|
|
Prefrontal cortical circuits in anxiety and fear: an overview |
Yihua Chen( ), Nengyuan Hu, Jianming Yang, Tianming Gao( ) |
State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong−Hong Kong−Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China |
|
|
Abstract Pathological anxiety is among the most difficult neuropsychiatric diseases to treat pharmacologically, and it represents a major societal problem. Studies have implicated structural changes within the prefrontal cortex (PFC) and functional changes in the communication of the PFC with distal brain structures in anxiety disorders. Treatments that affect the activity of the PFC, including cognitive therapies and transcranial magnetic stimulation, reverse anxiety- and fear-associated circuit abnormalities through mechanisms that remain largely unclear. While the subjective experience of a rodent cannot be precisely determined, rodent models hold great promise in dissecting well-conserved circuits. Newly developed genetic and viral tools and optogenetic and chemogenetic techniques have revealed the intricacies of neural circuits underlying anxiety and fear by allowing direct examination of hypotheses drawn from existing psychological concepts. This review focuses on studies that have used these circuit-based approaches to gain a more detailed, more comprehensive, and more integrated view on how the PFC governs anxiety and fear and orchestrates adaptive defensive behaviors to hopefully provide a roadmap for the future development of therapies for pathological anxiety.
|
Keywords
prefrontal cortex
anxiety
fear
neural circuits
optogenetics
DREADD
|
Corresponding Author(s):
Yihua Chen,Tianming Gao
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Just Accepted Date: 20 June 2022
Online First Date: 09 August 2022
Issue Date: 02 September 2022
|
|
1 |
DW Grupe, JB Nitschke. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 2013; 14( 7): 488– 501
https://doi.org/10.1038/nrn3524
pmid: 23783199
|
2 |
M Davis, DL Walker, L Miles, C Grillon. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 2010; 35( 1): 105– 135
https://doi.org/10.1038/npp.2009.109
pmid: 19693004
|
3 |
RC Kessler, M Petukhova, NA Sampson, AM Zaslavsky, HU Wittchen. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res 2012; 21( 3): 169– 184
https://doi.org/10.1002/mpr.1359
pmid: 22865617
|
4 |
HU Wittchen, F Jacobi, J Rehm, A Gustavsson, M Svensson, B Jönsson, J Olesen, C Allgulander, J Alonso, C Faravelli, L Fratiglioni, P Jennum, R Lieb, A Maercker, Os J van, M Preisig, L Salvador-Carulla, R Simon, HC Steinhausen. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011; 21( 9): 655– 679
https://doi.org/10.1016/j.euroneuro.2011.07.018
pmid: 21896369
|
5 |
D Chisholm, K Sweeny, P Sheehan, B Rasmussen, F Smit, P Cuijpers, S Saxena. Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiatry 2016; 3( 5): 415– 424
https://doi.org/10.1016/S2215-0366(16)30024-4
pmid: 27083119
|
6 |
RC Kessler, WT Chiu, O Demler, KR Merikangas, EE Walters. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62( 6): 617– 627
https://doi.org/10.1001/archpsyc.62.6.617
pmid: 15939839
|
7 |
RC Kessler, P Berglund, O Demler, R Jin, KR Merikangas, EE Walters. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62( 6): 593– 602
https://doi.org/10.1001/archpsyc.62.6.593
pmid: 15939837
|
8 |
Y Lecrubier. Widespread underrecognition and undertreatment of anxiety and mood disorders: results from 3 European studies. J Clin Psychiatry 2007; 68(Suppl 2): 36–41
pmid: 17288506
|
9 |
B Bandelow, S Michaelis, D Wedekind. Treatment of anxiety disorders. Dialogues Clin Neurosci 2017; 19( 2): 93– 107
https://doi.org/10.31887/DCNS.2017.19.2/bbandelow
pmid: 28867934
|
10 |
B Bandelow, M Reitt, C Röver, S Michaelis, Y Görlich, D Wedekind. Efficacy of treatments for anxiety disorders: a meta-analysis. Int Clin Psychopharmacol 2015; 30( 4): 183– 192
https://doi.org/10.1097/YIC.0000000000000078
pmid: 25932596
|
11 |
AN Kaczkurkin, EB Foa. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci 2015; 17( 3): 337– 346
https://doi.org/10.31887/DCNS.2015.17.3/akaczkurkin
pmid: 26487814
|
12 |
Z Wang, SPH Whiteside, L Sim, W Farah, AS Morrow, M Alsawas, P Barrionuevo, M Tello, N Asi, B Beuschel, L Daraz, J Almasri, F Zaiem, L Larrea-Mantilla, OJ Ponce, A LeBlanc, LJ Prokop, MH Murad. Comparative effectiveness and safety of cognitive behavioral therapy and pharmacotherapy for childhood anxiety disorders: a systematic review and meta-analysis. JAMA Pediatr 2017; 171( 11): 1049– 1056
https://doi.org/10.1001/jamapediatrics.2017.3036
pmid: 28859190
|
13 |
JK Carpenter, LA Andrews, SM Witcraft, MB Powers, JAJ Smits, SG Hofmann. Cognitive behavioral therapy for anxiety and related disorders: a meta-analysis of randomized placebo-controlled trials. Depress Anxiety 2018; 35( 6): 502– 514
https://doi.org/10.1002/da.22728
pmid: 29451967
|
14 |
MM Zugliani, MC Cabo, AE Nardi, G Perna, RC Freire. Pharmacological and neuromodulatory treatments for panic disorder: clinical trials from 2010 to 2018. Psychiatry Investig 2019; 16( 1): 50– 58
https://doi.org/10.30773/pi.2018.12.21.1
pmid: 30696238
|
15 |
RC Freire, C Cabrera-Abreu, R Milev. Neurostimulation in anxiety disorders, post-traumatic stress disorder, and obsessive-compulsive disorder. Adv Exp Med Biol 2020; 1191 : 331– 346
https://doi.org/10.1007/978-981-32-9705-0_18
pmid: 32002936
|
16 |
S Deppermann, N Vennewald, J Diemer, S Sickinger, FB Haeussinger, S Notzon, I Laeger, V Arolt, AC Ehlis, P Zwanzger, AJ Fallgatter. Does rTMS alter neurocognitive functioning in patients with panic disorder/agoraphobia? An fNIRS-based investigation of prefrontal activation during a cognitive task and its modulation via sham-controlled rTMS. BioMed Res Int 2014; 2014 : 542526
https://doi.org/10.1155/2014/542526
pmid: 24757668
|
17 |
DA Clark, AT Beck. Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cogn Sci 2010; 14( 9): 418– 424
https://doi.org/10.1016/j.tics.2010.06.007
pmid: 20655801
|
18 |
DE Linden. How psychotherapy changes the brain—the contribution of functional neuroimaging. Mol Psychiatry 2006; 11( 6): 528– 538
https://doi.org/10.1038/sj.mp.4001816
pmid: 16520823
|
19 |
T Raij, A Nummenmaa, MF Marin, D Porter, S Furtak, K Setsompop, MR Milad. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biol Psychiatry 2018; 84( 2): 129– 137
https://doi.org/10.1016/j.biopsych.2017.10.022
pmid: 29246436
|
20 |
A Chocyk, I Majcher-Maślanka, D Dudys, A Przyborowska, K Wędzony. Impact of early-life stress on the medial prefrontal cortex functions—a search for the pathomechanisms of anxiety and mood disorders. Pharmacol Rep 2013; 65( 6): 1462– 1470
https://doi.org/10.1016/S1734-1140(13)71506-8
pmid: 24552993
|
21 |
B Myers-Schulz, M Koenigs. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry 2012; 17( 2): 132– 141
https://doi.org/10.1038/mp.2011.88
pmid: 21788943
|
22 |
SL Thompson-Schill, J Jonides, C Marshuetz, EE Smith, M D’Esposito, IP Kan, RT Knight, D Swick. Effects of frontal lobe damage on interference effects in working memory. Cogn Affect Behav Neurosci 2002; 2( 2): 109– 120
https://doi.org/10.3758/CABN.2.2.109
pmid: 12455679
|
23 |
JD Bremner. Traumatic stress: effects on the brain. Dialogues Clin Neurosci 2006; 8( 4): 445– 461
https://doi.org/10.31887/DCNS.2006.8.4/jbremner
pmid: 17290802
|
24 |
I Liberzon, B Martis. Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci 2006; 1071( 1): 87– 109
https://doi.org/10.1196/annals.1364.009
pmid: 16891565
|
25 |
LM Shin, SL Rauch, RK Pitman. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 2006; 1071( 1): 67– 79
https://doi.org/10.1196/annals.1364.007
pmid: 16891563
|
26 |
SE Bruce, KR Buchholz, WJ Brown, L Yan, A Durbin, YI Sheline. Altered emotional interference processing in the amygdala and insula in women with post-traumatic stress disorder. Neuroimage Clin 2013; 2 : 43– 49
https://doi.org/10.1016/j.nicl.2012.11.003
pmid: 24179757
|
27 |
L Brinkmann, C Buff, K Feldker, SV Tupak, MPI Becker, MJ Herrmann, T Straube. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder. Psychol Med 2017; 47( 15): 2675– 2688
https://doi.org/10.1017/S0033291717001192
pmid: 28485259
|
28 |
TM Ball, S Sullivan, T Flagan, CA Hitchcock, A Simmons, MP Paulus, MB Stein. Selective effects of social anxiety, anxiety sensitivity, and negative affectivity on the neural bases of emotional face processing. Neuroimage 2012; 59( 2): 1879– 1887
https://doi.org/10.1016/j.neuroimage.2011.08.074
pmid: 21920442
|
29 |
C Buff, C Schmidt, L Brinkmann, B Gathmann, S Tupak, T Straube. Directed threat imagery in generalized anxiety disorder. Psychol Med 2018; 48( 4): 617– 628
https://doi.org/10.1017/S0033291717001957
pmid: 28735579
|
30 |
I Labuschagne, KL Phan, A Wood, M Angstadt, P Chua, M Heinrichs, JC Stout, PJ Nathan. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int J Neuropsychopharmacol 2012; 15( 7): 883– 896
https://doi.org/10.1017/S1461145711001489
pmid: 21996304
|
31 |
HY Wang, XX Zhang, CP Si, Y Xu, Q Liu, HT Bian, BW Zhang, XL Li, ZR Yan. Prefrontoparietal dysfunction during emotion regulation in anxiety disorder: a meta-analysis of functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2018; 14 : 1183– 1198
https://doi.org/10.2147/NDT.S165677
pmid: 29785110
|
32 |
A Etkin, TD Wager. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007; 164( 10): 1476– 1488
https://doi.org/10.1176/appi.ajp.2007.07030504
pmid: 17898336
|
33 |
CM Sylvester, M Corbetta, ME Raichle, TL Rodebaugh, BL Schlaggar, YI Sheline, CF Zorumski, EJ Lenze. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci 2012; 35( 9): 527– 535
https://doi.org/10.1016/j.tins.2012.04.012
pmid: 22658924
|
34 |
AF Arnsten, MA Raskind, FB Taylor, DF Connor. The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol Stress 2015; 1 : 89– 99
https://doi.org/10.1016/j.ynstr.2014.10.002
pmid: 25436222
|
35 |
Z Long, C Medlock, M Dzemidzic, YW Shin, AW Goddard, U Dydak. Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44 : 131– 135
https://doi.org/10.1016/j.pnpbp.2013.01.020
pmid: 23391588
|
36 |
G Hasler, AC Nugent, PJ Carlson, RE Carson, M Geraci, WC Drevets. Altered cerebral γ-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 2008; 65( 10): 1166– 1175
https://doi.org/10.1001/archpsyc.65.10.1166
pmid: 18838633
|
37 |
MJ Herrmann, A Katzorke, Y Busch, D Gromer, T Polak, P Pauli, J Deckert. Medial prefrontal cortex stimulation accelerates therapy response of exposure therapy in acrophobia. Brain Stimul 2017; 10( 2): 291– 297
https://doi.org/10.1016/j.brs.2016.11.007
pmid: 27931887
|
38 |
M Balconi, C Ferrari. Left DLPFC rTMS stimulation reduced the anxiety bias effect or how to restore the positive memory processing in high-anxiety subjects. Psychiatry Res 2013; 209( 3): 554– 559
https://doi.org/10.1016/j.psychres.2013.03.032
pmid: 23601793
|
39 |
E Makovac, DR Watson, F Meeten, SN Garfinkel, M Cercignani, HD Critchley, C Ottaviani. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety. Soc Cogn Affect Neurosci 2016; 11( 11): 1719– 1728
https://doi.org/10.1093/scan/nsw091
pmid: 27369066
|
40 |
YH Jung, JE Shin, YI Lee, JH Jang, HJ Jo, SH Choi. Altered amygdala resting-state functional connectivity and hemispheric asymmetry in patients with social anxiety disorder. Front Psychiatry 2018; 9 : 164
https://doi.org/10.3389/fpsyt.2018.00164
pmid: 29755374
|
41 |
J Lipka, M Hoffmann, WH Miltner, T Straube. Effects of cognitive-behavioral therapy on brain responses to subliminal and supraliminal threat and their functional significance in specific phobia. Biol Psychiatry 2014; 76( 11): 869– 877
https://doi.org/10.1016/j.biopsych.2013.11.008
pmid: 24393393
|
42 |
PR Goldin, M Ziv, H Jazaieri, K Hahn, R Heimberg, JJ Gross. Impact of cognitive behavioral therapy for social anxiety disorder on the neural dynamics of cognitive reappraisal of negative self-beliefs: randomized clinical trial. JAMA Psychiatry 2013; 70( 10): 1048– 1056
https://doi.org/10.1001/jamapsychiatry.2013.234
pmid: 23945981
|
43 |
C Andreescu, LK Sheu, D Tudorascu, JJ Gross, S Walker, L Banihashemi, H Aizenstein. Emotion reactivity and regulation in late-life generalized anxiety disorder: functional connectivity at baseline and post-treatment. Am J Geriatr Psychiatry 2015; 23( 2): 200– 214
https://doi.org/10.1016/j.jagp.2014.05.003
pmid: 24996397
|
44 |
C Belzung, G Griebel. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 2001; 125( 1-2): 141– 149
https://doi.org/10.1016/S0166-4328(01)00291-1
pmid: 11682105
|
45 |
JF Cryan, A Holmes. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4( 9): 775– 790
https://doi.org/10.1038/nrd1825
pmid: 16138108
|
46 |
DJ Anderson, R Adolphs. A framework for studying emotions across species. Cell 2014; 157( 1): 187– 200
https://doi.org/10.1016/j.cell.2014.03.003
pmid: 24679535
|
47 |
S Pellow, P Chopin, SE File, M Briley. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14( 3): 149– 167
https://doi.org/10.1016/0165-0270(85)90031-7
pmid: 2864480
|
48 |
AK Kraeuter, PC Guest, Z Sarnyai. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019; 1916 : 99– 103
https://doi.org/10.1007/978-1-4939-8994-2_9
pmid: 30535687
|
49 |
C Ambrogi Lorenzini, C Bucherelli, A Giachetti. Passive and active avoidance behavior in the light-dark box test. Physiol Behav 1984; 32( 4): 687– 689
https://doi.org/10.1016/0031-9384(84)90327-5
pmid: 6484018
|
50 |
SC Dulawa, KA Holick, B Gundersen, R Hen. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004; 29( 7): 1321– 1330
https://doi.org/10.1038/sj.npp.1300433
pmid: 15085085
|
51 |
Z Merali, C Levac, H Anisman. Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol Psychiatry 2003; 54( 5): 552– 565
https://doi.org/10.1016/S0006-3223(02)01827-9
pmid: 12946884
|
52 |
C Shang, Z Liu, Z Chen, Y Shi, Q Wang, S Liu, D Li, P Cao. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 2015; 348( 6242): 1472– 1477
https://doi.org/10.1126/science.aaa8694
pmid: 26113723
|
53 |
H Yang, J Yang, W Xi, S Hao, B Luo, X He, L Zhu, H Lou, YQ Yu, F Xu, S Duan, H Wang. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat Neurosci 2016; 19( 2): 283– 289
https://doi.org/10.1038/nn.4208
pmid: 26727549
|
54 |
KM Myers, M Davis. Mechanisms of fear extinction. Mol Psychiatry 2007; 12( 2): 120– 150
https://doi.org/10.1038/sj.mp.4001939
pmid: 17160066
|
55 |
P Tovote, JP Fadok, A Lüthi. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 2015; 16( 6): 317– 331
https://doi.org/10.1038/nrn3945
pmid: 25991441
|
56 |
BM Graham, MR Milad. The study of fear extinction: implications for anxiety disorders. Am J Psychiatry 2011; 168( 12): 1255– 1265
https://doi.org/10.1176/appi.ajp.2011.11040557
pmid: 21865528
|
57 |
JD Bremner, B Elzinga, C Schmahl, E Vermetten. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 2007; 167 : 171– 186
https://doi.org/10.1016/S0079-6123(07)67012-5
pmid: 18037014
|
58 |
S Duvarci, D Pare. Amygdala microcircuits controlling learned fear. Neuron 2014; 82( 5): 966– 980
https://doi.org/10.1016/j.neuron.2014.04.042
pmid: 24908482
|
59 |
GG Calhoon, KM Tye. Resolving the neural circuits of anxiety. Nat Neurosci 2015; 18( 10): 1394– 1404
https://doi.org/10.1038/nn.4101
pmid: 26404714
|
60 |
K Deisseroth. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015; 18( 9): 1213– 1225
https://doi.org/10.1038/nn.4091
pmid: 26308982
|
61 |
O Yizhar, LE Fenno, TJ Davidson, M Mogri, K Deisseroth. Optogenetics in neural systems. Neuron 2011; 71( 1): 9– 34
https://doi.org/10.1016/j.neuron.2011.06.004
pmid: 21745635
|
62 |
SM Sternson, BL Roth. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014; 37( 1): 387– 407
https://doi.org/10.1146/annurev-neuro-071013-014048
pmid: 25002280
|
63 |
BN Armbruster, X Li, MH Pausch, S Herlitze, BL Roth. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 2007; 104( 12): 5163– 5168
https://doi.org/10.1073/pnas.0700293104
pmid: 17360345
|
64 |
DJ Urban, BL Roth. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2015; 55( 1): 399– 417
https://doi.org/10.1146/annurev-pharmtox-010814-124803
pmid: 25292433
|
65 |
JL Gomez, J Bonaventura, W Lesniak, WB Mathews, P Sysa-Shah, LA Rodriguez, RJ Ellis, CT Richie, BK Harvey, RF Dannals, MG Pomper, A Bonci, M Michaelides. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 2017; 357( 6350): 503– 507
https://doi.org/10.1126/science.aan2475
pmid: 28774929
|
66 |
EJ Kremer, S Boutin, M Chillon, O Danos. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000; 74( 1): 505– 512
https://doi.org/10.1128/JVI.74.1.505-512.2000
pmid: 10590140
|
67 |
AR Nectow, EJ Nestler. Viral tools for neuroscience. Nat Rev Neurosci 2020; 21( 12): 669– 681
https://doi.org/10.1038/s41583-020-00382-z
pmid: 33110222
|
68 |
D Zimmermann, A Zhou, M Kiesel, K Feldbauer, U Terpitz, W Haase, T Schneider-Hohendorf, E Bamberg, VL Sukhorukov. Effects on capacitance by overexpression of membrane proteins. Biochem Biophys Res Commun 2008; 369( 4): 1022– 1026
https://doi.org/10.1016/j.bbrc.2008.02.153
pmid: 18331832
|
69 |
E Moser, I Mathiesen, P Andersen. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 1993; 259( 5099): 1324– 1326
https://doi.org/10.1126/science.8446900
pmid: 8446900
|
70 |
MA Long, MS Fee. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 2008; 456( 7219): 189– 194
https://doi.org/10.1038/nature07448
pmid: 19005546
|
71 |
M Mahn, M Prigge, S Ron, R Levy, O Yizhar. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 2016; 19( 4): 554– 556
https://doi.org/10.1038/nn.4266
pmid: 26950004
|
72 |
TJ Stachniak, A Ghosh, SM Sternson. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 2014; 82( 4): 797– 808
https://doi.org/10.1016/j.neuron.2014.04.008
pmid: 24768300
|
73 |
E Vardy, JE Robinson, C Li, RHJ Olsen, JF DiBerto, PM Giguere, FM Sassano, XP Huang, H Zhu, DJ Urban, KL White, JE Rittiner, NA Crowley, KE Pleil, CM Mazzone, PD Mosier, J Song, TL Kash, CJ Malanga, MJ Krashes, BL Roth. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 2015; 86( 4): 936– 946
https://doi.org/10.1016/j.neuron.2015.03.065
pmid: 25937170
|
74 |
TM Preuss, SP Wise. Evolution of prefrontal cortex. Neuropsychopharmacology 2022; 47( 1): 3– 19
https://doi.org/10.1038/s41386-021-01076-5
pmid: 34363014
|
75 |
DJ Schaeffer, Y Hori, KM Gilbert, JS Gati, RS Menon, S Everling. Divergence of rodent and primate medial frontal cortex functional connectivity. Proc Natl Acad Sci USA 2020; 117( 35): 21681– 21689
https://doi.org/10.1073/pnas.2003181117
pmid: 32817555
|
76 |
AC Roberts. Prefrontal regulation of threat-elicited behaviors: a pathway to translation. Annu Rev Psychol 2020; 71( 1): 357– 387
https://doi.org/10.1146/annurev-psych-010419-050905
pmid: 31622562
|
77 |
CA Heidbreder, HJ Groenewegen. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27( 6): 555– 579
https://doi.org/10.1016/j.neubiorev.2003.09.003
pmid: 14599436
|
78 |
DM Warthen, PS Lambeth, M Ottolini, Y Shi, BS Barker, RP Gaykema, BA Newmyer, J Joy-Gaba, Y Ohmura, E Perez-Reyes, AD Güler, MK Patel, MM Scott. Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food-seeking behavior while reducing impulsivity in the absence of an effect on food intake. Front Behav Neurosci 2016; 10 : 63
https://doi.org/10.3389/fnbeh.2016.00063
pmid: 27065827
|
79 |
HE 3rd Covington, MK Lobo, I Maze, V Vialou, JM Hyman, S Zaman, Q LaPlant, E Mouzon, S Ghose, CA Tamminga, RL Neve, K Deisseroth, EJ Nestler. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 2010; 30( 48): 16082– 16090
https://doi.org/10.1523/JNEUROSCI.1731-10.2010
pmid: 21123555
|
80 |
YH Chen, JL Wu, NY Hu, JP Zhuang, WP Li, SR Zhang, XW Li, JM Yang, TM Gao. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest 2021; 131( 14): e145692
https://doi.org/10.1172/JCI145692
pmid: 34263737
|
81 |
GQ Wang, C Cen, C Li, S Cao, N Wang, Z Zhou, XM Liu, Y Xu, NX Tian, Y Zhang, J Wang, LP Wang, Y Wang. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety. Nat Commun 2015; 6( 1): 7660
https://doi.org/10.1038/ncomms8660
pmid: 26179626
|
82 |
A Adhikari, TN Lerner, J Finkelstein, S Pak, JH Jennings, TJ Davidson, E Ferenczi, LA Gunaydin, JJ Mirzabekov, L Ye, SY Kim, A Lei, K Deisseroth. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 2015; 527( 7577): 179– 185
https://doi.org/10.1038/nature15698
pmid: 26536109
|
83 |
BD Hare, R Shinohara, RJ Liu, S Pothula, RJ DiLeone, RS Duman. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun 2019; 10( 1): 223
https://doi.org/10.1038/s41467-018-08168-9
pmid: 30644390
|
84 |
S Gee, I Ellwood, T Patel, F Luongo, K Deisseroth, VS Sohal. Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J Neurosci 2012; 32( 14): 4959– 4971
https://doi.org/10.1523/JNEUROSCI.5835-11.2012
pmid: 22492051
|
85 |
M Fuchikami, A Thomas, R Liu, ES Wohleb, BB Land, RJ DiLeone, GK Aghajanian, RS Duman. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA 2015; 112( 26): 8106– 8111
https://doi.org/10.1073/pnas.1414728112
pmid: 26056286
|
86 |
BA Vogt, G Paxinos. Cytoarchitecture of mouse and rat cingulate cortex with human homologies. Brain Struct Funct 2014; 219( 1): 185– 192
https://doi.org/10.1007/s00429-012-0493-3
pmid: 23229151
|
87 |
SR Heilbronner, J Rodriguez-Romaguera, GJ Quirk, HJ Groenewegen, SN Haber. Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry 2016; 80( 7): 509– 521
https://doi.org/10.1016/j.biopsych.2016.05.012
pmid: 27450032
|
88 |
L Alexander, CM Wood, PLR Gaskin, SJ Sawiak, TD Fryer, YT Hong, L McIver, HF Clarke, AC Roberts. Over-activation of primate subgenual cingulate cortex enhances the cardiovascular, behavioral and neural responses to threat. Nat Commun 2020; 11( 1): 5386
https://doi.org/10.1038/s41467-020-19167-0
pmid: 33106488
|
89 |
J Jhang, H Lee, MS Kang, HS Lee, H Park, JH Han. Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat Commun 2018; 9( 1): 2744
https://doi.org/10.1038/s41467-018-05090-y
pmid: 30013065
|
90 |
LL Falconi-Sobrinho, T Dos Anjos-Garcia, NC Coimbra. Nitric oxide-mediated defensive and antinociceptive responses organised at the anterior hypothalamus of mice are modulated by glutamatergic inputs from area 24b of the cingulate cortex. J Psychopharmacol 2021; 35( 1): 78– 90
https://doi.org/10.1177/0269881120967881
pmid: 33300404
|
91 |
LL Falconi-Sobrinho T Dos Anjos-Garcia DH Elias-Filho NC Coimbra. Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2017; 113(Pt A): 367–385 doi:10.1016/j.neuropharm.2016.10.001
pmid: 27717879
|
92 |
LL Falconi-Sobrinho, T Dos Anjos-Garcia, R de Oliveira, NC Coimbra. Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 2017; 27( 11): 1120– 1131
https://doi.org/10.1016/j.euroneuro.2017.09.002
pmid: 28939165
|
93 |
CE Page, R Shepard, K Heslin, L Coutellier. Prefrontal parvalbumin cells are sensitive to stress and mediate anxiety-related behaviors in female mice. Sci Rep 2019; 9( 1): 19772
https://doi.org/10.1038/s41598-019-56424-9
pmid: 31875035
|
94 |
A Soumier, E Sibille. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014; 39( 9): 2252– 2262
https://doi.org/10.1038/npp.2014.76
pmid: 24690741
|
95 |
DP Tromp, DW Grupe, DJ Oathes, DR McFarlin, PJ Hernandez, TR Kral, JE Lee, M Adams, AL Alexander, JB Nitschke. Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. Arch Gen Psychiatry 2012; 69( 9): 925– 934
https://doi.org/10.1001/archgenpsychiatry.2011.2178
pmid: 22945621
|
96 |
KE Prater, A Hosanagar, H Klumpp, M Angstadt, KL Phan. Aberrant amygdala-frontal cortex connectivity during perception of fearful faces and at rest in generalized social anxiety disorder. Depress Anxiety 2013; 30( 3): 234– 241
https://doi.org/10.1002/da.22014
pmid: 23184639
|
97 |
JA Rosenkranz, AA Grace. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 2001; 21( 11): 4090– 4103
https://doi.org/10.1523/JNEUROSCI.21-11-04090.2001
pmid: 11356897
|
98 |
JC Motzkin, CL Philippi, RC Wolf, MK Baskaya, M Koenigs. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry 2015; 77( 3): 276– 284
https://doi.org/10.1016/j.biopsych.2014.02.014
pmid: 24673881
|
99 |
GJ Quirk, E Likhtik, JG Pelletier, D Paré. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 2003; 23( 25): 8800– 8807
https://doi.org/10.1523/JNEUROSCI.23-25-08800.2003
pmid: 14507980
|
100 |
JA Rosenkranz, H Moore, AA Grace. The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 2003; 23( 35): 11054– 11064
https://doi.org/10.1523/JNEUROSCI.23-35-11054.2003
pmid: 14657162
|
101 |
A Adhikari, MA Topiwala, JA Gordon. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 2011; 71( 5): 898– 910
https://doi.org/10.1016/j.neuron.2011.07.027
pmid: 21903082
|
102 |
A Adhikari, MA Topiwala, JA Gordon. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 2010; 65( 2): 257– 269
https://doi.org/10.1016/j.neuron.2009.12.002
pmid: 20152131
|
103 |
WH Zhang, JY Zhang, A Holmes, BX Pan. Amygdala circuit substrates for stress adaptation and adversity. Biol Psychiatry 2021; 89( 9): 847– 856
https://doi.org/10.1016/j.biopsych.2020.12.026
pmid: 33691931
|
104 |
WZ Liu, WH Zhang, ZH Zheng, JX Zou, XX Liu, SH Huang, WJ You, Y He, JY Zhang, XD Wang, BX Pan. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun 2020; 11( 1): 2221
https://doi.org/10.1038/s41467-020-15920-7
pmid: 32376858
|
105 |
GM Parfitt, R Nguyen, JY Bang, AJ Aqrabawi, MM Tran, DK Seo, BA Richards, JC Kim. Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 2017; 42( 8): 1715– 1728
https://doi.org/10.1038/npp.2017.56
pmid: 28294135
|
106 |
N Padilla-Coreano, SS Bolkan, GM Pierce, DR Blackman, WD Hardin, AL Garcia-Garcia, TJ Spellman, JA Gordon. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 2016; 89( 4): 857– 866
https://doi.org/10.1016/j.neuron.2016.01.011
pmid: 26853301
|
107 |
A Kepecs, G Fishell. Interneuron cell types are fit to function. Nature 2014; 505( 7483): 318– 326
https://doi.org/10.1038/nature12983
pmid: 24429630
|
108 |
R Hattori, KV Kuchibhotla, RC Froemke, T Komiyama. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 2017; 20( 9): 1199– 1208
https://doi.org/10.1038/nn.4619
pmid: 28849791
|
109 |
B Wamsley, G Fishell. Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 2017; 18( 5): 299– 309
https://doi.org/10.1038/nrn.2017.30
pmid: 28381833
|
110 |
BA Seybold, A Stanco, KK Cho, GB Potter, C Kim, VS Sohal, JL Rubenstein, CE Schreiner. Chronic reduction in inhibition reduces receptive field size in mouse auditory cortex. Proc Natl Acad Sci USA 2012; 109( 34): 13829– 13834
https://doi.org/10.1073/pnas.1205909109
pmid: 22753490
|
111 |
AC Felix-Ortiz, A Burgos-Robles, ND Bhagat, CA Leppla, KM Tye. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 2016; 321 : 197– 209
https://doi.org/10.1016/j.neuroscience.2015.07.041
pmid: 26204817
|
112 |
FH Do-Monte, K Quiñones-Laracuente, GJ Quirk. A temporal shift in the circuits mediating retrieval of fear memory. Nature 2015; 519( 7544): 460– 463
https://doi.org/10.1038/nature14030
pmid: 25600268
|
113 |
CU Wallis, RN Cardinal, L Alexander, AC Roberts, HF Clarke. Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. Proc Natl Acad Sci USA 2017; 114( 20): E4075– E4084
https://doi.org/10.1073/pnas.1620115114
pmid: 28461477
|
114 |
HS Kim, HY Cho, GJ Augustine, JH Han. Selective control of fear expression by optogenetic manipulation of infralimbic cortex after extinction. Neuropsychopharmacology 2016; 41( 5): 1261– 1273
https://doi.org/10.1038/npp.2015.276
pmid: 26354044
|
115 |
LA DeNardo, CD Liu, WE Allen, EL Adams, D Friedmann, L Fu, CJ Guenthner, M Tessier-Lavigne, L Luo. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci 2019; 22( 3): 460– 469
https://doi.org/10.1038/s41593-018-0318-7
pmid: 30692687
|
116 |
KR Ramanathan, J Jin, TF Giustino, MR Payne, S Maren. Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nat Commun 2018; 9( 1): 4527
https://doi.org/10.1038/s41467-018-06970-z
pmid: 30375397
|
117 |
DW Bloodgood, JA Sugam, A Holmes, TL Kash. Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 2018; 8( 1): 60
https://doi.org/10.1038/s41398-018-0106-x
pmid: 29507292
|
118 |
FH Do-Monte, G Manzano-Nieves, K Quiñones-Laracuente, L Ramos-Medina, GJ Quirk. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 2015; 35( 8): 3607– 3615
https://doi.org/10.1523/JNEUROSCI.3137-14.2015
pmid: 25716859
|
119 |
MR Milad, GJ Quirk. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420( 6911): 70– 74
https://doi.org/10.1038/nature01138
pmid: 12422216
|
120 |
MR Milad, GJ Quirk. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 2012; 63( 1): 129– 151
https://doi.org/10.1146/annurev.psych.121208.131631
pmid: 22129456
|
121 |
MR Milad, SL Rauch, RK Pitman, GJ Quirk. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 2006; 73( 1): 61– 71
https://doi.org/10.1016/j.biopsycho.2006.01.008
pmid: 16476517
|
122 |
MR Milad, CI Wright, SP Orr, RK Pitman, GJ Quirk, SL Rauch. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 2007; 62( 5): 446– 454
https://doi.org/10.1016/j.biopsych.2006.10.011
pmid: 17217927
|
123 |
EA Phelps, MR Delgado, KI Nearing, JE LeDoux. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004; 43( 6): 897– 905
https://doi.org/10.1016/j.neuron.2004.08.042
pmid: 15363399
|
124 |
CH Chang, S Maren. Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats. Behav Neurosci 2010; 124( 3): 391– 397
https://doi.org/10.1037/a0019479
pmid: 20528083
|
125 |
P Rajasethupathy, S Sankaran, JH Marshel, CK Kim, E Ferenczi, SY Lee, A Berndt, C Ramakrishnan, A Jaffe, M Lo, C Liston, K Deisseroth. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015; 526( 7575): 653– 659
https://doi.org/10.1038/nature15389
pmid: 26436451
|
126 |
R Marek, L Xu, RKP Sullivan, P Sah. Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 2018; 21( 5): 654– 658
https://doi.org/10.1038/s41593-018-0137-x
pmid: 29686260
|
127 |
KA Cummings, RL Clem. Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci 2020; 23( 1): 61– 74
https://doi.org/10.1038/s41593-019-0552-7
pmid: 31844314
|
128 |
A Mukherjee, P Caroni. Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity. Nat Commun 2018; 9( 1): 2727
https://doi.org/10.1038/s41467-018-05318-x
pmid: 30006525
|
129 |
YH Chen, NY Hu, DY Wu, LL Bi, ZY Luo, L Huang, JL Wu, ML Wang, JT Li, YL Song, SR Zhang, W Jie, XW Li, SZ Zhang, JM Yang, TM Gao. PV network plasticity mediated by neuregulin1-ErbB4 signalling controls fear extinction. Mol Psychiatry 2022; 27( 2): 896– 906
https://doi.org/10.1038/s41380-021-01355-z
pmid: 34697452
|
130 |
N Karalis, C Dejean, F Chaudun, S Khoder, RR Rozeske, H Wurtz, S Bagur, K Benchenane, A Sirota, J Courtin, C Herry. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 2016; 19( 4): 605– 612
https://doi.org/10.1038/nn.4251
pmid: 26878674
|
131 |
J Courtin, F Chaudun, RR Rozeske, N Karalis, C Gonzalez-Campo, H Wurtz, A Abdi, J Baufreton, TC Bienvenu, C Herry. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 2014; 505( 7481): 92– 96
https://doi.org/10.1038/nature12755
pmid: 24256726
|
132 |
O Bukalo, CR Pinard, S Silverstein, C Brehm, ND Hartley, N Whittle, G Colacicco, E Busch, S Patel, N Singewald, A Holmes. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 2015; 1( 6): e1500251
https://doi.org/10.1126/sciadv.1500251
pmid: 26504902
|
133 |
W Xu, TC Südhof. A neural circuit for memory specificity and generalization. Science 2013; 339( 6125): 1290– 1295
https://doi.org/10.1126/science.1229534
pmid: 23493706
|
134 |
FG Davoodi, F Motamedi, E Akbari, E Ghanbarian, B Jila. Effect of reversible inactivation of reuniens nucleus on memory processing in passive avoidance task. Behav Brain Res 2011; 221( 1): 1– 6
https://doi.org/10.1016/j.bbr.2011.02.020
pmid: 21354215
|
135 |
HT Ito, SJ Zhang, MP Witter, EI Moser, MB Moser. A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 2015; 522( 7554): 50– 55
https://doi.org/10.1038/nature14396
pmid: 26017312
|
136 |
RP Vertes, WB Hoover, K Szigeti-Buck, C Leranth. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 2007; 71( 6): 601– 609
https://doi.org/10.1016/j.brainresbull.2006.12.002
pmid: 17292803
|
137 |
AL Griffin. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory. Front Syst Neurosci 2015; 9 : 29
https://doi.org/10.3389/fnsys.2015.00029
pmid: 25805977
|
138 |
WB Hoover, RP Vertes. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 212( 2): 149– 179
https://doi.org/10.1007/s00429-007-0150-4
pmid: 17717690
|
139 |
G Ji, V Neugebauer. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 2012; 5( 1): 36
https://doi.org/10.1186/1756-6606-5-36
pmid: 23044043
|
140 |
KI van Aerde, TS Heistek, HD Mansvelder. Prelimbic and infralimbic prefrontal cortex interact during fast network oscillations. PLoS One 2008; 3( 7): e2725
https://doi.org/10.1371/journal.pone.0002725
pmid: 18628964
|
141 |
V Senn, SB Wolff, C Herry, F Grenier, I Ehrlich, J Gründemann, JP Fadok, C Müller, JJ Letzkus, A Lüthi. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 2014; 81( 2): 428– 437
https://doi.org/10.1016/j.neuron.2013.11.006
pmid: 24462103
|
142 |
O Klavir, M Prigge, A Sarel, R Paz, O Yizhar. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci 2017; 20( 6): 836– 844
https://doi.org/10.1038/nn.4523
pmid: 28288126
|
143 |
MA Parent, L Wang, J Su, T Netoff, LL Yuan. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 2010; 20( 2): 393– 403
https://doi.org/10.1093/cercor/bhp108
pmid: 19515741
|
144 |
R Marek, J Jin, TD Goode, TF Giustino, Q Wang, GM Acca, R Holehonnur, JE Ploski, PJ Fitzgerald, T Lynagh, JW Lynch, S Maren, P Sah. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 2018; 21( 3): 384– 392
https://doi.org/10.1038/s41593-018-0073-9
pmid: 29403033
|
145 |
HJ Pi, B Hangya, D Kvitsiani, JI Sanders, ZJ Huang, A Kepecs. Cortical interneurons that specialize in disinhibitory control. Nature 2013; 503( 7477): 521– 524
https://doi.org/10.1038/nature12676
pmid: 24097352
|
146 |
RC Froemke, MM Merzenich, CE Schreiner. A synaptic memory trace for cortical receptive field plasticity. Nature 2007; 450( 7168): 425– 429
https://doi.org/10.1038/nature06289
pmid: 18004384
|
147 |
S Royer, BV Zemelman, A Losonczy, J Kim, F Chance, JC Magee, G Buzsáki. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 2012; 15( 5): 769– 775
https://doi.org/10.1038/nn.3077
pmid: 22446878
|
148 |
AC Butler, JE Chapman, EM Forman, AT Beck. The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin Psychol Rev 2006; 26( 1): 17– 31
https://doi.org/10.1016/j.cpr.2005.07.003
pmid: 16199119
|
149 |
Q Sun, X Li, M Ren, M Zhao, Q Zhong, Y Ren, P Luo, H Ni, X Zhang, C Zhang, J Yuan, A Li, M Luo, H Gong, Q Luo. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci 2019; 22( 8): 1357– 1370
https://doi.org/10.1038/s41593-019-0429-9
pmid: 31285615
|
150 |
S Ährlund-Richter, Y Xuan, Lunteren JA van, H Kim, C Ortiz, Dorocic I Pollak, K Meletis, M Carlén. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse. Nat Neurosci 2019; 22( 4): 657– 668
https://doi.org/10.1038/s41593-019-0354-y
pmid: 30886408
|
151 |
MR Delgado, JS Beer, LK Fellows, SA Huettel, ML Platt, GJ Quirk, D Schiller. Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nat Neurosci 2016; 19( 12): 1545– 1552
https://doi.org/10.1038/nn.4438
pmid: 27898086
|
152 |
C Dejean, J Courtin, RR Rozeske, MC Bonnet, V Dousset, T Michelet, C Herry. Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 2015; 78( 5): 298– 306
https://doi.org/10.1016/j.biopsych.2015.03.017
pmid: 25908496
|
153 |
JH Cho, K Deisseroth, VY Bolshakov. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 2013; 80( 6): 1491– 1507
https://doi.org/10.1016/j.neuron.2013.09.025
pmid: 24290204
|
154 |
N Kulesskaya, V Voikar. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav 2014; 133 : 30– 38
https://doi.org/10.1016/j.physbeh.2014.05.006
pmid: 24832050
|
155 |
CN Snyder, AR Brown, D Buffalari. Similar tests of anxiety-like behavior yield different results: comparison of the open field and free exploratory rodent procedures. Physiol Behav 2021; 230 : 113246
https://doi.org/10.1016/j.physbeh.2020.113246
pmid: 33189728
|
156 |
AB Wiltschko, T Tsukahara, A Zeine, R Anyoha, WF Gillis, JE Markowitz, RE Peterson, J Katon, MJ Johnson, SR Datta. Revealing the structure of pharmacobehavioral space through motion sequencing. Nat Neurosci 2020; 23( 11): 1433– 1443
https://doi.org/10.1038/s41593-020-00706-3
pmid: 32958923
|
157 |
L von Ziegler, O Sturman, J Bohacek. Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology 2021; 46( 1): 33– 44
https://doi.org/10.1038/s41386-020-0751-7
pmid: 32599604
|
158 |
N Liu, Y Han, H Ding, K Huang, P Wei, L Wang. Objective and comprehensive re-evaluation of anxiety-like behaviors in mice using the Behavior Atlas. Biochem Biophys Res Commun 2021; 559 : 1– 7
https://doi.org/10.1016/j.bbrc.2021.03.125
pmid: 33932895
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|