Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (1) : 1-17    https://doi.org/10.1007/s11684-022-0973-7
REVIEW
Atypical pituitary hormone–target tissue axis
Chao Xu1,2, Zhao He1,2, Yongfeng Song1,2, Shanshan Shao1,2, Guang Yang3(), Jiajun Zhao1,2()
1. Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
2. Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
3. Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
 Download: PDF(3266 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A long-held belief is that pituitary hormones bind to their cognate receptors in classical target glands to actuate their manifold functions. However, a number of studies have shown that multiple types of pituitary hormone receptors are widely expressed in non-classical target organs. Each pituitary gland-derived hormone exhibits a wide range of nonconventional biological effects in these non-classical target organs. Herein, the extra biological functions of pituitary hormones, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotrophic hormone, and prolactin when they act on non-classical organs were summarized, defined by the novel concept of an “atypical pituitary hormone–target tissue axis.” This novel proposal explains the pathomechanisms of abnormal glucose and lipid metabolism, obesity, hypertension, fatty liver, and atherosclerosis while offering a more comprehensive and systematic insights into the coordinated regulation of environmental factors, genetic factors, and neuroendocrine hormones on human biological functions. The continued exploration of the physiology of the “atypical pituitary hormone–target tissue axis” could enable the identification of novel therapeutic targets for metabolic diseases.

Keywords thyroid-stimulating hormone      follicle-stimulating hormone      luteinizing hormone      adrenocorticotrophic hormone      prolactin     
Corresponding Author(s): Guang Yang,Jiajun Zhao   
Just Accepted Date: 11 January 2023   Online First Date: 20 February 2023    Issue Date: 15 March 2023
 Cite this article:   
Chao Xu,Zhao He,Yongfeng Song, et al. Atypical pituitary hormone–target tissue axis[J]. Front. Med., 2023, 17(1): 1-17.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0973-7
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I1/1
Fig.1  General schematic of “atypical pituitary hormone–target tissue axis.”
Fig.2  Schematic of the typical hypothalamus–pituitary–target tissue axis.
Fig.3  Pituitary TSH–target tissue axis.
Fig.4  Pituitary FSH–target tissue axis.
Fig.5  Pituitary LH–target tissue axis.
Fig.6  Pituitary ACTH–target tissue axis.
Fig.7  Pituitary PRL–target tissue axis.
1 MW Szkudlinski, V Fremont, C Ronin, BD Weintraub. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82(2): 473–502
https://doi.org/10.1152/physrev.00031.2001 pmid: 11917095
2 A Ulloa-Aguirre, C Timossi. Structure-function relationship of follicle-stimulating hormone and its receptor. Hum Reprod Update 1998; 4(3): 260–283
https://doi.org/10.1093/humupd/4.3.260 pmid: 9741710
3 the American Association of Neurological Surgeons (AANS) From, Society of Neuroradiology (ASNR) American, Radiology Society of Europe (CIRSE) Cardiovascular, Interventional Radiology Association (CIRA) Interventional, of Neurological Surgeons (CNS) Canadian, Society of Minimally Invasive Neurological Therapy (ESMINT) Congress, Society of Neuroradiology (ESNR) European, Stroke Organization (ESO) European, for Cardiovascular Angiography European, (SCAI) Society, of Interventional Radiology (SIR) Interventions, of NeuroInterventional Surgery (SNIS) Society, Stroke Organization (WSO) Society, D World, B Sacks, BCV Baxter, JS Campbell, C Carpenter, D Cognard, M Dippel, U Eesa, K Fischer, JA Hausegger, Hussain M Hirsch, O Shazam, MV Jansen, AA Jayaraman, BW Khalessi, S Kluck, PM Lavine, S Meyers, DA Ramee, CM Rüfenacht, D Schirmer. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke 2018; 13(6): 612–632
https://doi.org/10.1177/1747493018778713 pmid: 29786478
4 AJ Clark, LA Metherell. Mechanisms of disease: the adrenocorticotropin receptor and disease. Nat Clin Pract Endocrinol Metab 2006; 2(5): 282–290
https://doi.org/10.1038/ncpendmet0165 pmid: 16932299
5 WL Miller. The hypothalamic-pituitary-adrenal axis: a brief history. Horm Res Paediatr 2018; 89(4): 212–223
https://doi.org/10.1159/000487755 pmid: 29719288
6 Y Yang, CM Harmon. Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 2020; 503: 110688
https://doi.org/10.1016/j.mce.2019.110688 pmid: 31866318
7 ME Freeman, B Kanyicska, A Lerant, G Nagy. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80(4): 1523–1631
https://doi.org/10.1152/physrev.2000.80.4.1523 pmid: 11015620
8 M Zaidi, MI New, HC Blair, A Zallone, R Baliram, TF Davies, C Cardozo, J Iqbal, L Sun, CJ Rosen, T Yuen. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237(3): R83–R98
https://doi.org/10.1530/JOE-17-0680 pmid: 29555849
9 JR Klein. Physiological relevance of thyroid stimulating hormone and thyroid stimulating hormone receptor in tissues other than the thyroid. Autoimmunity 2003; 36(6–7): 417–421
https://doi.org/10.1080/08916930310001603019 pmid: 14669950
10 H Alonso, J Fernández-Ruocco, M Gallego, LL Malagueta-Vieira, A Rodríguez-de-Yurre, E Medei, O Casis. Thyroid stimulating hormone directly modulates cardiac electrical activity. J Mol Cell Cardiol 2015; 89(Pt B): 280–286
https://doi.org/10.1016/j.yjmcc.2015.10.019 pmid: 26497403
11 S Balzan, R Del Carratore, G Nicolini, P Beffy, V Lubrano, F Forini, G Iervasi. Proangiogenic effect of TSH in human microvascular endothelial cells through its membrane receptor. J Clin Endocrinol Metab 2012; 97(5): 1763–1770
https://doi.org/10.1210/jc.2011-2146 pmid: 22419707
12 SC Sun, PJ Hsu, FJ Wu, SH Li, CH Lu, CW Luo. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J Biol Chem 2010; 285(6): 3758–3765
https://doi.org/10.1074/jbc.M109.066266 pmid: 19955180
13 Y Gong, Y Ma, Z Ye, Z Fu, P Yang, B Gao, W Guo, D Hu, J Ye, S Ma, F Zhang, L Zhou, X Xu, Z Li, T Yang, H Zhou. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017; 76: 32–41
https://doi.org/10.1016/j.metabol.2017.07.006 pmid: 28987238
14 CP Tseng, KK Leong, MJ Liou, HL Hsu, HC Lin, YA Chen, JD Lin. Circulating epithelial cell counts for monitoring the therapeutic outcome of patients with papillary thyroid carcinoma. Oncotarget 2017; 8(44): 77453–77464
https://doi.org/10.18632/oncotarget.20512 pmid: 29100400
15 CW Rowe, JW Paul, C Gedye, JM Tolosa, C Bendinelli, S McGrath, R Smith. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer 2017; 24(6): R191–R202
https://doi.org/10.1530/ERC-17-0010 pmid: 28351942
16 JM Rijks, J Plat, E Dorenbos, B Penders, WM Gerver, ACE Vreugdenhil. Association of TSH with cardiovascular disease risk in overweight and obese children during lifestyle intervention. J Clin Endocrinol Metab 2017; 102(6): 2051–2058
https://doi.org/10.1210/jc.2016-3057 pmid: 28379580
17 W Xin, Y Yu, Y Ma, Y Gao, Y Xu, L Chen, Q Wan. Thyroid-stimulating hormone stimulation downregulates autophagy and promotes apoptosis in chondrocytes. Endocr J 2017; 64(7): 749–757
https://doi.org/10.1507/endocrj.EJ16-0534 pmid: 28626114
18 AP Delitala, M Steri, MG Pilia, M Dei, S Lai, G Delitala, D Schlessinger, F Cucca. Menopause modulates the association between thyrotropin levels and lipid parameters: the SardiNIA study. Maturitas 2016; 92: 30–34
https://doi.org/10.1016/j.maturitas.2016.07.003 pmid: 27621235
19 G Panagiotou, K Pazaitou-Panayiotou, SA Paschou, D Komninou, N Kalogeris, A Vryonidou, CS Mantzoros. Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 2016; 26(8): 1039–1045
https://doi.org/10.1089/thy.2016.0098 pmid: 27267080
20 JR Burgos, BM Iresjö, S Wärnåker, U Smedh. Presence of TSH receptors in discrete areas of the hypothalamus and caudal brainstem with relevance for feeding controls—support for functional significance. Brain Res 2016; 1642: 278–286
https://doi.org/10.1016/j.brainres.2016.04.007 pmid: 27059392
21 CM Dutton, W Joba, C Spitzweg, AE Heufelder, RS Bahn. Thyrotropin receptor expression in adrenal, kidney, and thymus. Thyroid 1997; 7(6): 879–884
https://doi.org/10.1089/thy.1997.7.879 pmid: 9459631
22 SF Zhang, LZ Li, W Zhang, JR Guo, FF Liu, K Ma, SH Chen, YQ Zhang. Association between plasma homocysteine levels and subclinical hypothyroidism in adult subjects: a meta-analysis. Horm Metab Res 2020; 52(9): 625–638
https://doi.org/10.1055/a-1199-2633 pmid: 32629519
23 PH Nichols, Y Pan, B May, M Pavlicova, JC Rausch, AA Mencin, VV Thaker. Effect of TSH on non-alcoholic fatty liver disease (NAFLD) independent of obesity in children of predominantly Hispanic/Latino ancestry by causal mediation analysis. PLoS One 2020; 15(6): e0234985
https://doi.org/10.1371/journal.pone.0234985 pmid: 32569304
24 R Zhang, X Tian, L Qin, X Wei, J Wang, J Shen. Factors predicting abnormal liver function tests induced by Graves’ disease alone: a retrospective cohort study. Medicine (Baltimore) 2015; 94(19): e839
https://doi.org/10.1097/MD.0000000000000839 pmid: 25984670
25 K He, Y Hu, XH Xu, XM Mao. Hepatic dysfunction related to thyrotropin receptor antibody in patients with Graves’ disease. Exp Clin Endocrinol Diabetes 2014; 122(6): 368–372
https://doi.org/10.1055/s-0034-1375667 pmid: 24941434
26 C Rauer, R Ringseis, S Rothe, G Wen, K Eder. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells. PLoS One 2014; 9(3): e91265
https://doi.org/10.1371/journal.pone.0091265 pmid: 24625548
27 YD Chu, CT Yeh. The molecular function and clinical role of thyroid stimulating hormone receptor in cancer cells. Cells 2020; 9(7): 1730
https://doi.org/10.3390/cells9071730 pmid: 32698392
28 L Scappaticcio, M Longo, MI Maiorino, V Pernice, P Caruso, K Esposito, G Bellastella. Abnormal liver blood tests in patients with hyperthyroidism: systematic review and meta-analysis. Thyroid 2021; 31(6): 884–894
https://doi.org/10.1089/thy.2020.0715 pmid: 33327837
29 W Zhang, LM Tian, Y Han, HY Ma, LC Wang, J Guo, L Gao, JJ Zhao. Presence of thyrotropin receptor in hepatocytes: not a case of illegitimate transcription. J Cell Mol Med 2009; 13(11–12): 4636–4642
https://doi.org/10.1111/j.1582-4934.2008.00670.x pmid: 19187127
30 TY Lin, AO Shekar, N Li, MW Yeh, S Saab, M Wilson, AM Leung. Incidence of abnormal liver biochemical tests in hyperthyroidism. Clin Endocrinol (Oxf) 2017; 86(5): 755–759
https://doi.org/10.1111/cen.13312 pmid: 28199740
31 RA Sinha, E Bruinstroop, BK Singh, PM Yen. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid 2019; 29(9): 1173–1191
https://doi.org/10.1089/thy.2018.0664 pmid: 31389309
32 PL Jansen, FG Schaap. Pituitary TSH controls bile salt synthesis. J Hepatol 2015; 62(5): 1005–1007
https://doi.org/10.1016/j.jhep.2015.02.003 pmid: 25678391
33 L Tian, J Ni, T Guo, J Liu, Y Dang, Q Guo, L Zhang. TSH stimulates the proliferation of vascular smooth muscle cells. Endocrine 2014; 46(3): 651–658
https://doi.org/10.1007/s12020-013-0135-4 pmid: 24452868
34 M Stojković, M Žarković. Subclinical thyroid dysfunction and the risk of cardiovascular disease. Curr Pharm Des 2020; 26(43): 5617–5627
https://doi.org/10.2174/1381612826666201118094747 pmid: 33213317
35 Y Tao, H Gu, J Wu, J Sui. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr Res 2015; 40(2): 74–78
https://doi.org/10.3109/07435800.2014.952014 pmid: 25330278
36 Y Song, D Zheng, M Zhao, Y Qin, T Wang, W Xing, L Gao, J Zhao. Thyroid-stimulating hormone increases HNF-4α phosphorylation via cAMP/PKA pathway in the liver. Sci Rep 2015; 5(1): 13409
https://doi.org/10.1038/srep13409 pmid: 26302721
37 X Zhang, Y Song, M Feng, X Zhou, Y Lu, L Gao, C Yu, X Jiang, J Zhao. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res 2015; 56(5): 963–971
https://doi.org/10.1194/jlr.M047654 pmid: 25713102
38 CM Beukhof, ET Massolt, TJ Visser, TIM Korevaar, M Medici, WW de Herder, JE Roeters van Lennep, MT Mulder, YB de Rijke, C Reiners, FA Verburg, RP Peeters. Effects of thyrotropin on peripheral thyroid hormone metabolism and serum lipids. Thyroid 2018; 28(2): 168–174
https://doi.org/10.1089/thy.2017.0330 pmid: 29316865
39 Y Song, C Xu, S Shao, J Liu, W Xing, J Xu, C Qin, C Li, B Hu, S Yi, X Xia, H Zhang, X Zhang, T Wang, W Pan, C Yu, Q Wang, X Lin, L Wang, L Gao, J Zhao. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol 2015; 62(5): 1171–1179
https://doi.org/10.1016/j.jhep.2014.12.006 pmid: 25533663
40 M Rumińska, E Witkowska-Sędek, A Majcher, M Brzewski, M Krawczyk, B Pyrżak. Serum TSH level in obese children and its correlations with atherogenic lipid indicators and carotid intima media thickness. J Ultrason 2018; 18(75): 296–301
https://doi.org/10.15557/JoU.2018.0043 pmid: 30763013
41 L Zhou, K Wu, L Zhang, L Gao, S Chen. Liver-specific deletion of TSHR inhibits hepatic lipid accumulation in mice. Biochem Biophys Res Commun 2018; 497(1): 39–45
https://doi.org/10.1016/j.bbrc.2018.01.187 pmid: 29421660
42 C Mandato, I D’Acunzo, P Vajro. Thyroid dysfunction and its role as a risk factor for non-alcoholic fatty liver disease: what’s new. Dig Liver Dis 2018; 50(11): 1163–1165
https://doi.org/10.1016/j.dld.2018.08.026 pmid: 30262159
43 F Yan, Q Wang, M Lu, W Chen, Y Song, F Jing, Y Guan, L Wang, Y Lin, T Bo, J Zhang, T Wang, W Xin, C Yu, Q Guan, X Zhou, L Gao, C Xu, J Zhao. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J Hepatol 2014; 61(6): 1358–1364
https://doi.org/10.1016/j.jhep.2014.06.037 pmid: 25016220
44 W He, X An, L Li, X Shao, Q Li, Q Yao, JA Zhang. Relationship between hypothyroidism and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2017; 8: 335
https://doi.org/10.3389/fendo.2017.00335 pmid: 29238323
45 Z Guo, M Li, B Han, X Qi. Association of non-alcoholic fatty liver disease with thyroid function: a systematic review and meta-analysis. Dig Liver Dis 2018; 50(11): 1153–1162
https://doi.org/10.1016/j.dld.2018.08.012 pmid: 30224316
46 Y Li, L Wang, L Zhou, Y Song, S Ma, C Yu, J Zhao, C Xu, L Gao. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol 2017; 446: 70–80
https://doi.org/10.1016/j.mce.2017.02.015 pmid: 28212844
47 X Wang, J Mao, X Zhou, Q Li, L Gao, J Zhao. Thyroid stimulating hormone triggers hepatic mitochondrial stress through cyclophilin D acetylation. Oxid Med Cell Longev 2020; 2020: 1249630
https://doi.org/10.1155/2020/1249630 pmid: 31998431
48 YL Shih, YH Huang, KH Lin, YD Chu, CT Yeh. Identification of functional thyroid stimulating hormone receptor and TSHR gene mutations in hepatocellular carcinoma. Anticancer Res 2018; 38(5): 2793–2802
pmid: 29715101
49 K Haraguchi, H Shimura, L Lin, T Endo, T Onaya. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology 1996; 137(8): 3200–3205
https://doi.org/10.1210/endo.137.8.8754740 pmid: 8754740
50 M Lu, RY Lin. TSH stimulates adipogenesis in mouse embryonic stem cells. J Endocrinol 2008; 196(1): 159–169
https://doi.org/10.1677/JOE-07-0452 pmid: 18180327
51 K Haraguchi, H Shimura, L Lin, T Saito, T Endo, T Onaya. Functional expression of thyrotropin receptor in differentiated 3T3-L1 cells: a possible model cell line of extrathyroidal expression of thyrotropin receptor. Biochem Biophys Res Commun 1996; 223(1): 193–198
https://doi.org/10.1006/bbrc.1996.0868 pmid: 8660370
52 A Bell, A Gagnon, P Dods, D Papineau, M Tiberi, A Sorisky. TSH signaling and cell survival in 3T3-L1 preadipocytes. Am J Physiol Cell Physiol 2002; 283(4): C1056–C1064
https://doi.org/10.1152/ajpcell.00058.2002 pmid: 12225969
53 S Niu, H Li, W Chen, J Zhao, L Gao, T Bo. Beta-arrestin 1 mediates liver thyrotropin regulation of cholesterol conversion metabolism via the Akt-dependent pathway. Int J Endocrinol 2018; 2018: 4371396
pmid: 29853881
54 M Murakami, Y Kamiya, T Morimura, O Araki, M Imamura, T Ogiwara, H Mizuma, M Mori. Thyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology 2001; 142(3): 1195–1201
https://doi.org/10.1210/endo.142.3.8012 pmid: 11181535
55 T Endo, T Kobayashi. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. Am J Physiol Endocrinol Metab 2008; 295(2): E514–E518
https://doi.org/10.1152/ajpendo.90433.2008 pmid: 18559984
56 A Elgadi, H Zemack, C Marcus, S Norgren. Tissue-specific knockout of TSHr in white adipose tissue increases adipocyte size and decreases TSH-induced lipolysis. Biochem Biophys Res Commun 2010; 393(3): 526–530
https://doi.org/10.1016/j.bbrc.2010.02.042 pmid: 20152797
57 S Lu, Q Guan, Y Liu, H Wang, W Xu, X Li, Y Fu, L Gao, J Zhao, X Wang. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis 2012; 11(1): 17
https://doi.org/10.1186/1476-511X-11-17 pmid: 22289392
58 F Comas, A Lluch, M Sabater, J Latorre, F Ortega, W Ricart, M López, JM Fernández-Real, JM Moreno-Navarrete. Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function. Int J Obes 2019; 43(8): 1611–1619
https://doi.org/10.1038/s41366-018-0203-1 pmid: 30206337
59 S Ma, F Jing, C Xu, L Zhou, Y Song, C Yu, D Jiang, L Gao, Y Li, Q Guan, J Zhao. Thyrotropin and obesity: increased adipose triglyceride content through glycerol-3-phosphate acyltransferase 3. Sci Rep 2015; 5(1): 7633
https://doi.org/10.1038/srep07633 pmid: 25559747
60 J Zhang, H Wu, S Ma, L Gao, C Yu, F Jing, J Zhao. TSH promotes adiposity by inhibiting the browning of white fat. Adipocyte 2020; 9(1): 264–278
https://doi.org/10.1080/21623945.2020.1783101 pmid: 32579056
61 V Drvota, A Janson, C Norman, C Sylvén, J Häggblad, M Brönnegård, C Marcus. Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem Biophys Res Commun 1995; 211(2): 426–431
https://doi.org/10.1006/bbrc.1995.1831 pmid: 7794253
62 DF Sellitti, R Hill, SQ Doi, T Akamizu, J Czaja, S Tao, H Koshiyama. Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 1997; 7(4): 641–646
https://doi.org/10.1089/thy.1997.7.641 pmid: 9292956
63 W Huang, J Xu, F Jing, WB Chen, L Gao, HT Yuan, JJ Zhao. Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion. Endocrine 2014; 46(2): 328–339
https://doi.org/10.1007/s12020-013-0052-6 pmid: 24065308
64 J Dong, C Gao, J Liu, Y Cao, L Tian. TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget 2016; 7(26): 39207–39215
https://doi.org/10.18632/oncotarget.9393 pmid: 27206677
65 J Fernandez-Ruocco, M Gallego, A Rodriguez-de-Yurre, J Zayas-Arrabal, L Echeazarra, A Alquiza, V Fernández-López, JM Rodriguez-Robledo, O Brito, Y Schleier, M Sepulveda, NF Oshiyama, M Vila-Petroff, RA Bassani, EH Medei, O Casis. High thyrotropin is critical for cardiac electrical remodeling and arrhythmia vulnerability in hypothyroidism. Thyroid 2020; 29(7): 934–945
https://doi.org/10.1089/thy.2018.0709 pmid: 31084419
66 L Tian, L Zhang, J Liu, T Guo, C Gao, J Ni. Effects of TSH on the function of human umbilical vein endothelial cells. J Mol Endocrinol 2014; 52(2): 215–222
https://doi.org/10.1530/JME-13-0119 pmid: 24444496
67 K Tahara, T Akahane, T Namisaki, K Moriya, H Kawaratani, K Kaji, H Takaya, Y Sawada, N Shimozato, S Sato, S Saikawa, K Nakanishi, T Kubo, Y Fujinaga, M Furukawa, K Kitagawa, T Ozutsumi, Y Tsuji, D Kaya, H Ogawa, H Takagi, K Ishida, A Mitoro, H Yoshiji. Thyroid-stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH Open 2020; 4(3): 400–404
https://doi.org/10.1002/jgh3.12264 pmid: 32514444
68 J Chen, M Shi, N Wang, P Yi, L Sun, Q Meng. TSH inhibits eNOS expression in HMEC-1 cells through the TSHR/PI3K/AKT signaling pathway. Ann Endocrinol (Paris) 2019; 80(5–6): 273–279
https://doi.org/10.1016/j.ando.2019.06.007 pmid: 31606200
69 C Yang, M Lu, W Chen, Z He, X Hou, M Feng, H Zhang, T Bo, X Zhou, Y Yu, H Zhang, M Zhao, L Wang, C Yu, L Gao, W Jiang, Q Zhang, J Zhao. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 2019; 216(5): 1182–1198
https://doi.org/10.1084/jem.20181473 pmid: 30940720
70 JA Tsai, A Janson, E Bucht, H Kindmark, C Marcus, A Stark, HR Zemack, O Torring. Weak evidence of thyrotropin receptors in primary cultures of human osteoblast-like cells. Calcif Tissue Int 2004; 74(5): 486–491
https://doi.org/10.1007/s00223-003-0108-3 pmid: 14961213
71 E Abe, RC Marians, W Yu, XB Wu, T Ando, Y Li, J Iqbal, L Eldeiry, G Rajendren, HC Blair, TF Davies, M Zaidi. TSH is a negative regulator of skeletal remodeling. Cell 2003; 115(2): 151–162
https://doi.org/10.1016/S0092-8674(03)00771-2 pmid: 14567913
72 AT Milani, MH Khadem-Ansari, Y Rasmi. Effects of thyroid-stimulating hormone on adhesion molecules and pro-inflammatory cytokines secretion in human umbilical vein endothelial cells. Res Pharm Sci 2018; 13(6): 546–556
https://doi.org/10.4103/1735-5362.245966 pmid: 30607152
73 H Hase, T Ando, L Eldeiry, A Brebene, Y Peng, L Liu, H Amano, TF Davies, L Sun, M Zaidi, E Abe. TNFα mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci USA 2006; 103(34): 12849–12854
https://doi.org/10.1073/pnas.0600427103 pmid: 16908863
74 L Sun, TF Davies, HC Blair, E Abe, M Zaidi. TSH and bone loss. Ann N Y Acad Sci 2006; 1068(1): 309–318
https://doi.org/10.1196/annals.1346.033 pmid: 16831931
75 TK Sampath, P Simic, R Sendak, N Draca, AE Bowe, S O’Brien, SC Schiavi, JM McPherson, S Vukicevic. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res 2007; 22(6): 849–859
https://doi.org/10.1359/jbmr.070302 pmid: 17352644
76 L Sun, S Vukicevic, R Baliram, G Yang, R Sendak, J McPherson, LL Zhu, J Iqbal, R Latif, A Natrajan, A Arabi, K Yamoah, BS Moonga, Y Gabet, TF Davies, I Bab, E Abe, K Sampath, M Zaidi. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci USA 2008; 105(11): 4289–4294
https://doi.org/10.1073/pnas.0712395105 pmid: 18332426
77 K van der Weerd, PM van Hagen, B Schrijver, SJ Heuvelmans, LJ Hofland, SM Swagemakers, AJ Bogers, WA Dik, TJ Visser, JJ van Dongen, AJ van der Lelij, FJ Staal. Thyrotropin acts as a T-cell developmental factor in mice and humans. Thyroid 2014; 24(6): 1051–1061
https://doi.org/10.1089/thy.2013.0396 pmid: 24635198
78 C Spitzweg, W Joba, AE Heufelder. Expression of thyroid-related genes in human thymus. Thyroid 1999; 9(2): 133–141
https://doi.org/10.1089/thy.1999.9.133 pmid: 10090312
79 SM McLachlan, HA Aliesky, B Banuelos, S Lesage, R Collin, B Rapoport. High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin Exp Immunol 2017; 188(2): 243–253
https://doi.org/10.1111/cei.12928 pmid: 28099999
80 K Wu, M Zhao, C Ma, H Zhang, X Liu, L Zhou, J Zhao, L Gao, D Wang. Thyrotropin alters T cell development in the thymus in subclinical hypothyroidism mouse model. Scand J Immunol 2017; 85(1): 35–42
https://doi.org/10.1111/sji.12507 pmid: 27864993
81 R Paschke, V Geenen. Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child. J Mol Med (Berl) 1995; 73(11): 577–580
https://doi.org/10.1007/BF00195143 pmid: 8751142
82 DF Sellitti, T Akamizu, SQ Doi, GH Kim, JT Kariyil, JJ Kopchik, H Koshiyama. Renal expression of two ‘thyroid-specific’ genes: thyrotropin receptor and thyroglobulin. Exp Nephrol 2000; 8(4–5): 235–243
https://doi.org/10.1159/000020674 pmid: 10940722
83 TA Jansen, TIM Korevaar, TA Mulder, T White, RL Muetzel, RP Peeters, H Tiemeier. Maternal thyroid function during pregnancy and child brain morphology: a time window-specific analysis of a prospective cohort. Lancet Diabetes Endocrinol 2019; 7(8): 629–637
https://doi.org/10.1016/S2213-8587(19)30153-6 pmid: 31262704
84 A Radu, C Pichon, P Camparo, M Antoine, Y Allory, A Couvelard, G Fromont, MT Hai, N Ghinea. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 2010; 363(17): 1621–1630
https://doi.org/10.1056/NEJMoa1001283 pmid: 20961245
85 R Zhang, S Zhang, X Zhu, Y Zhou, X Wu. Follicle-stimulating hormone receptor (FSHR) in Chinese alligator, Alligator sinensis: molecular characterization, tissue distribution and mRNA expression changes during the female reproductive cycle. Anim Reprod Sci 2015; 156: 40–50
https://doi.org/10.1016/j.anireprosci.2015.02.008 pmid: 25765682
86 H Chen, Y Cui, S Yu. Expression and localisation of FSHR, GHR and LHR in different tissues and reproductive organs of female yaks. Folia Morphol (Warsz) 2018; 77(2): 301–309
https://doi.org/10.5603/FM.a2016.0095 pmid: 29064548
87 Y Guo, M Zhao, T Bo, S Ma, Z Yuan, W Chen, Z He, X Hou, J Liu, Z Zhang, Q Zhu, Q Wang, X Lin, Z Yang, M Cui, L Liu, Y Li, C Yu, X Qi, Q Wang, H Zhang, Q Guan, L Zhao, S Xuan, H Yan, Y Lin, L Wang, Q Li, Y Song, L Gao, J Zhao. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res 2019; 29(2): 151–166
https://doi.org/10.1038/s41422-018-0123-6 pmid: 30559440
88 R Mancinelli, P Onori, E Gaudio, S DeMorrow, A Franchitto, H Francis, S Glaser, G Carpino, J Venter, D Alvaro, S Kopriva, M White, A Kossie, J Savage, G Alpini. Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest Liver Physiol 2009; 297(1): G11–G26
https://doi.org/10.1152/ajpgi.00025.2009 pmid: 19389804
89 H Cui, G Zhao, R Liu, M Zheng, J Chen, J Wen. FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. J Lipid Res 2012; 53(5): 909–917
https://doi.org/10.1194/jlr.M025403 pmid: 22345708
90 P Liu, Y Ji, T Yuen, E Rendina-Ruedy, VE DeMambro, S Dhawan, W Abu-Amer, S Izadmehr, B Zhou, AC Shin, R Latif, P Thangeswaran, A Gupta, J Li, V Shnayder, ST Robinson, YE Yu, X Zhang, F Yang, P Lu, Y Zhou, LL Zhu, DJ Oberlin, TF Davies, MR Reagan, A Brown, TR Kumar, S Epstein, J Iqbal, NG Avadhani, MI New, H Molina, JB van Klinken, EX Guo, C Buettner, S Haider, Z Bian, L Sun, CJ Rosen, M Zaidi. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 2017; 546(7656): 107–112
https://doi.org/10.1038/nature22342 pmid: 28538730
91 S Gera, D Sant, S Haider, F Korkmaz, TC Kuo, M Mathew, H Perez-Pena, H Xie, H Chen, R Batista, K Ma, Z Cheng, E Hadelia, C Robinson, A Macdonald, S Miyashita, A Williams, G Jebian, H Miyashita, A Gumerova, K Ievleva, P Smith, J He, V Ryu, V DeMambro, MA Quinn, M Meseck, SM Kim, TR Kumar, J Iqbal, MI New, D Lizneva, CJ Rosen, AJ Hsueh, T Yuen, M Zaidi. First-in-class humanized FSH blocking antibody targets bone and fat. Proc Natl Acad Sci USA 2020; 117(46): 28971–28979
https://doi.org/10.1073/pnas.2014588117 pmid: 33127753
92 RA Pumroy, EC 3rd Fluck, T Ahmed, VY Moiseenkova-Bell. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87: 102168
https://doi.org/10.1016/j.ceca.2020.102168 pmid: 32004816
93 L Sun, Y Peng, AC Sharrow, J Iqbal, Z Zhang, DJ Papachristou, S Zaidi, LL Zhu, BB Yaroslavskiy, H Zhou, A Zallone, MR Sairam, TR Kumar, W Bo, J Braun, L Cardoso-Landa, MB Schaffler, BS Moonga, HC Blair, M Zaidi. FSH directly regulates bone mass. Cell 2006; 125(2): 247–260
https://doi.org/10.1016/j.cell.2006.01.051 pmid: 16630814
94 AM Ettinger, SK Gust, MA Kutzler. Luteinizing hormone receptor expression by nonneoplastic and neoplastic canine lymphocytes. Am J Vet Res 2019; 80(6): 572–577
https://doi.org/10.2460/ajvr.80.6.572 pmid: 31140843
95 S Vuorenoja, A Rivero-Muller, S Kiiveri, M Bielinska, M Heikinheimo, DB Wilson, IT Huhtaniemi, NA Rahman. Adrenocortical tumorigenesis, luteinizing hormone receptor and transcription factors GATA-4 and GATA-6. Mol Cell Endocrinol 2007; 269(1–2): 38–45
https://doi.org/10.1016/j.mce.2006.11.013 pmid: 17337116
96 V Burnham, C Sundby, A Laman-Maharg, J Thornton. Luteinizing hormone acts at the hippocampus to dampen spatial memory. Horm Behav 2017; 89: 55–63
https://doi.org/10.1016/j.yhbeh.2016.11.007 pmid: 27847314
97 B Gawronska, A Stepien, AJ Ziecik. Effect of estradiol and progesterone on oviductal LH-receptors and LH-dependent relaxation of the porcine oviduct. Theriogenology 2000; 53(3): 659–672
https://doi.org/10.1016/S0093-691X(99)00265-4 pmid: 10735034
98 S Ponglowhapan, DB Church, M Khalid. Differences in the expression of luteinizing hormone and follicle-stimulating hormone receptors in the lower urinary tract between intact and gonadectomised male and female dogs. Domest Anim Endocrinol 2008; 34(4): 339–351
https://doi.org/10.1016/j.domaniend.2007.09.005 pmid: 18023320
99 TZ Movsas, KY Wong, MD Ober, R Sigler, ZM Lei, A Muthusamy. Confirmation of luteinizing hormone (LH) in living human vitreous and the effect of LH receptor reduction on murine electroretinogram. Neuroscience 2018; 385: 1–10
https://doi.org/10.1016/j.neuroscience.2018.05.049 pmid: 29890291
100 M Nimura, J Udagawa, T Hatta, R Hashimoto, H Otani. Spatial and temporal patterns of expression of melanocortin type 2 and 5 receptors in the fetal mouse tissues and organs. Anat Embryol (Berl) 2006; 211(2): 109–117
https://doi.org/10.1007/s00429-005-0066-9 pmid: 16463171
101 G Guelfi, M Zerani, G Brecchia, F Parillo, C Dall’Aglio, M Maranesi, C Boiti. Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Mol Cell Endocrinol 2011; 339(1–2): 63–71
https://doi.org/10.1016/j.mce.2011.03.017 pmid: 21466837
102 IA Malik, J Triebel, J Posselt, S Khan, P Ramadori, D Raddatz, G Ramadori. Melanocortin receptors in rat liver cells: change of gene expression and intracellular localization during acute-phase response. Histochem Cell Biol 2012; 137(3): 279–291
https://doi.org/10.1007/s00418-011-0899-7 pmid: 22183812
103 AM Lantang, BA Innes, EH Gan, SH Pearce, GE Lash. Expression of melanocortin receptors in human endometrium. Hum Reprod 2015; 30(10): 2404–2410
https://doi.org/10.1093/humrep/dev188 pmid: 26223677
104 H Johnston, PJ King, PJ O’Shaughnessy. Effects of ACTH and expression of the melanocortin-2 receptor in the neonatal mouse testis. Reproduction 2007; 133(6): 1181–1187
https://doi.org/10.1530/REP-06-0359 pmid: 17636172
105 CM Isales, M Zaidi, HC Blair. ACTH is a novel regulator of bone mass. Ann N Y Acad Sci 2010; 1192(1): 110–116
https://doi.org/10.1111/j.1749-6632.2009.05231.x pmid: 20392225
106 D Norman, AM Isidori, V Frajese, M Caprio, SL Chew, AB Grossman, AJ Clark, G Michael Besser, A Fabbri. ACTH and α-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central-peripheral melanocortin-leptin pathway. Mol Cell Endocrinol 2003; 200(1–2): 99–109
https://doi.org/10.1016/S0303-7207(02)00410-0 pmid: 12644303
107 DJ Jun, KY Na, W Kim, D Kwak, EJ Kwon, JH Yoon, K Yea, H Lee, J Kim, PG Suh, SH Ryu, KT Kim. Melanocortins induce interleukin 6 gene expression and secretion through melanocortin receptors 2 and 5 in 3T3-L1 adipocytes. J Mol Endocrinol 2010; 44(4): 225–236
https://doi.org/10.1677/JME-09-0161 pmid: 20089716
108 X Zhang, AM Saarinen, LE Campbell, EA De Filippis, J Liu. Regulation of lipolytic response and energy balance by melanocortin 2 receptor accessory protein (MRAP) in adipocytes. Diabetes 2018; 67(2): 222–234
https://doi.org/10.2337/db17-0862 pmid: 29217655
109 BJ Renquist, JG Murphy, EA Larson, D Olsen, RF Klein, KL Ellacott, RD Cone. Melanocortin-3 receptor regulates the normal fasting response. Proc Natl Acad Sci USA 2012; 109(23): E1489–E1498
https://doi.org/10.1073/pnas.1201994109 pmid: 22573815
110 den Beukel JC van, A Grefhorst, C Quarta, J Steenbergen, PG Mastroberardino, M Lombès, PJ Delhanty, R Mazza, U Pagotto, der Lely AJ van, AP Themmen. Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone. FASEB J 2014; 28(11): 4857–4867
https://doi.org/10.1096/fj.14-254839 pmid: 25085924
111 LE Ramage, M Akyol, AM Fletcher, J Forsythe, M Nixon, RN Carter, EJ van Beek, NM Morton, BR Walker, RH Stimson. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 2016; 24(1): 130–141
https://doi.org/10.1016/j.cmet.2016.06.011 pmid: 27411014
112 E Simamura, T Arikawa, T Ikeda, H Shimada, H Shoji, H Masuta, Y Nakajima, H Otani, H Yonekura, T Hatta. Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5. PLoS One 2015; 10(4): e0123232
https://doi.org/10.1371/journal.pone.0123232 pmid: 25860801
113 BB Nankova, R Kvetnansky, EL Sabban. Adrenocorticotropic hormone (MC-2) receptor mRNA is expressed in rat sympathetic ganglia and up-regulated by stress. Neurosci Lett 2003; 344(3): 149–152
https://doi.org/10.1016/S0304-3940(03)00361-6 pmid: 12812827
114 N Cirillo, SS Prime. Keratinocytes synthesize and activate cortisol. J Cell Biochem 2011; 112(6): 1499–1505
https://doi.org/10.1002/jcb.23081 pmid: 21344493
115 M Nagano, PA Kelly. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J Biol Chem 1994; 269(18): 13337–13345
https://doi.org/10.1016/S0021-9258(17)36838-2 pmid: 8175764
116 P Zhang, Z Ge, H Wang, W Feng, X Sun, X Chu, C Jiang, Y Wang, D Zhu, Y Bi. Prolactin improves hepatic steatosis via CD36 pathway. J Hepatol 2018; 68(6): 1247–1255
https://doi.org/10.1016/j.jhep.2018.01.035 pmid: 29452209
117 S Shao, Z Yao, J Lu, Y Song, Z He, C Yu, X Zhou, L Zhao, J Zhao, L Gao. Ablation of prolactin receptor increases hepatic triglyceride accumulation. Biochem Biophys Res Commun 2018; 498(3): 693–699
https://doi.org/10.1016/j.bbrc.2018.03.048 pmid: 29524401
118 GM Luque, F Lopez-Vicchi, AM Ornstein, B Brie, C De Winne, E Fiore, MI Perez-Millan, G Mazzolini, M Rubinstein, D Becu-Villalobos. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am J Physiol Endocrinol Metab 2016; 311(6): E974–E988
https://doi.org/10.1152/ajpendo.00200.2016 pmid: 27802964
119 S Park, DS Kim, JW Daily, SH Kim. Serum prolactin concentrations determine whether they improve or impair β-cell function and insulin sensitivity in diabetic rats. Diabetes Metab Res Rev 2011; 27(6): 564–574
https://doi.org/10.1002/dmrr.1215 pmid: 21557442
120 J Yu, F Xiao, Q Zhang, B Liu, Y Guo, Z Lv, T Xia, S Chen, K Li, Y Du, F Guo. PRLR regulates hepatic insulin sensitivity in mice via STAT5. Diabetes 2013; 62(9): 3103–3113
https://doi.org/10.2337/db13-0182 pmid: 23775766
121 C Ling, G Hellgren, M Gebre-Medhin, K Dillner, H Wennbo, B Carlsson, H Billig. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology 2000; 141(10): 3564–3572
https://doi.org/10.1210/endo.141.10.7691 pmid: 11014209
122 MC Barber, RA Clegg, E Finley, RG Vernon, DJ Flint. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol 1992; 135(2): 195–202
https://doi.org/10.1677/joe.0.1350195 pmid: 1474326
123 C Ling, L Svensson, B Odén, B Weijdegård, B Edén, S Edén, H Billig. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 2003; 88(4): 1804–1808
https://doi.org/10.1210/jc.2002-021137 pmid: 12679477
124 BJ Moore, T Gerardo-Gettens, BA Horwitz, JS Stern. Hyperprolactinemia stimulates food intake in the female rat. Brain Res Bull 1986; 17(4): 563–569
https://doi.org/10.1016/0361-9230(86)90226-1 pmid: 3779456
125 R Nanbu-Wakao, Y Fujitani, Y Masuho, M Muramatu, H Wakao. Prolactin enhances CCAAT enhancer-binding protein-β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol 2000; 14(2): 307–316
pmid: 10674402
126 DJ Flint, N Binart, S Boumard, JJ Kopchick, P Kelly. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. J Endocrinol 2006; 191(1): 101–111
https://doi.org/10.1677/joe.1.06939 pmid: 17065393
127 L Nilsson, N Binart, M Bohlooly-Y, M Bramnert, E Egecioglu, J Kindblom, PA Kelly, JJ Kopchick, CJ Ormandy, C Ling, H Billig. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 2005; 331(4): 1120–1126
https://doi.org/10.1016/j.bbrc.2005.04.026 pmid: 15882993
128 O Gualillo, F Lago, M García, C Menéndez, R Señarís, FF Casanueva, C Diéguez. Prolactin stimulates leptin secretion by rat white adipose tissue. Endocrinology 1999; 140(11): 5149–5153
https://doi.org/10.1210/endo.140.11.7147 pmid: 10537143
129 D Sauvé, B Woodside. Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats. Brain Res 2000; 868(2): 306–314
https://doi.org/10.1016/S0006-8993(00)02344-1 pmid: 10854583
130 M Freemark, I Avril, D Fleenor, P Driscoll, A Petro, E Opara, W Kendall, J Oden, S Bridges, N Binart, B Breant, PA Kelly. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 2002; 143(4): 1378–1385
https://doi.org/10.1210/endo.143.4.8722 pmid: 11897695
131 H Yang, J Di, J Pan, R Yu, Y Teng, Z Cai, X Deng. The association between prolactin and metabolic parameters in PCOS women: a retrospective analysis. Front Endocrinol (Lausanne) 2020; 11: 263
https://doi.org/10.3389/fendo.2020.00263 pmid: 32477263
132 SK Karnik, H Chen, GW McLean, JJ Heit, X Gu, AY Zhang, M Fontaine, MH Yen, SK Kim. Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007; 318(5851): 806–809
https://doi.org/10.1126/science.1146812 pmid: 17975067
133 V Bernard, J Young, P Chanson, N Binart. New insights in prolactin: pathological implications. Nat Rev Endocrinol 2015; 11(5): 265–275
https://doi.org/10.1038/nrendo.2015.36 pmid: 25781857
134 C Kedzia, L Lacroix, N Ameur, T Ragot, PA Kelly, B Caillou, N Binart. Medullary thyroid carcinoma arises in the absence of prolactin signaling. Cancer Res 2005; 65(18): 8497–8503
https://doi.org/10.1158/0008-5472.CAN-04-3937 pmid: 16166330
135 AA Tam, C Kaya, C Aydın, R Ersoy, B Çakır. Differentiated thyroid cancer in patients with prolactinoma. Turk J Med Sci 2016; 46(5): 1360–1365
https://doi.org/10.3906/sag-1501-58 pmid: 27966298
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed