25/41) (4/25) (14/53) (22/53) NCT01044069
National Cancer Institute B-ALL 51 DL1: 1 × 105/kg Low dose Flu/Cy 55% 29% 63% 21 18.7 14% 6% [7]
DL2: 3 × 106/kg FLAG (28/51) (8/28) (5/8) (7/51) (3/51) NCT01593696
Ifosfamide/etoposide
High dose Flu/Cy
Fred Hutchinson Cancer Research Center B-ALL 53 DL1: 0.2 × 106/kg Cy/etoposide 85% 49% 27% 18 30.9 19% 23% [8]
DL2: 2 × 106/kg Cy (45/53) (22/45) (6/22) (10/53) (12/53) NCT01865617
Cy/Flu
Seattle Children’s Hospital B-ALL 43 DL1: 0.5 × 105/kg Flu/Cy 93% 45% 39% 11 9.6 23% 21% [9]
DL2: 1 × 106/kg Cy (40/43) (18/40) (7/18) (10/43) (9/43) NCT02028455
DL3: 5 × 105/kg Cy/Etoposide
DL4: 10 × 106/kg
University of Pennsylvania CLL 14 (0.14-11) × 108 Bendamustine 29% 0% 0% 0 19 43% 7% [10]
Pentostatin/Cy (4/14) (6/14) (1/14) NCT01029366
Flu/Cy
Fred Hutchinson Cancer Research Center CLL 24 DL1: 2 × 105/kg Flu/Cy 17% NR NR NR NR 8% 25% [11]
DL2: 2 × 106/kg Cy (4/24) (2/24) (6/24) NCT01865617
DL3: 2 × 107/kg Flu        
Tab.1  Major clinical trials of CAR T-cell therapy for relapsed/refractory B-ALL and CLL
  ZUMA-1 JULIET TRANSCEND NHL001 ZUMA-2
Product Axicabtagene ciloleucel (Yescarta) Tisagenlecleucel Lisocabtagene maraleucel Brexucabtagene autoleucel
(KTE-C19) (CTL019) (JCAR017) (KTE-X19)
Costimulatory CD28 4-1BB 4-1BB CD28
NCT number NCT02348216 NCT02445248 NCT02631044 NCT02601313
Reference [12] [13] [14] [15]
Number of cases infused 108 111 269 74
Disease Cohort 1: DLBCL DLBCL, tFL DLBCL NOS, HGBCL, tFL, transformed iNHL, PMBCL MCL
Cohort 2: PMBCL, tFL
Lymphodepletion Flu/Cy Flu/Cy Flu/Cy Flu/Cy
Bendamustine
Dose of infused 2×106 cells/kg (0.1–6)×108 cells DL1: 0.5×108 cells 2×106 cells/kg
DL2: 1×108 cells
DL3: 1.5×108 cells
CD4:CD8 Not specified Not specified 1:1 Not specified
Number of complete response (evaluable cases) 59 (101) 37 (93) 136 (256) 40 (60)
Median follow-up (month) 27.1 14 12 12.3
High-grade/severe CRS 11% 22% 2% 15%
High-grade/severe neurotoxicity 32% 12% 10% 31%
Tab.2  Outstanding clinical trials of anti-CD19 CAR T-cell therapy for B cell NHL
Manufacturer NCI UPenn MSKCC MSKCC Legend Legend Legend Poseida Therapeutics Bluebird Bio IASO Biotherapeutics CARsgen Therapeutics
Study site(NCT number) NCI [16](NCT02215967) UPenn [17](NCT02546167) MSKCC [18](NCT03070327) MSKCC [19](NCT03430011) XJTU [20](NCT03090659) Multi-sites in China [21](NCT03090659, ChiCTRONH-17012285) Multi-sites in the US [22](NCT03548207) Multi-sites in the US [23] (NCT03288493) Multi-sites in the US [24] (NCT03361748) HZUST [25] (ChiCTR1800018137) Multi-sites in China [26] (NCT03716856, NCT03302403, NCT03380039)
Ag-binding domain (species) scFv (murine) scFv (human) scFv (human) scFv (human) Bispecific variable fragments of heavy-chain Ab (lama) Bispecific variable fragments of heavy-chain Ab (lama) Bispecific variable fragments of heavy-chain Ab (lama) CentyrinTM (human) scFv (murine) scFv (human) scFv (human)
Suicide gene None None EGFRt None None None None Peptide activated by Rimiducid None None None
Lymphodepletion Flu/Cy None or Cy Cy or Flu/Cy Flu/Cy Cy Cy or Flu/Cy Flu/Cy Flu/Cy Flu/Cy Flu/Cy Flu/Cy
BCMA expression required Yes No Yes No Yes Yes No No No Yes Yes
No. of evaluable patients 16 25 11 44 57 17 97 34 128 18 24
No. of prior therapies 10 7 6 6 3 5 6 7 6 4 5
High-risk cytogenetics 40% 96% 82% NA NA 38% NA NA 35% 39% NA
CAR T dose 9×106/kg (10–500)×106 (72–818)×106 (300–600)×106 (0.07–2.1)×106/kg (0.21–1.52)×106/kg (0.5–1.0)×106/kg (0.75–15)×106/kg (150–450)×106 (1.0–6.0)×106/kg (50–180)×106
ORR 81% 48% 64% 91% 88% 88% 95% 57% 73% 100% 88%
≥CR 13% 8% NA 39% 68% 76% 56% NA 33% 72% 79%
Tab.3  Clinical trials of anti-BCMA CAR T-cell therapy for MM
Fig.1  Graphic illustrations depict the underlying mechanisms of CAR T-cell therapy resistance. From the immune effector perspective, T-cell quality is a key determinant of CAR T-cell cytotoxicity. A number of cases failed in receiving infusion or favorable outcome because of impaired T lymphocyte, which is attributable to T-cell exhaustion or CAR immunogenicity. In tumor setting, the interplay of cellular and non-cellular substances in tumor microenvironment is considered as a barrier in solid tumor CAR T-cell treatment. The variability of tumor antigen expression in cancer cell equally causes difficulties in CAR T-cell recognition and targeting.
Fig.2  Structural improvements in newly developed CARs. These innovations aim to guide CAR to target to different tumor antigens simultaneously or successively, thereby getting over the obstacles of antigen escape and targeting failure.
Study site Disease Targets Construct of CAR No. of cases infused Dose Best response (CR) Relapse Median follow-up (month) Severe CRS Severe neurotoxicity Reference and registered number
Department of Molecular Biology and Immunology, Chinese PLA General Hospital B-ALL CD19/CD22 Tandem construct 6 (1.7–3) × 106/kg 6/6 6/6 NA 0 0 [133]
1 CD19neg/CD22dim NCT03185494
Beijing Boren Hospital ALL CD19/CD22 Separate constructs by sequential infusions 20 CD19-CAR T: (3.3–42.8) × 105/kg 20/20 15% 18 5% 5% [136]
CD22-CAR T: (0.25–47.4)×105/kg 3/20 (2 CD19 neg, 1 CD22 dim) 1/20 1/20 ChiCTR-OIB-17013670
Tongji Hospital, Huazhong University of Science and Technology B-ALL CD19/CD22 Separate constructs by sequential infusions B-ALL 51 CD19-CAR T: (2.6±1.5) × 106/kg in B-ALL; (5.1±2.1)×106/kg in NHL ALL CR: 48/50 ALL 24 relapsed (23 CD19+CD22+?relapsed, 1 CD19/CD22dim relapsed) 16.7 22.4% 1.12% [134]
NHL NHL 38 CD22-CAR T: (2.7±1.2)×106/kg in B-ALL; (5.3±2.4)×106/kg in NHL NHL CR: 18/36 NHL NA 14.4 ChiCTR-OPN-16008526
Bone Marrow Transplantation Department Great Ormond Street Hospital B-ALL CD19/CD22 Bicistronic construct 10 Dose 1: 3x106/kg? 7/10 3/10 8 0 0 [137]
Dose 2: 5x106/kg 1 CD19neg/CD22dim NCT03289455
Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee NHL CD19/CD20 Tandem construct 22 2.5x106/kg 14/22 NA NA 0 0 [138]
NCT03019055
Department of Molecular Biology and Immunology Chinese PLA General Hospital NHL CD19/CD20 Tandem construct 31 (0.5–8)×106/kg 20/28 4 relapsed 1 with antigen loss 19.1 4/28 0 [139]
NCT03097770
Department of Hematology, the Affiliated Hospital of Xuzhou Medical University MM CD19/BCMA Separate constructs by simultaneous infusions 21 CD19‐CAR T (1×106 cells /kg) 9 sCR, 3 CR/21 1/21 5.97 1/21 0 [135]
BCMA‐CAR T (1×106cells/kg) ChiCTR-OIC-17011272
Union Hospital, Tongji Medical College, Huazhong University of Science and Technology MM BCMA/CD38 Tandem construct 16 0.5, 1.0, 2.0, 3.0 and 4.0×106 cells/kg 8 sCR/16 NA NA 0 0 [140]
ChiCTR1800018143
Tab.4  Major clinical trials of dual-targeting CAR T in hematological B-cell malignancies
Fig.3  Current strategies of improving CAR T-cell practical application. From CAR construct optimization to clinical management on adverse events, CAR T-cell immunotherapy is rapidly being advanced to make it more available and accessible to lymphoid hematological malignancies. CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; HLH, hemophagocytic lymphohisticytosis; TLS, tumor lysis syndrome.
1 AD Waldman, JM Fritz, MJ Lenardo. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20(11): 651–668
https://doi.org/10.1038/s41577-020-0306-5 pmid: 32433532
2 C Cuesta-Mateos, A Alcaraz-Serna, B Somovilla-Crespo, C Muñoz-Calleja. Monoclonal antibody therapies for hematological malignancies: not just lineage-specific targets. Front Immunol 2018; 8: 1936
https://doi.org/10.3389/fimmu.2017.01936 pmid: 29387053
3 CH June, RS O’Connor, OU Kawalekar, S Ghassemi, MC Milone. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361–1365
https://doi.org/10.1126/science.aar6711 pmid: 29567707
4 SL Maude, N Frey, PA Shaw, R Aplenc, DM Barrett, NJ Bunin, A Chew, VE Gonzalez, Z Zheng, SF Lacey, YD Mahnke, JJ Melenhorst, SR Rheingold, A Shen, DT Teachey, BL Levine, CH June, DL Porter, SA Grupp. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507–1517
https://doi.org/10.1056/NEJMoa1407222 pmid: 25317870
5 SL Maude, TW Laetsch, J Buechner, S Rives, M Boyer, H Bittencourt, P Bader, MR Verneris, HE Stefanski, GD Myers, M Qayed, B De Moerloose, H Hiramatsu, K Schlis, KL Davis, PL Martin, ER Nemecek, GA Yanik, C Peters, A Baruchel, N Boissel, F Mechinaud, A Balduzzi, J Krueger, CH June, BL Levine, P Wood, T Taran, M Leung, KT Mueller, Y Zhang, K Sen, D Lebwohl, MA Pulsipher, SA Grupp. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439–448
https://doi.org/10.1056/NEJMoa1709866 pmid: 29385370
6 JH Park, I Rivière, M Gonen, X Wang, B Sénéchal, KJ Curran, C Sauter, Y Wang, B Santomasso, E Mead, M Roshal, P Maslak, M Davila, RJ Brentjens, M Sadelain. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449–459
https://doi.org/10.1056/NEJMoa1709919 pmid: 29385376
7 DW Lee III, M Stetler-Stevenson, CM Yuan, NN Shah, C Delbrook, B Yates, H Zhang, L Zhang, JN Kochenderfer, SA Rosenberg, TJ Fry, D Stroncek, CL Mackall. Long-term outcomes following CD19 CAR T cell therapy for B-ALL are superior in patients receiving a fludarabine/cyclophosphamide preparative regimen and post-CAR hematopoietic stem cell transplantation. Blood 2016; 128(22): 218
https://doi.org/10.1182/blood.V128.22.218.218
8 KA Hay, J Gauthier, AV Hirayama, JM Voutsinas, Q Wu, D Li, TA Gooley, S Cherian, X Chen, BS Pender, RM Hawkins, A Vakil, RN Steinmetz, G Schoch, AG Chapuis, BG Till, HP Kiem, JD Ramos, M Shadman, RD Cassaday, UH Acharya, SR Riddell, DG Maloney, CJ Turtle. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood 2019; 133(15): 1652–1663
https://doi.org/10.1182/blood-2018-11-883710 pmid: 30728140
9 RA Gardner, O Finney, C Annesley, H Brakke, C Summers, K Leger, M Bleakley, C Brown, S Mgebroff, KS Kelly-Spratt, V Hoglund, C Lindgren, AP Oron, D Li, SR Riddell, JR Park, MC Jensen. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017; 129(25): 3322–3331
https://doi.org/10.1182/blood-2017-02-769208 pmid: 28408462
10 DL Porter, WT Hwang, NV Frey, SF Lacey, PA Shaw, AW Loren, A Bagg, KT Marcucci, A Shen, V Gonzalez, D Ambrose, SA Grupp, A Chew, Z Zheng, MC Milone, BL Levine, JJ Melenhorst, CH June. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015; 7(303): 303ra139
https://doi.org/10.1126/scitranslmed.aac5415 pmid: 26333935
11 CJ Turtle, KA Hay, LA Hanafi, D Li, S Cherian, X Chen, B Wood, A Lozanski, JC Byrd, S Heimfeld, SR Riddell, DG Maloney. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 2017; 35(26): 3010–3020
https://doi.org/10.1200/JCO.2017.72.8519 pmid: 28715249
12 FL Locke, A Ghobadi, CA Jacobson, DB Miklos, LJ Lekakis, OO Oluwole, Y Lin, I Braunschweig, BT Hill, JM Timmerman, A Deol, PM Reagan, P Stiff, IW Flinn, U Farooq, A Goy, PA McSweeney, J Munoz, T Siddiqi, JC Chavez, AF Herrera, NL Bartlett, JS Wiezorek, L Navale, A Xue, Y Jiang, A Bot, JM Rossi, JJ Kim, WY Go, SS Neelapu. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019; 20(1): 31–42
https://doi.org/10.1016/S1470-2045(18)30864-7 pmid: 30518502
13 SJ Schuster, MR Bishop, CS Tam, EK Waller, P Borchmann, JP McGuirk, U Jäger, S Jaglowski, C Andreadis, JR Westin, I Fleury, V Bachanova, SR Foley, PJ Ho, S Mielke, JM Magenau, H Holte, S Pantano, LB Pacaud, R Awasthi, J Chu, Ö Anak, G Salles, RT; JULIET Investigators. Maziarz Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380(1): 45–56
https://doi.org/10.1056/NEJMoa1804980 pmid: 30501490
14 JS Abramson, ML Palomba, LI Gordon, MA Lunning, M Wang, J Arnason, A Mehta, E Purev, DG Maloney, C Andreadis, A Sehgal, SR Solomon, N Ghosh, TM Albertson, J Garcia, A Kostic, M Mallaney, K Ogasawara, K Newhall, Y Kim, D Li, T Siddiqi. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020; 396(10254): 839–852
https://doi.org/10.1016/S0140-6736(20)31366-0 pmid: 32888407
15 M Wang, J Munoz, A Goy, FL Locke, CA Jacobson, BT Hill, JM Timmerman, H Holmes, S Jaglowski, IW Flinn, PA McSweeney, DB Miklos, JM Pagel, MJ Kersten, N Milpied, H Fung, MS Topp, R Houot, A Beitinjaneh, W Peng, L Zheng, JM Rossi, RK Jain, AV Rao, PM Reagan. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020; 382(14): 1331–1342
https://doi.org/10.1056/NEJMoa1914347 pmid: 32242358
16 JN Brudno, I Maric, SD Hartman, JJ Rose, M Wang, N Lam, M Stetler-Stevenson, D Salem, C Yuan, S Pavletic, JA Kanakry, SA Ali, L Mikkilineni, SA Feldman, DF Stroncek, BG Hansen, J Lawrence, R Patel, F Hakim, RE Gress, JN Kochenderfer. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 2018; 36(22): 2267–2280
https://doi.org/10.1200/JCO.2018.77.8084 pmid: 29812997
17 AD Cohen, AL Garfall, EA Stadtmauer, JJ Melenhorst, SF Lacey, E Lancaster, DT Vogl, BM Weiss, K Dengel, A Nelson, G Plesa, F Chen, MM Davis, WT Hwang, RM Young, JL Brogdon, R Isaacs, I Pruteanu-Malinici, DL Siegel, BL Levine, CH June, MC Milone. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019; 129(6): 2210–2221
https://doi.org/10.1172/JCI126397 pmid: 30896447
18 S Mailankody, A Ghosh, M Staehr, TJ Purdon, M Roshal, E Halton, C Diamonte, J Pineda, P Anant, Y Bernal, A Wills, N Korde, N Lendvai, AM Lesokhin, H Hassoun, M Hultcrantz, HJ Landau, GL Shah, M Scordo, DJ Chung, OB Lahoud, P Khattar, C Fernandez de Larrea, Q Gao, A Jungbluth, JH Park, KJ Curran, CS Sauter, ML Palomba, B Senechal, X Wang, A Dogan, S Giralt, I Riviere, O Landgren, RJ Brentjens, EL Smith. Clinical responses and pharmacokinetics of MCARH171, a human-derived BCMA targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase I clinical trial. Blood 2018; 132(Supplement 1): 959
https://doi.org/10.1182/blood-2018-99-119717
19 S Mailankody, AJ Jakubowiak, M Htut, LJ Costa, K Lee, S Ganguly, JL Kaufman, DSDC Siegel, W Bensinger, M Cota, T Doerr, T DeVries, SWK Wong. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011). J Clin Oncol 2020; 38(15 suppl): 8504
https://doi.org/10.1200/JCO.2020.38.15_suppl.8504
20 WH Zhao, J Liu, BY Wang, YX Chen, XM Cao, Y Yang, YL Zhang, FX Wang, PY Zhang, B Lei, LF Gu, JL Wang, N Yang, R Zhang, H Zhang, Y Shen, J Bai, Y Xu, XG Wang, RL Zhang, LL Wei, ZF Li, ZZ Li, Y Geng, Q He, QC Zhuang, XH Fan, AL He, WG Zhang. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 2018; 11(1): 141
https://doi.org/10.1186/s13045-018-0681-6 pmid: 30572922
21 J Xu, LJ Chen, SS Yang, Y Sun, W Wu, YF Liu, J Xu, Y Zhuang, W Zhang, XQ Weng, J Wu, Y Wang, J Wang, H Yan, WB Xu, H Jiang, J Du, XY Ding, B Li, JM Li, WJ Fu, J Zhu, L Zhu, Z Chen, XF Fan, J Hou, JY Li, JQ Mi, SJ Chen. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA 2019; 116(19): 9543–9551
https://doi.org/10.1073/pnas.1819745116 pmid: 30988175
22 D Madduri, JG Berdeja, SZ Usmani, A Jakubowiak, M Agha, AD Cohen, AK Stewart, P Hari, M Htut, E O’Donnell, NC Munshi, DE Avigan, A Deol, AM Lesokhin, I Singh, E Zudaire, TM Yeh, AJ Allred, Y Olyslager, A Banerjee, JD Goldberg, JM Schecter, CC Jackson, W Deraedt, SH Zhuang, JR Infante, D Geng, X Wu, MJ Carrasco, M Akram, F Hossain, S Rizvi, F Fan, S Jagannath, Y Lin, T Martin III. CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in relapsed/refractory multiple myeloma. Blood 2020; 136(Supplement 1): 22–25
https://doi.org/10.1182/blood-2020-136307
23 CL Costello, AD Cohen, KK Patel, SS Ali, JG Berdeja, N Shah, S Ganguly, MH Kocoglu, M Abedi, EM Ostertag, CE Martin, M Ghoddussi, DJ Shedlock, J McCaigue, H Namini, S Yalamanchili, MA Spear, TK Gregory. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME) with novel therapeutic strategies. Blood 2020; 136(Supplement 1): 29–30
https://doi.org/10.1182/blood-2020-142695
24 NC Munshi, LD Anderson Jr, N Shah, D Madduri, J Berdeja, S Lonial, N Raje, Y Lin, D Siegel, A Oriol, P Moreau, I Yakoub-Agha, M Delforge, M Cavo, H Einsele, H Goldschmidt, K Weisel, A Rambaldi, D Reece, F Petrocca, M Massaro, JN Connarn, S Kaiser, P Patel, L Huang, TB Campbell, K Hege, J San-Miguel. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021; 384(8): 705–716
https://doi.org/10.1056/NEJMoa2024850 pmid: 33626253
25 D Wang, J Wang, G Hu, W Wang, Y Xiao, H Cai, L Jiang, L Meng, Y Yang, X Zhou, Z Hong, Z Yao, M Xiao, L Chen, X Mao, L Zhu, J Wang, L Qiu, C Li, J Zhou. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma. Blood 2021; 137(21): 2890–2901
https://doi.org/10.1182/blood.2020008936 pmid: 33512480
26 S Hao, J Jin, S Jiang, Z Li, W Zhang, M Yang, K Yu, W Wang, L Chen, H Meng, M He, J Xiao, R Tao, X Huang, C Xing, D Yuan, J Wan, S Wang, L Dai, H Ma. Two-year follow-up of investigator-initiated phase 1 trials of the safety and efficacy of fully human anti-BCMA CAR T cells (CT053) in relapsed/refractory multiple myeloma. Blood 2020; 136(Supplement 1): 27–28
https://doi.org/10.1182/blood-2020-140156
27 TJ Fry, NN Shah, RJ Orentas, M Stetler-Stevenson, CM Yuan, S Ramakrishna, P Wolters, S Martin, C Delbrook, B Yates, H Shalabi, TJ Fountaine, JF Shern, RG Majzner, DF Stroncek, M Sabatino, Y Feng, DS Dimitrov, L Zhang, S Nguyen, H Qin, B Dropulic, DW Lee, CL Mackall. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24(1): 20–28
https://doi.org/10.1038/nm.4441 pmid: 29155426
28 JH Baird, MJ Frank, J Craig, S Patel, JY Spiegel, B Sahaf, JS Oak, SF Younes, MG Ozawa, E Yang, Y Natkunam, J Tamaresis, Z Ehlinger, WD Reynolds, S Arai, L Johnston, R Lowsky, E Meyer, RS Negrin, AR Rezvani, P Shiraz, S Sidana, WK Weng, KL Davis, S Ramakrishna, L Schultz, C Mullins, A Jacob, I Kirsch, SA Feldman, CL Mackall, DB Miklos, L Muffly. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood 2021; 137(17): 2321–2325
https://doi.org/10.1182/blood.2020009432 pmid: 33512414
29 WY Zhang, Y Wang, YL Guo, HR Dai, QM Yang, YJ Zhang, Y Zhang, MX Chen, CM Wang, KC Feng, SX Li, Y Liu, FX Shi, C Luo, WD Han. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report. Signal Transduct Target Ther 2016; 1(1): 16002
https://doi.org/10.1038/sigtrans.2016.2 pmid: 29263894
30 CA Ramos, NS Grover, AW Beaven, PD Lulla, MF Wu, A Ivanova, T Wang, TC Shea, CM Rooney, C Dittus, SI Park, AP Gee, PW Eldridge, KL McKay, B Mehta, CJ Cheng, FB Buchanan, BJ Grilley, K Morrison, MK Brenner, JS Serody, G Dotti, HE Heslop, B Savoldo. Anti-CD30 CAR-T cell therapy in relapsed and refractory Hodgkin lymphoma. J Clin Oncol 2020; 38(32): 3794–3804
https://doi.org/10.1200/JCO.20.01342 pmid: 32701411
31 CA Ramos, B Savoldo, V Torrano, B Ballard, H Zhang, O Dakhova, E Liu, G Carrum, RT Kamble, AP Gee, Z Mei, MF Wu, H Liu, B Grilley, CM Rooney, MK Brenner, HE Heslop, G Dotti. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Invest 2016; 126(7): 2588–2596
https://doi.org/10.1172/JCI86000 pmid: 27270177
32 EL Smith, K Harrington, M Staehr, R Masakayan, J Jones, TJ Long, KY Ng, M Ghoddusi, TJ Purdon, X Wang, T Do, MT Pham, JM Brown, CF De Larrea, E Olson, E Peguero, P Wang, H Liu, Y Xu, SC Garrett-Thomson, SC Almo, HG Wendel, I Riviere, C Liu, B Sather, RJ Brentjens. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med 2019; 11(485): eaau7746
https://doi.org/10.1126/scitranslmed.aau7746 pmid: 30918115
33 T Gogishvili, S Danhof, S Prommersberger, J Rydzek, M Schreder, C Brede, H Einsele, M Hudecek. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood 2017; 130(26): 2838–2847
https://doi.org/10.1182/blood-2017-04-778423 pmid: 29089311
34 N Hosen, Y Matsunaga, K Hasegawa, H Matsuno, Y Nakamura, M Makita, K Watanabe, M Yoshida, K Satoh, S Morimoto, F Fujiki, H Nakajima, J Nakata, S Nishida, A Tsuboi, Y Oka, M Manabe, H Ichihara, Y Aoyama, A Mugitani, T Nakao, M Hino, R Uchibori, K Ozawa, Y Baba, S Terakura, N Wada, E Morii, J Nishimura, K Takeda, Y Oji, H Sugiyama, J Takagi, A Kumanogoh. The activated conformation of integrin β7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nat Med 2017; 23(12): 1436–1443
https://doi.org/10.1038/nm.4431 pmid: 29106400
35 Y Akatsuka. TCR-like CAR-T cells targeting MHC-bound minor histocompatibility antigens. Front Immunol 2020; 11: 257
https://doi.org/10.3389/fimmu.2020.00257 pmid: 32184779
36 MV Maus, J Plotkin, G Jakka, G Stewart-Jones, I Rivière, T Merghoub, J Wolchok, C Renner, M Sadelain. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol Ther Oncolytics 2017; 3: 1–9
pmid: 29675462
37 L Gattinoni, SE Finkelstein, CA Klebanoff, PA Antony, DC Palmer, PJ Spiess, LN Hwang, Z Yu, C Wrzesinski, DM Heimann, CD Surh, SA Rosenberg, NP Restifo. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202(7): 907–912
https://doi.org/10.1084/jem.20050732 pmid: 16203864
38 DC Fajgenbaum, CH June. Cytokine storm. N Engl J Med 2020; 383(23): 2255–2273
https://doi.org/10.1056/NEJMra2026131 pmid: 33264547
39 JN Brudno, JN Kochenderfer. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 2019; 34: 45–55
https://doi.org/10.1016/j.blre.2018.11.002 pmid: 30528964
40 CK Chou, CJ Turtle. Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T cell immunotherapy. Bone Marrow Transplant 2019; 54: 780–784
https://doi.org/10.1038/s41409-019-0602-5 pmid: 31431714
41 DW Lee, BD Santomasso, FL Locke, A Ghobadi, CJ Turtle, JN Brudno, MV Maus, JH Park, E Mead, S Pavletic, WY Go, L Eldjerou, RA Gardner, N Frey, KJ Curran, K Peggs, M Pasquini, JF DiPersio, MRM van den Brink, KV Komanduri, SA Grupp, SS Neelapu. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019; 25(4): 625–638
https://doi.org/10.1016/j.bbmt.2018.12.758 pmid: 30592986
42 JA Thompson, BJ Schneider, J Brahmer, S Andrews, P Armand, S Bhatia, LE Budde, L Costa, M Davies, D Dunnington, MS Ernstoff, M Frigault, BH Kaffenberger, M Lunning, S McGettigan, J McPherson, NA Mohindra, J Naidoo, AJ Olszanski, O Oluwole, SP Patel, N Pennell, S Reddy, M Ryder, B Santomasso, S Shofer, JA Sosman, Y Wang, RM Weight, A Johnson-Chilla, G Zuccarino-Catania, A Engh. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020. J Natl Compr Canc Netw 2020; 18(3): 230–241
https://doi.org/10.6004/jnccn.2020.0012 pmid: 32135517
43 L Zhang, S Wang, J Xu, R Zhang, H Zhu, Y Wu, L Zhu, J Li, L Chen. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp Hematol Oncol 2021; 10(1): 16
https://doi.org/10.1186/s40164-021-00209-2 pmid: 33608054
44 M Norelli, B Camisa, G Barbiera, L Falcone, A Purevdorj, M Genua, F Sanvito, M Ponzoni, C Doglioni, P Cristofori, C Traversari, C Bordignon, F Ciceri, R Ostuni, C Bonini, M Casucci, A Bondanza. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018; 24(6): 739–748
https://doi.org/10.1038/s41591-018-0036-4 pmid: 29808007
45 RM Sterner, R Sakemura, MJ Cox, N Yang, RH Khadka, CL Forsman, MJ Hansen, F Jin, K Ayasoufi, M Hefazi, KJ Schick, DK Walters, O Ahmed, D Chappell, T Sahmoud, C Durrant, WK Nevala, MM Patnaik, LR Pease, KE Hedin, NE Kay, AJ Johnson, SS Kenderian. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019; 133(7): 697–709
https://doi.org/10.1182/blood-2018-10-881722 pmid: 30463995
46 BD Shah, MR Bishop, OO Oluwole, AC Logan, MR Baer, WB Donnellan, KM O’Dwyer, H Holmes, ML Arellano, A Ghobadi, JM Pagel, Y Lin, RD Cassaday, JH Park, M Abedi, JE Castro, DJ DeAngelo, AK Malone, R Mawad, GJ Schiller, JM Rossi, A Bot, T Shen, L Goyal, RK Jain, R Vezan, WG Wierda. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 2021; 138(1): 11–22
https://doi.org/10.1182/blood.2020009098 pmid: 33827116
47 KM Mahadeo, SJ Khazal, H Abdel-Azim, JC Fitzgerald, A Taraseviciute, CM Bollard, P Tewari, C Duncan, C Traube, D McCall, ME Steiner, IM Cheifetz, LE Lehmann, R Mejia, JM Slopis, R Bajwa, P Kebriaei, PL Martin, J Moffet, J McArthur, D Petropoulos, J O’Hanlon Curry, S Featherston, J Foglesong, B Shoberu, A Gulbis, ME Mireles, L Hafemeister, C Nguyen, N Kapoor, K Rezvani, SS Neelapu, EJ; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Shpall. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol 2019; 16(1): 45–63
https://doi.org/10.1038/s41571-018-0075-2 pmid: 30082906
48 KR Parker, D Migliorini, E Perkey, KE Yost, A Bhaduri, P Bagga, M Haris, NE Wilson, F Liu, K Gabunia, J Scholler, TJ Montine, VG Bhoj, R Reddy, S Mohan, I Maillard, AR Kriegstein, CH June, HY Chang, AD Posey Jr, AT Satpathy. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 2020; 183(1): 126–142.e17
https://doi.org/10.1016/j.cell.2020.08.022 pmid: 32961131
49 S Grupp. Beginning the CAR T cell therapy revolution in the US and EU. Curr Res Transl Med 2018; 66(2): 62–64
https://doi.org/10.1016/j.retram.2018.03.004 pmid: 29656949
50 KA Hay. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol 2018; 183(3): 364–374
https://doi.org/10.1111/bjh.15644 pmid: 30407609
51 MC Jensen, L Popplewell, LJ Cooper, D DiGiusto, M Kalos, JR Ostberg, SJ Forman. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 2010; 16(9): 1245–1256
https://doi.org/10.1016/j.bbmt.2010.03.014 pmid: 20304086
52 A Cordeiro, ED Bezerra, AV Hirayama, JA Hill, QV Wu, J Voutsinas, ML Sorror, CJ Turtle, DG Maloney, M Bar. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol Blood Marrow Transplant 2020; 26(1): 26–33
https://doi.org/10.1016/j.bbmt.2019.08.003 pmid: 31419568
53 SS Neelapu, S Tummala, P Kebriaei, W Wierda, C Gutierrez, FL Locke, KV Komanduri, Y Lin, N Jain, N Daver, J Westin, AM Gulbis, ME Loghin, JF de Groot, S Adkins, SE Davis, K Rezvani, P Hwu, EJ Shpall. Chimeric antigen receptor T-cell therapyassessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47–62
https://doi.org/10.1038/nrclinonc.2017.148 pmid: 28925994
54 OC Finney, HM Brakke, S Rawlings-Rhea, R Hicks, D Doolittle, M Lopez, RB Futrell, RJ Orentas, D Li, RA Gardner, MC Jensen. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest 2019; 129(5): 2123–2132
https://doi.org/10.1172/JCI125423 pmid: 30860496
55 JA Fraietta, SF Lacey, EJ Orlando, I Pruteanu-Malinici, M Gohil, S Lundh, AC Boesteanu, Y Wang, RS O’Connor, WT Hwang, E Pequignot, DE Ambrose, C Zhang, N Wilcox, F Bedoya, C Dorfmeier, F Chen, L Tian, H Parakandi, M Gupta, RM Young, FB Johnson, I Kulikovskaya, L Liu, J Xu, SH Kassim, MM Davis, BL Levine, NV Frey, DL Siegel, AC Huang, EJ Wherry, H Bitter, JL Brogdon, DL Porter, CH June, JJ Melenhorst. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018; 24(5): 563–571
https://doi.org/10.1038/s41591-018-0010-1 pmid: 29713085
56 M Wang, I Pruteanu, AD Cohen, AL Garfall, MC Milone, L Tian, VE Gonzalez, S Gill, NV Frey, DM Barrett, M Ruella, SF Lacey, J Svoboda, EA Chong, JA Fraietta, M Davis, SD Nasta, BL Levine, DL Siegel, SL Maude, SJ Schuster, EA Stadtmauer, S Grupp, DL Porter, CH June, JJ Melenhorst. Identification and validation of predictive biomarkers to CD19- and BCMA-specific CAR T-cell responses in CAR T-cell precursors. Blood 2019; 134(Supplement_1): 622
https://doi.org/10.1182/blood-2019-122513
57 M Wang, I Pruteanu, AD Cohen, AL Garfall, L Tian, SF Lacey, JA Fraietta, J Brogdon, M Davis, VE Gonzalez, BL Levine, DL Siegel, MC Milone, EA Stadtmauer, CH June, JJ Melenhorst. Response to anti-BCMA CAR T cell therapy correlates with T cell exhaustion and activation status in T cells at baseline in myeloma. Blood 2019; 134(Supplement_1): 1909
https://doi.org/10.1182/blood-2019-122396
58 N Singh, J Perazzelli, SA Grupp, DM Barrett. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med 2016; 8(320): 320ra3
https://doi.org/10.1126/scitranslmed.aad5222 pmid: 26738796
59 JC Riches, JK Davies, F McClanahan, R Fatah, S Iqbal, S Agrawal, AG Ramsay, JG Gribben. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013; 121(9): 1612–1621
https://doi.org/10.1182/blood-2012-09-457531 pmid: 23247726
60 D Brusa, S Serra, M Coscia, D Rossi, G D’Arena, L Laurenti, O Jaksic, G Fedele, G Inghirami, G Gaidano, F Malavasi, S Deaglio. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013; 98(6): 953–963
https://doi.org/10.3324/haematol.2012.077537 pmid: 23300177
61 M Palma, G Gentilcore, K Heimersson, F Mozaffari, B Näsman-Glaser, E Young, R Rosenquist, L Hansson, A Österborg, H Mellstedt. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica 2017; 102(3): 562–572
https://doi.org/10.3324/haematol.2016.151100 pmid: 27927767
62 KJ Curran, BA Seinstra, Y Nikhamin, R Yeh, Y Usachenko, DG van Leeuwen, T Purdon, HJ Pegram, RJ Brentjens. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther 2015; 23(4): 769–778
https://doi.org/10.1038/mt.2015.4 pmid: 25582824
63 MH Kershaw, JA Westwood, LL Parker, G Wang, Z Eshhar, SA Mavroukakis, DE White, JR Wunderlich, S Canevari, L Rogers-Freezer, CC Chen, JC Yang, SA Rosenberg, P Hwu. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12(20): 6106–6115
https://doi.org/10.1158/1078-0432.CCR-06-1183 pmid: 17062687
64 CH Lamers, R Willemsen, P van Elzakker, S van Steenbergen-Langeveld, M Broertjes, J Oosterwijk-Wakka, E Oosterwijk, S Sleijfer, R Debets, JW Gratama. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 2011; 117(1): 72–82
https://doi.org/10.1182/blood-2010-07-294520 pmid: 20889925
65 CJ Turtle, LA Hanafi, C Berger, M Hudecek, B Pender, E Robinson, R Hawkins, C Chaney, S Cherian, X Chen, L Soma, B Wood, D Li, S Heimfeld, SR Riddell, DG Maloney. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 2016; 8(355): 355ra116
https://doi.org/10.1126/scitranslmed.aaf8621 pmid: 27605551
66 J Cao, G Wang, H Cheng, C Wei, K Qi, W Sang, L Zhenyu, M Shi, H Li, J Qiao, B Pan, J Zhao, Q Wu, L Zeng, M Niu, G Jing, J Zheng, K Xu. Potent anti-leukemia activities of humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 2018; 93(7): 851–858
https://doi.org/10.1002/ajh.25108 pmid: 29633386
67 Y Zhao, Z Liu, X Wang, H Wu, J Zhang, J Yang, F Zhang, L Liu, J Long, P Lu, Z Chen. Treatment with humanized selective CD19CAR-T cells shows efficacy in highly treated B-ALL patients who have relapsed after receiving murine-based CD19CAR-T therapies. Clin Cancer Res 2019; 25(18): 5595–5607
https://doi.org/10.1158/1078-0432.CCR-19-0916 pmid: 31300451
68 JN Brudno, N Lam, D Vanasse, YW Shen, JJ Rose, J Rossi, A Xue, A Bot, N Scholler, L Mikkilineni, M Roschewski, R Dean, R Cachau, P Youkharibache, R Patel, B Hansen, DF Stroncek, SA Rosenberg, RE Gress, JN Kochenderfer. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med 2020; 26(2): 270–280
https://doi.org/10.1038/s41591-019-0737-3 pmid: 31959992
69 S Kumar, TE Witzig, M Timm, J Haug, L Wellik, R Fonseca, PR Greipp, SV Rajkumar. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003; 17(10): 2025–2031
https://doi.org/10.1038/sj.leu.2403084 pmid: 14513053
70 B Dankbar, T Padró, R Leo, B Feldmann, M Kropff, RM Mesters, H Serve, WE Berdel, J Kienast. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000; 95(8): 2630–2636
https://doi.org/10.1182/blood.V95.8.2630 pmid: 10753844
71 K Podar, YT Tai, FE Davies, S Lentzsch, M Sattler, T Hideshima, BK Lin, D Gupta, Y Shima, D Chauhan, C Mitsiades, N Raje, P Richardson, KC Anderson. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001; 98(2): 428–435
https://doi.org/10.1182/blood.V98.2.428 pmid: 11435313
72 D Ribatti, M Moschetta, A Vacca. Microenvironment and multiple myeloma spread. Thromb Res 2014; 133(Suppl 2): S102–S106
https://doi.org/10.1016/S0049-3848(14)50017-5 pmid: 24862128
73 A Rueda, D Olmos, L Vicioso, C Quero, E Gallego, BI Pajares-Hachero, M Mendiola, M Casanova, M Álvarez, M Provencio, E Alba. Role of vascular endothelial growth factor C in classical Hodgkin lymphoma. Leuk Lymphoma 2015; 56(5): 1286–1294
https://doi.org/10.3109/10428194.2014.952227 pmid: 25098430
74 H Huang, E Langenkamp, M Georganaki, A Loskog, PF Fuchs, LC Dieterich, J Kreuger, A Dimberg. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J 2015; 29(1): 227–238
https://doi.org/10.1096/fj.14-250985 pmid: 25361735
75 J Yang, J Yan, B Liu. Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol 2018; 9: 978
https://doi.org/10.3389/fimmu.2018.00978 pmid: 29774034
76 C Maccalli, G Parmiani, S Ferrone. Immunomodulating and immunoresistance properties of cancer-initiating cells: implications for the clinical success of immunotherapy. Immunol Invest 2017; 46(3): 221–238
https://doi.org/10.1080/08820139.2017.1280051 pmid: 28287848
77 R Roychoudhuri, RL Eil, NP Restifo. The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol 2015; 33: 101–111
https://doi.org/10.1016/j.coi.2015.02.003 pmid: 25728990
78 DI Gabrilovich, S Nagaraj. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
https://doi.org/10.1038/nri2506 pmid: 19197294
79 R Ostuni, F Kratochvill, PJ Murray, G Natoli. Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 2015; 36(4): 229–239
https://doi.org/10.1016/j.it.2015.02.004 pmid: 25770924
80 J Plaumann, M Engelhardt, MHS Awwad, H Echchannaoui, E Amman, MS Raab, J Hillengass, N Halama, B Neuber, C Müller-Tidow, H Goldschmidt, M Hundemer. IL-10 inducible CD8+ regulatory T-cells are enriched in patients with multiple myeloma and impact the generation of antigen-specific T-cells. Cancer Immunol Immunother 2018; 67(11): 1695–1707
https://doi.org/10.1007/s00262-018-2230-0 pmid: 30128739
81 T Tadmor, R Fell, A Polliack, D Attias. Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells. Hematol Oncol 2013; 31(2): 65–71
https://doi.org/10.1002/hon.2019 pmid: 22714941
82 R Kridel, L Xerri, B Gelas-Dore, K Tan, P Feugier, A Vawda, D Canioni, P Farinha, S Boussetta, AA Moccia, P Brice, EA Chavez, AH Kyle, DW Scott, AD Sanders, B Fabiani, GW Slack, AI Minchinton, C Haioun, JM Connors, LH Sehn, C Steidl, RD Gascoyne, G Salles. The prognostic impact of CD163-positive macrophages in follicular lymphoma: a study from the BC cancer agency and the lymphoma study association. Clin Cancer Res 2015; 21(15): 3428–3435
https://doi.org/10.1158/1078-0432.CCR-14-3253 pmid: 25869385
83 F Marchesi, M Cirillo, A Bianchi, M Gately, OM Olimpieri, E Cerchiara, D Renzi, A Micera, BO Balzamino, S Bonini, A Onetti Muda, G Avvisati. High density of CD68+/CD163+ tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol Oncol 2015; 33(2): 110–112
https://doi.org/10.1002/hon.2142 pmid: 24711044
84 SM Ansell, AM Lesokhin, I Borrello, A Halwani, EC Scott, M Gutierrez, SJ Schuster, MM Millenson, D Cattry, GJ Freeman, SJ Rodig, B Chapuy, AH Ligon, L Zhu, JF Grosso, SY Kim, JM Timmerman, MA Shipp, P Armand. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 2015; 372(4): 311–319
https://doi.org/10.1056/NEJMoa1411087 pmid: 25482239
85 P Armand, A Engert, A Younes, M Fanale, A Santoro, PL Zinzani, JM Timmerman, GP Collins, R Ramchandren, JB Cohen, JP De Boer, J Kuruvilla, KJ Savage, M Trneny, MA Shipp, K Kato, A Sumbul, B Farsaci, SM Ansell. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol 2018; 36(14): 1428–1439
https://doi.org/10.1200/JCO.2017.76.0793 pmid: 29584546
86 AM Lesokhin, SM Ansell, P Armand, EC Scott, A Halwani, M Gutierrez, MM Millenson, AD Cohen, SJ Schuster, D Lebovic, M Dhodapkar, D Avigan, B Chapuy, AH Ligon, GJ Freeman, SJ Rodig, D Cattry, L Zhu, JF Grosso, MB Bradley Garelik, MA Shipp, I Borrello, J Timmerman. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 2016; 34(23): 2698–2704
https://doi.org/10.1200/JCO.2015.65.9789 pmid: 27269947
87 M Kwon, CG Kim, H Lee, H Cho, Y Kim, EC Lee, SJ Choi, J Park, IH Seo, B Bogen, IC Song, DY Jo, JS Kim, SH Park, I Choi, YS Choi, EC Shin. PD-1 blockade reinvigorates bone marrow CD8+ T cells from patients with multiple myeloma in the presence of TGFβ inhibitors. Clin Cancer Res 2020; 26(7): 1644–1655
https://doi.org/10.1158/1078-0432.CCR-19-0267 pmid: 31941832
88 SZ Usmani, F Schjesvold, A Oriol, L Karlin, M Cavo, RM Rifkin, HA Yimer, R LeBlanc, N Takezako, RD McCroskey, ABM Lim, K Suzuki, H Kosugi, G Grigoriadis, I Avivi, T Facon, S Jagannath, S Lonial, RU Ghori, MZH Farooqui, P Marinello, J; San-MiguelKEYNOTE-185 Investigators. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol 2019; 6(9): e448–e458
https://doi.org/10.1016/S2352-3026(19)30109-7 pmid: 31327689
89 WH Hallett, W Jing, WR Drobyski, BD Johnson. Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant 2011; 17(8): 1133–1145
https://doi.org/10.1016/j.bbmt.2011.03.011 pmid: 21536144
90 TJ Kearl, W Jing, JA Gershan, BD Johnson. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol 2013; 190(11): 5620–5628
https://doi.org/10.4049/jimmunol.1202005 pmid: 23616570
91 J Linderoth, P Edén, M Ehinger, J Valcich, M Jerkeman, PO Bendahl, M Berglund, G Enblad, M Erlanson, G Roos, E Cavallin-Ståhl. Genes associated with the tumour microenvironment are differentially expressed in cured versus primary chemotherapy-refractory diffuse large B-cell lymphoma. Br J Haematol 2008; 141(4): 423–432
https://doi.org/10.1111/j.1365-2141.2008.07037.x pmid: 18419622
92 MA Frassanito, L Rao, M Moschetta, R Ria, L Di Marzo, A De Luisi, V Racanelli, I Catacchio, S Berardi, A Basile, E Menu, S Ruggieri, B Nico, D Ribatti, R Fumarulo, F Dammacco, K Vanderkerken, A Vacca. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 2014; 28(4): 904–916
https://doi.org/10.1038/leu.2013.254 pmid: 23995611
93 K De Veirman, L Rao, E De Bruyne, E Menu, E Van Valckenborgh, I Van Riet, MA Frassanito, L Di Marzo, A Vacca, K Vanderkerken. Cancer associated fibroblasts and tumor growth: focus on multiple myeloma. Cancers (Basel) 2014; 6(3): 1363–1381
https://doi.org/10.3390/cancers6031363 pmid: 24978438
94 LC Wang, A Lo, J Scholler, J Sun, RS Majumdar, V Kapoor, M Antzis, CE Cotner, LA Johnson, AC Durham, CC Solomides, CH June, E Puré, SM Albelda. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res 2014; 2(2): 154–166
https://doi.org/10.1158/2326-6066.CIR-13-0027 pmid: 24778279
95 EJ Orlando, X Han, C Tribouley, PA Wood, RJ Leary, M Riester, JE Levine, M Qayed, SA Grupp, M Boyer, B De Moerloose, ER Nemecek, H Bittencourt, H Hiramatsu, J Buechner, SM Davies, MR Verneris, K Nguyen, JL Brogdon, H Bitter, M Morrissey, P Pierog, S Pantano, JA Engelman, W Winckler. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 2018; 24(10): 1504–1506
https://doi.org/10.1038/s41591-018-0146-z pmid: 30275569
96 E Sotillo, DM Barrett, KL Black, A Bagashev, D Oldridge, G Wu, R Sussman, C Lanauze, M Ruella, MR Gazzara, NM Martinez, CT Harrington, EY Chung, J Perazzelli, TJ Hofmann, SL Maude, P Raman, A Barrera, S Gill, SF Lacey, JJ Melenhorst, D Allman, E Jacoby, T Fry, C Mackall, Y Barash, KW Lynch, JM Maris, SA Grupp, A Thomas-Tikhonenko. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015; 5(12): 1282–1295
https://doi.org/10.1158/2159-8290.CD-15-1020 pmid: 26516065
97 MK Samur, M Fulciniti, A Aktas Samur, AH Bazarbachi, YT Tai, R Prabhala, A Alonso, AS Sperling, T Campbell, F Petrocca, K Hege, S Kaiser, HA Loiseau, KC Anderson, NC Munshi. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun 2021; 12(1): 868
https://doi.org/10.1038/s41467-021-21177-5 pmid: 33558511
98 MC Da Vià, O Dietrich, M Truger, P Arampatzi, J Duell, A Heidemeier, X Zhou, S Danhof, S Kraus, M Chatterjee, M Meggendorfer, S Twardziok, ME Goebeler, MS Topp, M Hudecek, S Prommersberger, K Hege, S Kaiser, V Fuhr, N Weinhold, A Rosenwald, F Erhard, C Haferlach, H Einsele, KM Kortüm, AE Saliba, L Rasche. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat Med 2021; 27(4): 616–619
https://doi.org/10.1038/s41591-021-01245-5 pmid: 33619368
99 M Hamieh, A Dobrin, A Cabriolu, SJC van der Stegen, T Giavridis, J Mansilla-Soto, J Eyquem, Z Zhao, BM Whitlock, MM Miele, Z Li, KM Cunanan, M Huse, RC Hendrickson, X Wang, I Rivière, M Sadelain. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 2019; 568(7750): 112–116
https://doi.org/10.1038/s41586-019-1054-1 pmid: 30918399
100 M Ruella, J Xu, DM Barrett, JA Fraietta, TJ Reich, DE Ambrose, M Klichinsky, O Shestova, PR Patel, I Kulikovskaya, F Nazimuddin, VG Bhoj, EJ Orlando, TJ Fry, H Bitter, SL Maude, BL Levine, CL Nobles, FD Bushman, RM Young, J Scholler, SI Gill, CH June, SA Grupp, SF Lacey, JJ Melenhorst. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 2018; 24(10): 1499–1503
https://doi.org/10.1038/s41591-018-0201-9 pmid: 30275568
101 E Jacoby, SM Nguyen, TJ Fountaine, K Welp, B Gryder, H Qin, Y Yang, CD Chien, AE Seif, H Lei, YK Song, J Khan, DW Lee, CL Mackall, RA Gardner, MC Jensen, JF Shern, TJ Fry. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun 2016; 7(1): 12320
https://doi.org/10.1038/ncomms12320 pmid: 27460500
102 R Gardner, D Wu, S Cherian, M Fang, LA Hanafi, O Finney, H Smithers, MC Jensen, SR Riddell, DG Maloney, CJ Turtle. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016; 127(20): 2406–2410
https://doi.org/10.1182/blood-2015-08-665547 pmid: 26907630
103 H Chen, M Li, E Sanchez, C Soof, S Patil, K Udd, M Zhou, T Hekmati, EY Wang, EJ Tanenbaum, R Schlossberg, MA Yashar, CS Wang, GY Tang, JR Berenson. Serum BCMA may interfere with anti-BCMA-CAR-transduced T cells or other anti-BCMA antibody-based immunotherapy in multiple myeloma. Blood 2017; 130(Supplement 1): 4413
104 W Wu, Q Zhou, T Masubuchi, X Shi, H Li, X Xu, M Huang, L Meng, X He, H Zhu, S Gao, N Zhang, R Jing, J Sun, H Wang, E Hui, CC Wong, C Xu. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 2020; 182(4): 855–871.e23
https://doi.org/10.1016/j.cell.2020.07.018 pmid: 32730808
105 J Feucht, J Sun, J Eyquem, YJ Ho, Z Zhao, J Leibold, A Dobrin, A Cabriolu, M Hamieh, M Sadelain. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 2019; 25(1): 82–88
https://doi.org/10.1038/s41591-018-0290-5 pmid: 30559421
106 Y Kagoya, S Tanaka, T Guo, M Anczurowski, CH Wang, K Saso, MO Butler, MD Minden, N Hirano. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med 2018; 24(3): 352–359
https://doi.org/10.1038/nm.4478 pmid: 29400710
107 KC Pehlivan, BB Duncan, DW Lee. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory disease. Curr Hematol Malig Rep 2018; 13(5): 396–406
https://doi.org/10.1007/s11899-018-0470-x pmid: 30120708
108 T Shum, B Omer, H Tashiro, RL Kruse, DL Wagner, K Parikh, Z Yi, T Sauer, D Liu, R Parihar, P Castillo, H Liu, MK Brenner, LS Metelitsa, S Gottschalk, CM Rooney. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov 2017; 7(11): 1238–1247
https://doi.org/10.1158/2159-8290.CD-17-0538 pmid: 28830878
109 HJ Pegram, JC Lee, EG Hayman, GH Imperato, TF Tedder, M Sadelain, RJ Brentjens. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119(18): 4133–4141
https://doi.org/10.1182/blood-2011-12-400044 pmid: 22354001
110 OO Yeku, TJ Purdon, M Koneru, D Spriggs, RJ Brentjens. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 2017; 7(1): 10541
https://doi.org/10.1038/s41598-017-10940-8 pmid: 28874817
111 J Zhao, Q Lin, Y Song, D Liu. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 2018; 11(1): 132
https://doi.org/10.1186/s13045-018-0677-2 pmid: 30482221
112 K Urbanska, E Lanitis, M Poussin, RC Lynn, BP Gavin, S Kelderman, J Yu, N Scholler, DJ Powell Jr. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 2012; 72(7): 1844–1852
https://doi.org/10.1158/0008-5472.CAN-11-3890 pmid: 22315351
113 JH Cho, JJ Collins, WW Wong. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 2018; 173(6): 1426–1438.e11
https://doi.org/10.1016/j.cell.2018.03.038 pmid: 29706540
114 S Caratelli, T Sconocchia, R Arriga, A Coppola, G Lanzilli, D Lauro, A Venditti, MI Del Principe, F Buccisano, L Maurillo, S Ferrone, G Sconocchia. FCγ chimeric receptor-engineered T cells: methodology, advantages, limitations, and clinical relevance. Front Immunol 2017; 8: 457
https://doi.org/10.3389/fimmu.2017.00457 pmid: 28496440
115 Y Xu, M Zhang, CA Ramos, A Durett, E Liu, O Dakhova, H Liu, CJ Creighton, AP Gee, HE Heslop, CM Rooney, B Savoldo, G Dotti. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 2014; 123(24): 3750–3759
https://doi.org/10.1182/blood-2014-01-552174 pmid: 24782509
116 AL Garfall, EK Dancy, AD Cohen, WT Hwang, JA Fraietta, MM Davis, BL Levine, DL Siegel, EA Stadtmauer, DT Vogl, A Waxman, AP Rapoport, MC Milone, CH June, JJ Melenhorst. T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Adv 2019; 3(19): 2812–2815
https://doi.org/10.1182/bloodadvances.2019000600 pmid: 31575532
117 V Golubovskaya, L Wu. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 2016; 8(3): 36
https://doi.org/10.3390/cancers8030036 pmid: 26999211
118 W Zheng, CE O’Hear, R Alli, JH Basham, HA Abdelsamed, LE Palmer, LL Jones, B Youngblood, TL Geiger. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 2018; 32(5): 1157–1167
https://doi.org/10.1038/s41375-017-0008-6 pmid: 29479065
119 Y Kagoya, M Nakatsugawa, Y Yamashita, T Ochi, T Guo, M Anczurowski, K Saso, MO Butler, CH Arrowsmith, N Hirano. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest 2016; 126(9): 3479–3494
https://doi.org/10.1172/JCI86437 pmid: 27548527
120 JA Fraietta, CL Nobles, MA Sammons, S Lundh, SA Carty, TJ Reich, AP Cogdill, JJD Morrissette, JE DeNizio, S Reddy, Y Hwang, M Gohil, I Kulikovskaya, F Nazimuddin, M Gupta, F Chen, JK Everett, KA Alexander, E Lin-Shiao, MH Gee, X Liu, RM Young, D Ambrose, Y Wang, J Xu, MS Jordan, KT Marcucci, BL Levine, KC Garcia, Y Zhao, M Kalos, DL Porter, RM Kohli, SF Lacey, SL Berger, FD Bushman, CH June, JJ Melenhorst. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 2018; 558(7709): 307–312
https://doi.org/10.1038/s41586-018-0178-z pmid: 29849141
121 X Li, W Chen. Mechanisms of failure of chimeric antigen receptor T-cell therapy. Curr Opin Hematol 2019; 26(6): 427–433
https://doi.org/10.1097/MOH.0000000000000548 pmid: 31577606
122 RK Das, L Vernau, SA Grupp, DM Barrett. Naïve T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov 2019; 9(4): 492–499
https://doi.org/10.1158/2159-8290.CD-18-1314 pmid: 30630850
123 W Qasim, H Zhan, S Samarasinghe, S Adams, P Amrolia, S Stafford, K Butler, C Rivat, G Wright, K Somana, S Ghorashian, D Pinner, G Ahsan, K Gilmour, G Lucchini, S Inglott, W Mifsud, R Chiesa, KS Peggs, L Chan, F Farzeneh, AJ Thrasher, A Vora, M Pule, P Veys. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 2017; 9(374): eaaj2013
https://doi.org/10.1126/scitranslmed.aaj2013 pmid: 28123068
124 S Müller, T Bexte, V Gebel, F Kalensee, E Stolzenberg, J Hartmann, U Koehl, A Schambach, WS Wels, U Modlich, E Ullrich. High cytotoxic efficiency of lentivirally and alpharetrovirally engineered CD19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia. Front Immunol 2020; 10: 3123
https://doi.org/10.3389/fimmu.2019.03123 pmid: 32117200
125 E Liu, D Marin, P Banerjee, HA Macapinlac, P Thompson, R Basar, L Nassif Kerbauy, B Overman, P Thall, M Kaplan, V Nandivada, I Kaur, A Nunez Cortes, K Cao, M Daher, C Hosing, EN Cohen, P Kebriaei, R Mehta, S Neelapu, Y Nieto, M Wang, W Wierda, M Keating, R Champlin, EJ Shpall, K Rezvani. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382(6): 545–553
https://doi.org/10.1056/NEJMoa1910607 pmid: 32023374
126 K Rezvani, RH Rouce. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol 2015; 6: 578
https://doi.org/10.3389/fimmu.2015.00578 pmid: 26635792
127 Y Li, DL Hermanson, BS Moriarity, DS Kaufman. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 2018; 23(2): 181–192.e5
https://doi.org/10.1016/j.stem.2018.06.002 pmid: 30082067
128 PS Woll, B Grzywacz, X Tian, RK Marcus, DA Knorr, MR Verneris, DS Kaufman. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 2009; 113(24): 6094–6101
https://doi.org/10.1182/blood-2008-06-165225 pmid: 19365083
129 L Lee, B Draper, N Chaplin, B Philip, M Chin, D Galas-Filipowicz, S Onuoha, S Thomas, V Baldan, R Bughda, P Maciocia, E Kokalaki, MP Neves, D Patel, M Rodriguez-Justo, J Francis, K Yong, M Pule. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood 2018; 131(7): 746–758
https://doi.org/10.1182/blood-2017-05-781351 pmid: 29284597
130 Z Grada, M Hegde, T Byrd, DR Shaffer, A Ghazi, VS Brawley, A Corder, K Schönfeld, J Koch, G Dotti, HE Heslop, S Gottschalk, WS Wels, ML Baker, N Ahmed. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2013; 2: e105
https://doi.org/10.1038/mtna.2013.32 pmid: 23839099
131 M Ruella, DM Barrett, SS Kenderian, O Shestova, TJ Hofmann, J Perazzelli, M Klichinsky, V Aikawa, F Nazimuddin, M Kozlowski, J Scholler, SF Lacey, JJ Melenhorst, JJ Morrissette, DA Christian, CA Hunter, M Kalos, DL Porter, CH June, SA Grupp, S Gill. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 2016; 126(10): 3814–3826
https://doi.org/10.1172/JCI87366 pmid: 27571406
132 D Li, Y Hu, Z Jin, Y Zhai, Y Tan, Y Sun, S Zhu, C Zhao, B Chen, J Zhu, Z Chen, S Chen, J Li, H Liu. TanCAR T cells targeting CD19 and CD133 efficiently eliminate MLL leukemic cells. Leukemia 2018; 32(9): 2012–2016
https://doi.org/10.1038/s41375-018-0212-z pmid: 30046161
133 H Dai, Z Wu, H Jia, C Tong, Y Guo, D Ti, X Han, Y Liu, W Zhang, C Wang, Y Zhang, M Chen, Q Yang, Y Wang, W Han. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol 2020; 13(1): 30
https://doi.org/10.1186/s13045-020-00856-8 pmid: 32245502
134 N Wang, X Hu, W Cao, C Li, Y Xiao, Y Cao, C Gu, S Zhang, L Chen, J Cheng, G Wang, X Zhou, M Zheng, X Mao, L Jiang, D Wang, Q Wang, Y Lou, H Cai, D Yan, Y Zhang, T Zhang, J Zhou, L Huang. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood 2020; 135(1): 17–27
https://doi.org/10.1182/blood.2019000017 pmid: 31697824
135 Z Yan, J Cao, H Cheng, J Qiao, H Zhang, Y Wang, M Shi, J Lan, X Fei, L Jin, G Jing, W Sang, F Zhu, W Chen, Q Wu, Y Yao, G Wang, J Zhao, J Zheng, Z Li, K Xu. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol 2019; 6(10): e521–e529
https://doi.org/10.1016/S2352-3026(19)30115-2 pmid: 31378662
136 J Pan, S Zuo, B Deng, X Xu, C Li, Q Zheng, Z Ling, W Song, J Xu, J Duan, Z Wang, X Yu, AH Chang, X Feng, C Tong. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 2020; 135(5): 387–391
https://doi.org/10.1182/blood.2019003293 pmid: 31725148
137 PJ Amrolia, R Wynn, R Hough, A Vora, D Bonney, P Veys, K Rao, R Chiesa, M Al-Hajj, SP Cordoba, S Onuoha, E Kotsopoulou, NZ Khokhar, M Pule, VGR Peddareddigari. Simultaneous targeting of CD19 and CD22: phase I study of AUTO3, a bicistronic chimeric antigen receptor (CAR) T-cell therapy, in pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL): Amelia study. Blood 2018; 132(Supplement 1): 279
https://doi.org/10.1182/blood-2018-99-118616
138 NN Shah, BD Johnson, D Schneider, F Zhu, A Szabo, CA Keever-Taylor, W Krueger, AA Worden, MJ Kadan, S Yim, A Cunningham, M Hamadani, TS Fenske, B Dropulić, R Orentas, P Hari. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med 2020; 26(10): 1569–1575
https://doi.org/10.1038/s41591-020-1081-3 pmid: 33020647
139 C Tong, Y Zhang, Y Liu, X Ji, W Zhang, Y Guo, X Han, D Ti, H Dai, C Wang, Q Yang, W Liu, Y Wang, Z Wu, W Han. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood 2020; 136(14): 1632–1644
https://doi.org/10.1182/blood.2020005278 pmid: 32556247
140 H Mei,  C Li, H Jiang,  X Zhao,  Z Huang, D Jin, T Guo, H Kou, L Liu, L Tang,  P Yin, Z Wang, L Ai, S Ke, Y Xia, J Deng, L Chen, L Cai, C Sun, L Xia, G Hua,  Y Hu. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol  2021; 14: 161
https://doi.org/10.1186/s13045-021-01170-7 pmid: 34627333
141 E Zah, MY Lin, A Silva-Benedict, MC Jensen, YY Chen. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 2016; 4(6): 498–508
https://doi.org/10.1158/2326-6066.CIR-15-0231 pmid: 27059623
142 A Martyniszyn, AC Krahl, MC André, AA Hombach, H Abken. CD20-CD19 bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther 2017; 28(12): 1147–1157
https://doi.org/10.1089/hum.2017.126 pmid: 29207878
143 TJ Bos, E De Bruyne, S Van Lint, C Heirman, K Vanderkerken. Large double copy vectors are functional but show a size-dependent decline in transduction efficiency. J Biotechnol 2010; 150(1): 37–40
https://doi.org/10.1016/j.jbiotec.2010.07.010 pmid: 20638430
144 M Kumar, B Keller, N Makalou, RE Sutton. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 2001; 12(15): 1893–1905
https://doi.org/10.1089/104303401753153947 pmid: 11589831
145 K Fousek, J Watanabe, SK Joseph, A George, X An, TT Byrd, JS Morris, A Luong, MA Martínez-Paniagua, K Sanber, SA Navai, AZ Gad, VS Salsman, PR Mathew, HN Kim, DL Wagner, L Brunetti, A Jang, ML Baker, N Varadarajan, M Hegde, YM Kim, N Heisterkamp, H Abdel-Azim, N Ahmed. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia 2021; 35(1): 75–89
https://doi.org/10.1038/s41375-020-0792-2 pmid: 32205861
146 EK Moon, R Ranganathan, E Eruslanov, S Kim, K Newick, S O’Brien, A Lo, X Liu, Y Zhao, SM Albelda. Blockade of programmed death 1 augments the ability of human T cells engineered to target NY-ESO-1 to control tumor growth after adoptive transfer. Clin Cancer Res 2016; 22(2): 436–447
https://doi.org/10.1158/1078-0432.CCR-15-1070 pmid: 26324743
147 D Abate-Daga, K Hanada, JL Davis, JC Yang, SA Rosenberg, RA Morgan. Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood 2013; 122(8): 1399–1410
https://doi.org/10.1182/blood-2013-04-495531 pmid: 23861247
148 L Cherkassky, A Morello, J Villena-Vargas, Y Feng, DS Dimitrov, DR Jones, M Sadelain, PS Adusumilli. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016; 126(8): 3130–3144
https://doi.org/10.1172/JCI83092 pmid: 27454297
149 S Rafiq, OO Yeku, HJ Jackson, TJ Purdon, DG van Leeuwen, DJ Drakes, M Song, MM Miele, Z Li, P Wang, S Yan, J Xiang, X Ma, VE Seshan, RC Hendrickson, C Liu, RJ Brentjens. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 2018; 36(9): 847–856
https://doi.org/10.1038/nbt.4195 pmid: 30102295
150 Y Cao, W Lu, R Sun, X Jin, L Cheng, X He, L Wang, T Yuan, C Lyu, M Zhao. Anti-CD19 chimeric antigen receptor T cells in combination with nivolumab are safe and effective against relapsed/refractory B-cell non-Hodgkin lymphoma. Front Oncol 2019; 9: 767
https://doi.org/10.3389/fonc.2019.00767 pmid: 31482064
151 S Kuramitsu, M Ohno, F Ohka, S Shiina, A Yamamichi, A Kato, K Tanahashi, K Motomura, G Kondo, M Kurimoto, T Senga, T Wakabayashi, A Natsume. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses. Cancer Gene Ther 2015; 22(10): 487–495
https://doi.org/10.1038/cgt.2015.47 pmid: 26450624
152 M Works, N Soni, C Hauskins, C Sierra, A Baturevych, JC Jones, W Curtis, P Carlson, TG Johnstone, D Kugler, RJ Hause, Y Jiang, L Wimberly, CR Clouser, HK Jessup, B Sather, RA Salmon, MO Ports. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. Mol Cancer Ther 2019; 18(12): 2246–2257
https://doi.org/10.1158/1535-7163.MCT-18-1146 pmid: 31395689
153 X Wang, M Walter, R Urak, L Weng, C Huynh, L Lim, CW Wong, WC Chang, SH Thomas, JF Sanchez, L Yang, CE Brown, F Pichiorri, M Htut, AY Krishnan, SJ Forman. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin Cancer Res 2018; 24(1): 106–119
https://doi.org/10.1158/1078-0432.CCR-17-0344 pmid: 29061640
154 LE Franssen, IS Nijhof, CC Bjorklund, H Chiu, R Doorn, J van Velzen, M Emmelot, B van Kessel, MD Levin, GMJ Bos, A Broijl, SK Klein, HR Koene, AC Bloem, A Beeker, LM Faber, E van der Spek, R Raymakers, P Sonneveld, S Zweegman, HM Lokhorst, A Thakurta, X Qian, T Mutis, NWCJ van de Donk. Lenalidomide combined with low-dose cyclophosphamide and prednisone modulates Ikaros and Aiolos in lymphocytes, resulting in immunostimulatory effects in lenalidomide-refractory multiple myeloma patients. Oncotarget 2018; 9(74): 34009–34021
https://doi.org/10.18632/oncotarget.26131 pmid: 30338042
155 I Krämer, M Engelhardt, S Fichtner, B Neuber, S Medenhoff, U Bertsch, J Hillengass, MS Raab, D Hose, AD Ho, H Goldschmidt, M Hundemer. Lenalidomide enhances myeloma-specific T-cell responses in vivo and in vitro. OncoImmunology 2016; 5(5): e1139662
https://doi.org/10.1080/2162402X.2016.1139662 pmid: 27467960
156 JA Fraietta, KA Beckwith, PR Patel, M Ruella, Z Zheng, DM Barrett, SF Lacey, JJ Melenhorst, SE McGettigan, DR Cook, C Zhang, J Xu, P Do, J Hulitt, SB Kudchodkar, AP Cogdill, S Gill, DL Porter, JA Woyach, M Long, AJ Johnson, K Maddocks, N Muthusamy, BL Levine, CH June, JC Byrd, MV Maus. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 2016; 127(9): 1117–1127
https://doi.org/10.1182/blood-2015-11-679134 pmid: 26813675
157 T Gargett, W Yu, G Dotti, ES Yvon, SN Christo, JD Hayball, ID Lewis, MK Brenner, MP Brown. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol Ther 2016; 24(6): 1135–1149
https://doi.org/10.1038/mt.2016.63 pmid: 27019998
158 SA Grupp, M Kalos, D Barrett, R Aplenc, DL Porter, SR Rheingold, DT Teachey, A Chew, B Hauck, JF Wright, MC Milone, BL Levine, CH June. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368(16): 1509–1518
https://doi.org/10.1056/NEJMoa1215134 pmid: 23527958
159 K Watanabe, S Terakura, AC Martens, T van Meerten, S Uchiyama, M Imai, R Sakemura, T Goto, R Hanajiri, N Imahashi, K Shimada, A Tomita, H Kiyoi, T Nishida, T Naoe, M Murata. Target antigen density governs the efficacy of anti-CD20-CD28-CD3ζ chimeric antigen receptor-modified effector CD8+ T cells. J Immunol 2015; 194(3): 911–920
https://doi.org/10.4049/jimmunol.1402346 pmid: 25520398
160 HG Caruso, LV Hurton, A Najjar, D Rushworth, S Ang, S Olivares, T Mi, K Switzer, H Singh, H Huls, DA Lee, AB Heimberger, RE Champlin, LJ Cooper. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 2015; 75(17): 3505–3518
https://doi.org/10.1158/0008-5472.CAN-15-0139 pmid: 26330164
161 S Arcangeli, MC Rotiroti, M Bardelli, L Simonelli, CF Magnani, A Biondi, E Biagi, S Tettamanti, L Varani. Balance of anti-CD123 chimeric antigen receptor binding affinity and density for the targeting of acute myeloid leukemia. Mol Ther 2017; 25(8): 1933–1945
https://doi.org/10.1016/j.ymthe.2017.04.017 pmid: 28479045
162 K Mihara, T Yoshida, S Ishida, Y Takei, A Kitanaka, K Shimoda, K Morishita, Y Takihara, T Ichinohe. All-trans retinoic acid and interferon-α increase CD38 expression on adult T-cell leukemia cells and sensitize them to T cells bearing anti-CD38 chimeric antigen receptors. Blood Cancer J 2016; 6(5): e421
https://doi.org/10.1038/bcj.2016.30 pmid: 27176797
163 MJ Pont, T Hill, GO Cole, JJ Abbott, J Kelliher, AI Salter, M Hudecek, ML Comstock, A Rajan, BKR Patel, JM Voutsinas, Q Wu, L Liu, AJ Cowan, BL Wood, DJ Green, SR Riddell. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 2019; 134(19): 1585–1597
https://doi.org/10.1182/blood.2019000050 pmid: 31558469
164 S Ramakrishna, SL Highfill, Z Walsh, SM Nguyen, H Lei, JF Shern, H Qin, IL Kraft, M Stetler-Stevenson, CM Yuan, JD Hwang, Y Feng, Z Zhu, D Dimitrov, NN Shah, TJ Fry. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res 2019; 25(17): 5329–5341
https://doi.org/10.1158/1078-0432.CCR-18-3784 pmid: 31110075
165 WH Zhao, J Liu, BY Wang, YX Chen, XM Cao, Y Yang, YL Zhang, FX Wang, PY Zhang, B Lei, LF Gu, JL Wang, N Yang, R Zhang, H Zhang, Y Shen, J Bai, Y Xu, XG Wang, RL Zhang, LL Wei, ZF Li, ZZ Li, Y Geng, Q He, QC Zhuang, XH Fan, AL He, WG Zhang. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 2018; 11: 141
https://doi.org/10.1186/s13045-018-0681-6 pmid: 30572922
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Xiaohui Wang, Zhiqiang Wu, Wei Qiu, Ping Chen, Xiang Xu, Weidong Han. Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system[J]. Front. Med., 2020, 14(6): 726-745.
[3] Ling Wang, Ying Wang, Jiong Hu, Yuqian Sun, He Huang, Jing Chen, Jianyong Li, Jun Ma, Juan Li, Yingmin Liang, Jianmin Wang, Yan Li, Kang Yu, Jianda Hu, Jie Jin, Chun Wang, Depei Wu, Yang Xiao, Xiaojun Huang. Clinical risk score for invasive fungal diseases in patients with hematological malignancies undergoing chemotherapy: China Assessment of Antifungal Therapy in Hematological Diseases (CAESAR) study[J]. Front. Med., 2019, 13(3): 365-377.
[4] Mahmoud M. Shehata,Mokhtar R. Gomaa,Mohamed A. Ali,Ghazi Kayali. Middle East respiratory syndrome coronavirus: a comprehensive review[J]. Front. Med., 2016, 10(2): 120-136.
[5] Ting Lin, Kai Qu, Xinsen Xu, Min Tian, Jie Gao, Chun Zhang, Ying Di, Yuelang Zhang, Chang Liu. Sclerosing cholangitis in critically ill patients: an important and easily ignored problem based on a German experience[J]. Front Med, 2014, 8(1): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed