|
|
Atypical pituitary hormone–target tissue axis |
Chao Xu1,2, Zhao He1,2, Yongfeng Song1,2, Shanshan Shao1,2, Guang Yang3( ), Jiajun Zhao1,2( ) |
1. Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China 2. Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China 3. Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China |
|
|
Abstract A long-held belief is that pituitary hormones bind to their cognate receptors in classical target glands to actuate their manifold functions. However, a number of studies have shown that multiple types of pituitary hormone receptors are widely expressed in non-classical target organs. Each pituitary gland-derived hormone exhibits a wide range of nonconventional biological effects in these non-classical target organs. Herein, the extra biological functions of pituitary hormones, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotrophic hormone, and prolactin when they act on non-classical organs were summarized, defined by the novel concept of an “atypical pituitary hormone–target tissue axis.” This novel proposal explains the pathomechanisms of abnormal glucose and lipid metabolism, obesity, hypertension, fatty liver, and atherosclerosis while offering a more comprehensive and systematic insights into the coordinated regulation of environmental factors, genetic factors, and neuroendocrine hormones on human biological functions. The continued exploration of the physiology of the “atypical pituitary hormone–target tissue axis” could enable the identification of novel therapeutic targets for metabolic diseases.
|
Keywords
thyroid-stimulating hormone
follicle-stimulating hormone
luteinizing hormone
adrenocorticotrophic hormone
prolactin
|
Corresponding Author(s):
Guang Yang,Jiajun Zhao
|
Just Accepted Date: 11 January 2023
Online First Date: 20 February 2023
Issue Date: 15 March 2023
|
|
1 |
MW Szkudlinski, V Fremont, C Ronin, BD Weintraub. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82(2): 473–502
https://doi.org/10.1152/physrev.00031.2001
pmid: 11917095
|
2 |
A Ulloa-Aguirre, C Timossi. Structure-function relationship of follicle-stimulating hormone and its receptor. Hum Reprod Update 1998; 4(3): 260–283
https://doi.org/10.1093/humupd/4.3.260
pmid: 9741710
|
3 |
the American Association of Neurological Surgeons (AANS) From, Society of Neuroradiology (ASNR) American, Radiology Society of Europe (CIRSE) Cardiovascular, Interventional Radiology Association (CIRA) Interventional, of Neurological Surgeons (CNS) Canadian, Society of Minimally Invasive Neurological Therapy (ESMINT) Congress, Society of Neuroradiology (ESNR) European, Stroke Organization (ESO) European, for Cardiovascular Angiography European, (SCAI) Society, of Interventional Radiology (SIR) Interventions, of NeuroInterventional Surgery (SNIS) Society, Stroke Organization (WSO) Society, D World, B Sacks, BCV Baxter, JS Campbell, C Carpenter, D Cognard, M Dippel, U Eesa, K Fischer, JA Hausegger, Hussain M Hirsch, O Shazam, MV Jansen, AA Jayaraman, BW Khalessi, S Kluck, PM Lavine, S Meyers, DA Ramee, CM Rüfenacht, D Schirmer. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke 2018; 13(6): 612–632
https://doi.org/10.1177/1747493018778713
pmid: 29786478
|
4 |
AJ Clark, LA Metherell. Mechanisms of disease: the adrenocorticotropin receptor and disease. Nat Clin Pract Endocrinol Metab 2006; 2(5): 282–290
https://doi.org/10.1038/ncpendmet0165
pmid: 16932299
|
5 |
WL Miller. The hypothalamic-pituitary-adrenal axis: a brief history. Horm Res Paediatr 2018; 89(4): 212–223
https://doi.org/10.1159/000487755
pmid: 29719288
|
6 |
Y Yang, CM Harmon. Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 2020; 503: 110688
https://doi.org/10.1016/j.mce.2019.110688
pmid: 31866318
|
7 |
ME Freeman, B Kanyicska, A Lerant, G Nagy. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80(4): 1523–1631
https://doi.org/10.1152/physrev.2000.80.4.1523
pmid: 11015620
|
8 |
M Zaidi, MI New, HC Blair, A Zallone, R Baliram, TF Davies, C Cardozo, J Iqbal, L Sun, CJ Rosen, T Yuen. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237(3): R83–R98
https://doi.org/10.1530/JOE-17-0680
pmid: 29555849
|
9 |
JR Klein. Physiological relevance of thyroid stimulating hormone and thyroid stimulating hormone receptor in tissues other than the thyroid. Autoimmunity 2003; 36(6–7): 417–421
https://doi.org/10.1080/08916930310001603019
pmid: 14669950
|
10 |
H Alonso, J Fernández-Ruocco, M Gallego, LL Malagueta-Vieira, A Rodríguez-de-Yurre, E Medei, O Casis. Thyroid stimulating hormone directly modulates cardiac electrical activity. J Mol Cell Cardiol 2015; 89(Pt B): 280–286
https://doi.org/10.1016/j.yjmcc.2015.10.019
pmid: 26497403
|
11 |
S Balzan, R Del Carratore, G Nicolini, P Beffy, V Lubrano, F Forini, G Iervasi. Proangiogenic effect of TSH in human microvascular endothelial cells through its membrane receptor. J Clin Endocrinol Metab 2012; 97(5): 1763–1770
https://doi.org/10.1210/jc.2011-2146
pmid: 22419707
|
12 |
SC Sun, PJ Hsu, FJ Wu, SH Li, CH Lu, CW Luo. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J Biol Chem 2010; 285(6): 3758–3765
https://doi.org/10.1074/jbc.M109.066266
pmid: 19955180
|
13 |
Y Gong, Y Ma, Z Ye, Z Fu, P Yang, B Gao, W Guo, D Hu, J Ye, S Ma, F Zhang, L Zhou, X Xu, Z Li, T Yang, H Zhou. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017; 76: 32–41
https://doi.org/10.1016/j.metabol.2017.07.006
pmid: 28987238
|
14 |
CP Tseng, KK Leong, MJ Liou, HL Hsu, HC Lin, YA Chen, JD Lin. Circulating epithelial cell counts for monitoring the therapeutic outcome of patients with papillary thyroid carcinoma. Oncotarget 2017; 8(44): 77453–77464
https://doi.org/10.18632/oncotarget.20512
pmid: 29100400
|
15 |
CW Rowe, JW Paul, C Gedye, JM Tolosa, C Bendinelli, S McGrath, R Smith. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer 2017; 24(6): R191–R202
https://doi.org/10.1530/ERC-17-0010
pmid: 28351942
|
16 |
JM Rijks, J Plat, E Dorenbos, B Penders, WM Gerver, ACE Vreugdenhil. Association of TSH with cardiovascular disease risk in overweight and obese children during lifestyle intervention. J Clin Endocrinol Metab 2017; 102(6): 2051–2058
https://doi.org/10.1210/jc.2016-3057
pmid: 28379580
|
17 |
W Xin, Y Yu, Y Ma, Y Gao, Y Xu, L Chen, Q Wan. Thyroid-stimulating hormone stimulation downregulates autophagy and promotes apoptosis in chondrocytes. Endocr J 2017; 64(7): 749–757
https://doi.org/10.1507/endocrj.EJ16-0534
pmid: 28626114
|
18 |
AP Delitala, M Steri, MG Pilia, M Dei, S Lai, G Delitala, D Schlessinger, F Cucca. Menopause modulates the association between thyrotropin levels and lipid parameters: the SardiNIA study. Maturitas 2016; 92: 30–34
https://doi.org/10.1016/j.maturitas.2016.07.003
pmid: 27621235
|
19 |
G Panagiotou, K Pazaitou-Panayiotou, SA Paschou, D Komninou, N Kalogeris, A Vryonidou, CS Mantzoros. Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 2016; 26(8): 1039–1045
https://doi.org/10.1089/thy.2016.0098
pmid: 27267080
|
20 |
JR Burgos, BM Iresjö, S Wärnåker, U Smedh. Presence of TSH receptors in discrete areas of the hypothalamus and caudal brainstem with relevance for feeding controls—support for functional significance. Brain Res 2016; 1642: 278–286
https://doi.org/10.1016/j.brainres.2016.04.007
pmid: 27059392
|
21 |
CM Dutton, W Joba, C Spitzweg, AE Heufelder, RS Bahn. Thyrotropin receptor expression in adrenal, kidney, and thymus. Thyroid 1997; 7(6): 879–884
https://doi.org/10.1089/thy.1997.7.879
pmid: 9459631
|
22 |
SF Zhang, LZ Li, W Zhang, JR Guo, FF Liu, K Ma, SH Chen, YQ Zhang. Association between plasma homocysteine levels and subclinical hypothyroidism in adult subjects: a meta-analysis. Horm Metab Res 2020; 52(9): 625–638
https://doi.org/10.1055/a-1199-2633
pmid: 32629519
|
23 |
PH Nichols, Y Pan, B May, M Pavlicova, JC Rausch, AA Mencin, VV Thaker. Effect of TSH on non-alcoholic fatty liver disease (NAFLD) independent of obesity in children of predominantly Hispanic/Latino ancestry by causal mediation analysis. PLoS One 2020; 15(6): e0234985
https://doi.org/10.1371/journal.pone.0234985
pmid: 32569304
|
24 |
R Zhang, X Tian, L Qin, X Wei, J Wang, J Shen. Factors predicting abnormal liver function tests induced by Graves’ disease alone: a retrospective cohort study. Medicine (Baltimore) 2015; 94(19): e839
https://doi.org/10.1097/MD.0000000000000839
pmid: 25984670
|
25 |
K He, Y Hu, XH Xu, XM Mao. Hepatic dysfunction related to thyrotropin receptor antibody in patients with Graves’ disease. Exp Clin Endocrinol Diabetes 2014; 122(6): 368–372
https://doi.org/10.1055/s-0034-1375667
pmid: 24941434
|
26 |
C Rauer, R Ringseis, S Rothe, G Wen, K Eder. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells. PLoS One 2014; 9(3): e91265
https://doi.org/10.1371/journal.pone.0091265
pmid: 24625548
|
27 |
YD Chu, CT Yeh. The molecular function and clinical role of thyroid stimulating hormone receptor in cancer cells. Cells 2020; 9(7): 1730
https://doi.org/10.3390/cells9071730
pmid: 32698392
|
28 |
L Scappaticcio, M Longo, MI Maiorino, V Pernice, P Caruso, K Esposito, G Bellastella. Abnormal liver blood tests in patients with hyperthyroidism: systematic review and meta-analysis. Thyroid 2021; 31(6): 884–894
https://doi.org/10.1089/thy.2020.0715
pmid: 33327837
|
29 |
W Zhang, LM Tian, Y Han, HY Ma, LC Wang, J Guo, L Gao, JJ Zhao. Presence of thyrotropin receptor in hepatocytes: not a case of illegitimate transcription. J Cell Mol Med 2009; 13(11–12): 4636–4642
https://doi.org/10.1111/j.1582-4934.2008.00670.x
pmid: 19187127
|
30 |
TY Lin, AO Shekar, N Li, MW Yeh, S Saab, M Wilson, AM Leung. Incidence of abnormal liver biochemical tests in hyperthyroidism. Clin Endocrinol (Oxf) 2017; 86(5): 755–759
https://doi.org/10.1111/cen.13312
pmid: 28199740
|
31 |
RA Sinha, E Bruinstroop, BK Singh, PM Yen. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid 2019; 29(9): 1173–1191
https://doi.org/10.1089/thy.2018.0664
pmid: 31389309
|
32 |
PL Jansen, FG Schaap. Pituitary TSH controls bile salt synthesis. J Hepatol 2015; 62(5): 1005–1007
https://doi.org/10.1016/j.jhep.2015.02.003
pmid: 25678391
|
33 |
L Tian, J Ni, T Guo, J Liu, Y Dang, Q Guo, L Zhang. TSH stimulates the proliferation of vascular smooth muscle cells. Endocrine 2014; 46(3): 651–658
https://doi.org/10.1007/s12020-013-0135-4
pmid: 24452868
|
34 |
M Stojković, M Žarković. Subclinical thyroid dysfunction and the risk of cardiovascular disease. Curr Pharm Des 2020; 26(43): 5617–5627
https://doi.org/10.2174/1381612826666201118094747
pmid: 33213317
|
35 |
Y Tao, H Gu, J Wu, J Sui. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr Res 2015; 40(2): 74–78
https://doi.org/10.3109/07435800.2014.952014
pmid: 25330278
|
36 |
Y Song, D Zheng, M Zhao, Y Qin, T Wang, W Xing, L Gao, J Zhao. Thyroid-stimulating hormone increases HNF-4α phosphorylation via cAMP/PKA pathway in the liver. Sci Rep 2015; 5(1): 13409
https://doi.org/10.1038/srep13409
pmid: 26302721
|
37 |
X Zhang, Y Song, M Feng, X Zhou, Y Lu, L Gao, C Yu, X Jiang, J Zhao. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res 2015; 56(5): 963–971
https://doi.org/10.1194/jlr.M047654
pmid: 25713102
|
38 |
CM Beukhof, ET Massolt, TJ Visser, TIM Korevaar, M Medici, WW de Herder, JE Roeters van Lennep, MT Mulder, YB de Rijke, C Reiners, FA Verburg, RP Peeters. Effects of thyrotropin on peripheral thyroid hormone metabolism and serum lipids. Thyroid 2018; 28(2): 168–174
https://doi.org/10.1089/thy.2017.0330
pmid: 29316865
|
39 |
Y Song, C Xu, S Shao, J Liu, W Xing, J Xu, C Qin, C Li, B Hu, S Yi, X Xia, H Zhang, X Zhang, T Wang, W Pan, C Yu, Q Wang, X Lin, L Wang, L Gao, J Zhao. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol 2015; 62(5): 1171–1179
https://doi.org/10.1016/j.jhep.2014.12.006
pmid: 25533663
|
40 |
M Rumińska, E Witkowska-Sędek, A Majcher, M Brzewski, M Krawczyk, B Pyrżak. Serum TSH level in obese children and its correlations with atherogenic lipid indicators and carotid intima media thickness. J Ultrason 2018; 18(75): 296–301
https://doi.org/10.15557/JoU.2018.0043
pmid: 30763013
|
41 |
L Zhou, K Wu, L Zhang, L Gao, S Chen. Liver-specific deletion of TSHR inhibits hepatic lipid accumulation in mice. Biochem Biophys Res Commun 2018; 497(1): 39–45
https://doi.org/10.1016/j.bbrc.2018.01.187
pmid: 29421660
|
42 |
C Mandato, I D’Acunzo, P Vajro. Thyroid dysfunction and its role as a risk factor for non-alcoholic fatty liver disease: what’s new. Dig Liver Dis 2018; 50(11): 1163–1165
https://doi.org/10.1016/j.dld.2018.08.026
pmid: 30262159
|
43 |
F Yan, Q Wang, M Lu, W Chen, Y Song, F Jing, Y Guan, L Wang, Y Lin, T Bo, J Zhang, T Wang, W Xin, C Yu, Q Guan, X Zhou, L Gao, C Xu, J Zhao. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J Hepatol 2014; 61(6): 1358–1364
https://doi.org/10.1016/j.jhep.2014.06.037
pmid: 25016220
|
44 |
W He, X An, L Li, X Shao, Q Li, Q Yao, JA Zhang. Relationship between hypothyroidism and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2017; 8: 335
https://doi.org/10.3389/fendo.2017.00335
pmid: 29238323
|
45 |
Z Guo, M Li, B Han, X Qi. Association of non-alcoholic fatty liver disease with thyroid function: a systematic review and meta-analysis. Dig Liver Dis 2018; 50(11): 1153–1162
https://doi.org/10.1016/j.dld.2018.08.012
pmid: 30224316
|
46 |
Y Li, L Wang, L Zhou, Y Song, S Ma, C Yu, J Zhao, C Xu, L Gao. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol 2017; 446: 70–80
https://doi.org/10.1016/j.mce.2017.02.015
pmid: 28212844
|
47 |
X Wang, J Mao, X Zhou, Q Li, L Gao, J Zhao. Thyroid stimulating hormone triggers hepatic mitochondrial stress through cyclophilin D acetylation. Oxid Med Cell Longev 2020; 2020: 1249630
https://doi.org/10.1155/2020/1249630
pmid: 31998431
|
48 |
YL Shih, YH Huang, KH Lin, YD Chu, CT Yeh. Identification of functional thyroid stimulating hormone receptor and TSHR gene mutations in hepatocellular carcinoma. Anticancer Res 2018; 38(5): 2793–2802
pmid: 29715101
|
49 |
K Haraguchi, H Shimura, L Lin, T Endo, T Onaya. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology 1996; 137(8): 3200–3205
https://doi.org/10.1210/endo.137.8.8754740
pmid: 8754740
|
50 |
M Lu, RY Lin. TSH stimulates adipogenesis in mouse embryonic stem cells. J Endocrinol 2008; 196(1): 159–169
https://doi.org/10.1677/JOE-07-0452
pmid: 18180327
|
51 |
K Haraguchi, H Shimura, L Lin, T Saito, T Endo, T Onaya. Functional expression of thyrotropin receptor in differentiated 3T3-L1 cells: a possible model cell line of extrathyroidal expression of thyrotropin receptor. Biochem Biophys Res Commun 1996; 223(1): 193–198
https://doi.org/10.1006/bbrc.1996.0868
pmid: 8660370
|
52 |
A Bell, A Gagnon, P Dods, D Papineau, M Tiberi, A Sorisky. TSH signaling and cell survival in 3T3-L1 preadipocytes. Am J Physiol Cell Physiol 2002; 283(4): C1056–C1064
https://doi.org/10.1152/ajpcell.00058.2002
pmid: 12225969
|
53 |
S Niu, H Li, W Chen, J Zhao, L Gao, T Bo. Beta-arrestin 1 mediates liver thyrotropin regulation of cholesterol conversion metabolism via the Akt-dependent pathway. Int J Endocrinol 2018; 2018: 4371396
pmid: 29853881
|
54 |
M Murakami, Y Kamiya, T Morimura, O Araki, M Imamura, T Ogiwara, H Mizuma, M Mori. Thyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology 2001; 142(3): 1195–1201
https://doi.org/10.1210/endo.142.3.8012
pmid: 11181535
|
55 |
T Endo, T Kobayashi. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. Am J Physiol Endocrinol Metab 2008; 295(2): E514–E518
https://doi.org/10.1152/ajpendo.90433.2008
pmid: 18559984
|
56 |
A Elgadi, H Zemack, C Marcus, S Norgren. Tissue-specific knockout of TSHr in white adipose tissue increases adipocyte size and decreases TSH-induced lipolysis. Biochem Biophys Res Commun 2010; 393(3): 526–530
https://doi.org/10.1016/j.bbrc.2010.02.042
pmid: 20152797
|
57 |
S Lu, Q Guan, Y Liu, H Wang, W Xu, X Li, Y Fu, L Gao, J Zhao, X Wang. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis 2012; 11(1): 17
https://doi.org/10.1186/1476-511X-11-17
pmid: 22289392
|
58 |
F Comas, A Lluch, M Sabater, J Latorre, F Ortega, W Ricart, M López, JM Fernández-Real, JM Moreno-Navarrete. Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function. Int J Obes 2019; 43(8): 1611–1619
https://doi.org/10.1038/s41366-018-0203-1
pmid: 30206337
|
59 |
S Ma, F Jing, C Xu, L Zhou, Y Song, C Yu, D Jiang, L Gao, Y Li, Q Guan, J Zhao. Thyrotropin and obesity: increased adipose triglyceride content through glycerol-3-phosphate acyltransferase 3. Sci Rep 2015; 5(1): 7633
https://doi.org/10.1038/srep07633
pmid: 25559747
|
60 |
J Zhang, H Wu, S Ma, L Gao, C Yu, F Jing, J Zhao. TSH promotes adiposity by inhibiting the browning of white fat. Adipocyte 2020; 9(1): 264–278
https://doi.org/10.1080/21623945.2020.1783101
pmid: 32579056
|
61 |
V Drvota, A Janson, C Norman, C Sylvén, J Häggblad, M Brönnegård, C Marcus. Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem Biophys Res Commun 1995; 211(2): 426–431
https://doi.org/10.1006/bbrc.1995.1831
pmid: 7794253
|
62 |
DF Sellitti, R Hill, SQ Doi, T Akamizu, J Czaja, S Tao, H Koshiyama. Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 1997; 7(4): 641–646
https://doi.org/10.1089/thy.1997.7.641
pmid: 9292956
|
63 |
W Huang, J Xu, F Jing, WB Chen, L Gao, HT Yuan, JJ Zhao. Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion. Endocrine 2014; 46(2): 328–339
https://doi.org/10.1007/s12020-013-0052-6
pmid: 24065308
|
64 |
J Dong, C Gao, J Liu, Y Cao, L Tian. TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget 2016; 7(26): 39207–39215
https://doi.org/10.18632/oncotarget.9393
pmid: 27206677
|
65 |
J Fernandez-Ruocco, M Gallego, A Rodriguez-de-Yurre, J Zayas-Arrabal, L Echeazarra, A Alquiza, V Fernández-López, JM Rodriguez-Robledo, O Brito, Y Schleier, M Sepulveda, NF Oshiyama, M Vila-Petroff, RA Bassani, EH Medei, O Casis. High thyrotropin is critical for cardiac electrical remodeling and arrhythmia vulnerability in hypothyroidism. Thyroid 2020; 29(7): 934–945
https://doi.org/10.1089/thy.2018.0709
pmid: 31084419
|
66 |
L Tian, L Zhang, J Liu, T Guo, C Gao, J Ni. Effects of TSH on the function of human umbilical vein endothelial cells. J Mol Endocrinol 2014; 52(2): 215–222
https://doi.org/10.1530/JME-13-0119
pmid: 24444496
|
67 |
K Tahara, T Akahane, T Namisaki, K Moriya, H Kawaratani, K Kaji, H Takaya, Y Sawada, N Shimozato, S Sato, S Saikawa, K Nakanishi, T Kubo, Y Fujinaga, M Furukawa, K Kitagawa, T Ozutsumi, Y Tsuji, D Kaya, H Ogawa, H Takagi, K Ishida, A Mitoro, H Yoshiji. Thyroid-stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH Open 2020; 4(3): 400–404
https://doi.org/10.1002/jgh3.12264
pmid: 32514444
|
68 |
J Chen, M Shi, N Wang, P Yi, L Sun, Q Meng. TSH inhibits eNOS expression in HMEC-1 cells through the TSHR/PI3K/AKT signaling pathway. Ann Endocrinol (Paris) 2019; 80(5–6): 273–279
https://doi.org/10.1016/j.ando.2019.06.007
pmid: 31606200
|
69 |
C Yang, M Lu, W Chen, Z He, X Hou, M Feng, H Zhang, T Bo, X Zhou, Y Yu, H Zhang, M Zhao, L Wang, C Yu, L Gao, W Jiang, Q Zhang, J Zhao. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 2019; 216(5): 1182–1198
https://doi.org/10.1084/jem.20181473
pmid: 30940720
|
70 |
JA Tsai, A Janson, E Bucht, H Kindmark, C Marcus, A Stark, HR Zemack, O Torring. Weak evidence of thyrotropin receptors in primary cultures of human osteoblast-like cells. Calcif Tissue Int 2004; 74(5): 486–491
https://doi.org/10.1007/s00223-003-0108-3
pmid: 14961213
|
71 |
E Abe, RC Marians, W Yu, XB Wu, T Ando, Y Li, J Iqbal, L Eldeiry, G Rajendren, HC Blair, TF Davies, M Zaidi. TSH is a negative regulator of skeletal remodeling. Cell 2003; 115(2): 151–162
https://doi.org/10.1016/S0092-8674(03)00771-2
pmid: 14567913
|
72 |
AT Milani, MH Khadem-Ansari, Y Rasmi. Effects of thyroid-stimulating hormone on adhesion molecules and pro-inflammatory cytokines secretion in human umbilical vein endothelial cells. Res Pharm Sci 2018; 13(6): 546–556
https://doi.org/10.4103/1735-5362.245966
pmid: 30607152
|
73 |
H Hase, T Ando, L Eldeiry, A Brebene, Y Peng, L Liu, H Amano, TF Davies, L Sun, M Zaidi, E Abe. TNFα mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci USA 2006; 103(34): 12849–12854
https://doi.org/10.1073/pnas.0600427103
pmid: 16908863
|
74 |
L Sun, TF Davies, HC Blair, E Abe, M Zaidi. TSH and bone loss. Ann N Y Acad Sci 2006; 1068(1): 309–318
https://doi.org/10.1196/annals.1346.033
pmid: 16831931
|
75 |
TK Sampath, P Simic, R Sendak, N Draca, AE Bowe, S O’Brien, SC Schiavi, JM McPherson, S Vukicevic. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res 2007; 22(6): 849–859
https://doi.org/10.1359/jbmr.070302
pmid: 17352644
|
76 |
L Sun, S Vukicevic, R Baliram, G Yang, R Sendak, J McPherson, LL Zhu, J Iqbal, R Latif, A Natrajan, A Arabi, K Yamoah, BS Moonga, Y Gabet, TF Davies, I Bab, E Abe, K Sampath, M Zaidi. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci USA 2008; 105(11): 4289–4294
https://doi.org/10.1073/pnas.0712395105
pmid: 18332426
|
77 |
K van der Weerd, PM van Hagen, B Schrijver, SJ Heuvelmans, LJ Hofland, SM Swagemakers, AJ Bogers, WA Dik, TJ Visser, JJ van Dongen, AJ van der Lelij, FJ Staal. Thyrotropin acts as a T-cell developmental factor in mice and humans. Thyroid 2014; 24(6): 1051–1061
https://doi.org/10.1089/thy.2013.0396
pmid: 24635198
|
78 |
C Spitzweg, W Joba, AE Heufelder. Expression of thyroid-related genes in human thymus. Thyroid 1999; 9(2): 133–141
https://doi.org/10.1089/thy.1999.9.133
pmid: 10090312
|
79 |
SM McLachlan, HA Aliesky, B Banuelos, S Lesage, R Collin, B Rapoport. High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin Exp Immunol 2017; 188(2): 243–253
https://doi.org/10.1111/cei.12928
pmid: 28099999
|
80 |
K Wu, M Zhao, C Ma, H Zhang, X Liu, L Zhou, J Zhao, L Gao, D Wang. Thyrotropin alters T cell development in the thymus in subclinical hypothyroidism mouse model. Scand J Immunol 2017; 85(1): 35–42
https://doi.org/10.1111/sji.12507
pmid: 27864993
|
81 |
R Paschke, V Geenen. Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child. J Mol Med (Berl) 1995; 73(11): 577–580
https://doi.org/10.1007/BF00195143
pmid: 8751142
|
82 |
DF Sellitti, T Akamizu, SQ Doi, GH Kim, JT Kariyil, JJ Kopchik, H Koshiyama. Renal expression of two ‘thyroid-specific’ genes: thyrotropin receptor and thyroglobulin. Exp Nephrol 2000; 8(4–5): 235–243
https://doi.org/10.1159/000020674
pmid: 10940722
|
83 |
TA Jansen, TIM Korevaar, TA Mulder, T White, RL Muetzel, RP Peeters, H Tiemeier. Maternal thyroid function during pregnancy and child brain morphology: a time window-specific analysis of a prospective cohort. Lancet Diabetes Endocrinol 2019; 7(8): 629–637
https://doi.org/10.1016/S2213-8587(19)30153-6
pmid: 31262704
|
84 |
A Radu, C Pichon, P Camparo, M Antoine, Y Allory, A Couvelard, G Fromont, MT Hai, N Ghinea. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 2010; 363(17): 1621–1630
https://doi.org/10.1056/NEJMoa1001283
pmid: 20961245
|
85 |
R Zhang, S Zhang, X Zhu, Y Zhou, X Wu. Follicle-stimulating hormone receptor (FSHR) in Chinese alligator, Alligator sinensis: molecular characterization, tissue distribution and mRNA expression changes during the female reproductive cycle. Anim Reprod Sci 2015; 156: 40–50
https://doi.org/10.1016/j.anireprosci.2015.02.008
pmid: 25765682
|
86 |
H Chen, Y Cui, S Yu. Expression and localisation of FSHR, GHR and LHR in different tissues and reproductive organs of female yaks. Folia Morphol (Warsz) 2018; 77(2): 301–309
https://doi.org/10.5603/FM.a2016.0095
pmid: 29064548
|
87 |
Y Guo, M Zhao, T Bo, S Ma, Z Yuan, W Chen, Z He, X Hou, J Liu, Z Zhang, Q Zhu, Q Wang, X Lin, Z Yang, M Cui, L Liu, Y Li, C Yu, X Qi, Q Wang, H Zhang, Q Guan, L Zhao, S Xuan, H Yan, Y Lin, L Wang, Q Li, Y Song, L Gao, J Zhao. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res 2019; 29(2): 151–166
https://doi.org/10.1038/s41422-018-0123-6
pmid: 30559440
|
88 |
R Mancinelli, P Onori, E Gaudio, S DeMorrow, A Franchitto, H Francis, S Glaser, G Carpino, J Venter, D Alvaro, S Kopriva, M White, A Kossie, J Savage, G Alpini. Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest Liver Physiol 2009; 297(1): G11–G26
https://doi.org/10.1152/ajpgi.00025.2009
pmid: 19389804
|
89 |
H Cui, G Zhao, R Liu, M Zheng, J Chen, J Wen. FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. J Lipid Res 2012; 53(5): 909–917
https://doi.org/10.1194/jlr.M025403
pmid: 22345708
|
90 |
P Liu, Y Ji, T Yuen, E Rendina-Ruedy, VE DeMambro, S Dhawan, W Abu-Amer, S Izadmehr, B Zhou, AC Shin, R Latif, P Thangeswaran, A Gupta, J Li, V Shnayder, ST Robinson, YE Yu, X Zhang, F Yang, P Lu, Y Zhou, LL Zhu, DJ Oberlin, TF Davies, MR Reagan, A Brown, TR Kumar, S Epstein, J Iqbal, NG Avadhani, MI New, H Molina, JB van Klinken, EX Guo, C Buettner, S Haider, Z Bian, L Sun, CJ Rosen, M Zaidi. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 2017; 546(7656): 107–112
https://doi.org/10.1038/nature22342
pmid: 28538730
|
91 |
S Gera, D Sant, S Haider, F Korkmaz, TC Kuo, M Mathew, H Perez-Pena, H Xie, H Chen, R Batista, K Ma, Z Cheng, E Hadelia, C Robinson, A Macdonald, S Miyashita, A Williams, G Jebian, H Miyashita, A Gumerova, K Ievleva, P Smith, J He, V Ryu, V DeMambro, MA Quinn, M Meseck, SM Kim, TR Kumar, J Iqbal, MI New, D Lizneva, CJ Rosen, AJ Hsueh, T Yuen, M Zaidi. First-in-class humanized FSH blocking antibody targets bone and fat. Proc Natl Acad Sci USA 2020; 117(46): 28971–28979
https://doi.org/10.1073/pnas.2014588117
pmid: 33127753
|
92 |
RA Pumroy, EC 3rd Fluck, T Ahmed, VY Moiseenkova-Bell. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87: 102168
https://doi.org/10.1016/j.ceca.2020.102168
pmid: 32004816
|
93 |
L Sun, Y Peng, AC Sharrow, J Iqbal, Z Zhang, DJ Papachristou, S Zaidi, LL Zhu, BB Yaroslavskiy, H Zhou, A Zallone, MR Sairam, TR Kumar, W Bo, J Braun, L Cardoso-Landa, MB Schaffler, BS Moonga, HC Blair, M Zaidi. FSH directly regulates bone mass. Cell 2006; 125(2): 247–260
https://doi.org/10.1016/j.cell.2006.01.051
pmid: 16630814
|
94 |
AM Ettinger, SK Gust, MA Kutzler. Luteinizing hormone receptor expression by nonneoplastic and neoplastic canine lymphocytes. Am J Vet Res 2019; 80(6): 572–577
https://doi.org/10.2460/ajvr.80.6.572
pmid: 31140843
|
95 |
S Vuorenoja, A Rivero-Muller, S Kiiveri, M Bielinska, M Heikinheimo, DB Wilson, IT Huhtaniemi, NA Rahman. Adrenocortical tumorigenesis, luteinizing hormone receptor and transcription factors GATA-4 and GATA-6. Mol Cell Endocrinol 2007; 269(1–2): 38–45
https://doi.org/10.1016/j.mce.2006.11.013
pmid: 17337116
|
96 |
V Burnham, C Sundby, A Laman-Maharg, J Thornton. Luteinizing hormone acts at the hippocampus to dampen spatial memory. Horm Behav 2017; 89: 55–63
https://doi.org/10.1016/j.yhbeh.2016.11.007
pmid: 27847314
|
97 |
B Gawronska, A Stepien, AJ Ziecik. Effect of estradiol and progesterone on oviductal LH-receptors and LH-dependent relaxation of the porcine oviduct. Theriogenology 2000; 53(3): 659–672
https://doi.org/10.1016/S0093-691X(99)00265-4
pmid: 10735034
|
98 |
S Ponglowhapan, DB Church, M Khalid. Differences in the expression of luteinizing hormone and follicle-stimulating hormone receptors in the lower urinary tract between intact and gonadectomised male and female dogs. Domest Anim Endocrinol 2008; 34(4): 339–351
https://doi.org/10.1016/j.domaniend.2007.09.005
pmid: 18023320
|
99 |
TZ Movsas, KY Wong, MD Ober, R Sigler, ZM Lei, A Muthusamy. Confirmation of luteinizing hormone (LH) in living human vitreous and the effect of LH receptor reduction on murine electroretinogram. Neuroscience 2018; 385: 1–10
https://doi.org/10.1016/j.neuroscience.2018.05.049
pmid: 29890291
|
100 |
M Nimura, J Udagawa, T Hatta, R Hashimoto, H Otani. Spatial and temporal patterns of expression of melanocortin type 2 and 5 receptors in the fetal mouse tissues and organs. Anat Embryol (Berl) 2006; 211(2): 109–117
https://doi.org/10.1007/s00429-005-0066-9
pmid: 16463171
|
101 |
G Guelfi, M Zerani, G Brecchia, F Parillo, C Dall’Aglio, M Maranesi, C Boiti. Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Mol Cell Endocrinol 2011; 339(1–2): 63–71
https://doi.org/10.1016/j.mce.2011.03.017
pmid: 21466837
|
102 |
IA Malik, J Triebel, J Posselt, S Khan, P Ramadori, D Raddatz, G Ramadori. Melanocortin receptors in rat liver cells: change of gene expression and intracellular localization during acute-phase response. Histochem Cell Biol 2012; 137(3): 279–291
https://doi.org/10.1007/s00418-011-0899-7
pmid: 22183812
|
103 |
AM Lantang, BA Innes, EH Gan, SH Pearce, GE Lash. Expression of melanocortin receptors in human endometrium. Hum Reprod 2015; 30(10): 2404–2410
https://doi.org/10.1093/humrep/dev188
pmid: 26223677
|
104 |
H Johnston, PJ King, PJ O’Shaughnessy. Effects of ACTH and expression of the melanocortin-2 receptor in the neonatal mouse testis. Reproduction 2007; 133(6): 1181–1187
https://doi.org/10.1530/REP-06-0359
pmid: 17636172
|
105 |
CM Isales, M Zaidi, HC Blair. ACTH is a novel regulator of bone mass. Ann N Y Acad Sci 2010; 1192(1): 110–116
https://doi.org/10.1111/j.1749-6632.2009.05231.x
pmid: 20392225
|
106 |
D Norman, AM Isidori, V Frajese, M Caprio, SL Chew, AB Grossman, AJ Clark, G Michael Besser, A Fabbri. ACTH and α-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central-peripheral melanocortin-leptin pathway. Mol Cell Endocrinol 2003; 200(1–2): 99–109
https://doi.org/10.1016/S0303-7207(02)00410-0
pmid: 12644303
|
107 |
DJ Jun, KY Na, W Kim, D Kwak, EJ Kwon, JH Yoon, K Yea, H Lee, J Kim, PG Suh, SH Ryu, KT Kim. Melanocortins induce interleukin 6 gene expression and secretion through melanocortin receptors 2 and 5 in 3T3-L1 adipocytes. J Mol Endocrinol 2010; 44(4): 225–236
https://doi.org/10.1677/JME-09-0161
pmid: 20089716
|
108 |
X Zhang, AM Saarinen, LE Campbell, EA De Filippis, J Liu. Regulation of lipolytic response and energy balance by melanocortin 2 receptor accessory protein (MRAP) in adipocytes. Diabetes 2018; 67(2): 222–234
https://doi.org/10.2337/db17-0862
pmid: 29217655
|
109 |
BJ Renquist, JG Murphy, EA Larson, D Olsen, RF Klein, KL Ellacott, RD Cone. Melanocortin-3 receptor regulates the normal fasting response. Proc Natl Acad Sci USA 2012; 109(23): E1489–E1498
https://doi.org/10.1073/pnas.1201994109
pmid: 22573815
|
110 |
den Beukel JC van, A Grefhorst, C Quarta, J Steenbergen, PG Mastroberardino, M Lombès, PJ Delhanty, R Mazza, U Pagotto, der Lely AJ van, AP Themmen. Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone. FASEB J 2014; 28(11): 4857–4867
https://doi.org/10.1096/fj.14-254839
pmid: 25085924
|
111 |
LE Ramage, M Akyol, AM Fletcher, J Forsythe, M Nixon, RN Carter, EJ van Beek, NM Morton, BR Walker, RH Stimson. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 2016; 24(1): 130–141
https://doi.org/10.1016/j.cmet.2016.06.011
pmid: 27411014
|
112 |
E Simamura, T Arikawa, T Ikeda, H Shimada, H Shoji, H Masuta, Y Nakajima, H Otani, H Yonekura, T Hatta. Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5. PLoS One 2015; 10(4): e0123232
https://doi.org/10.1371/journal.pone.0123232
pmid: 25860801
|
113 |
BB Nankova, R Kvetnansky, EL Sabban. Adrenocorticotropic hormone (MC-2) receptor mRNA is expressed in rat sympathetic ganglia and up-regulated by stress. Neurosci Lett 2003; 344(3): 149–152
https://doi.org/10.1016/S0304-3940(03)00361-6
pmid: 12812827
|
114 |
N Cirillo, SS Prime. Keratinocytes synthesize and activate cortisol. J Cell Biochem 2011; 112(6): 1499–1505
https://doi.org/10.1002/jcb.23081
pmid: 21344493
|
115 |
M Nagano, PA Kelly. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J Biol Chem 1994; 269(18): 13337–13345
https://doi.org/10.1016/S0021-9258(17)36838-2
pmid: 8175764
|
116 |
P Zhang, Z Ge, H Wang, W Feng, X Sun, X Chu, C Jiang, Y Wang, D Zhu, Y Bi. Prolactin improves hepatic steatosis via CD36 pathway. J Hepatol 2018; 68(6): 1247–1255
https://doi.org/10.1016/j.jhep.2018.01.035
pmid: 29452209
|
117 |
S Shao, Z Yao, J Lu, Y Song, Z He, C Yu, X Zhou, L Zhao, J Zhao, L Gao. Ablation of prolactin receptor increases hepatic triglyceride accumulation. Biochem Biophys Res Commun 2018; 498(3): 693–699
https://doi.org/10.1016/j.bbrc.2018.03.048
pmid: 29524401
|
118 |
GM Luque, F Lopez-Vicchi, AM Ornstein, B Brie, C De Winne, E Fiore, MI Perez-Millan, G Mazzolini, M Rubinstein, D Becu-Villalobos. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am J Physiol Endocrinol Metab 2016; 311(6): E974–E988
https://doi.org/10.1152/ajpendo.00200.2016
pmid: 27802964
|
119 |
S Park, DS Kim, JW Daily, SH Kim. Serum prolactin concentrations determine whether they improve or impair β-cell function and insulin sensitivity in diabetic rats. Diabetes Metab Res Rev 2011; 27(6): 564–574
https://doi.org/10.1002/dmrr.1215
pmid: 21557442
|
120 |
J Yu, F Xiao, Q Zhang, B Liu, Y Guo, Z Lv, T Xia, S Chen, K Li, Y Du, F Guo. PRLR regulates hepatic insulin sensitivity in mice via STAT5. Diabetes 2013; 62(9): 3103–3113
https://doi.org/10.2337/db13-0182
pmid: 23775766
|
121 |
C Ling, G Hellgren, M Gebre-Medhin, K Dillner, H Wennbo, B Carlsson, H Billig. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology 2000; 141(10): 3564–3572
https://doi.org/10.1210/endo.141.10.7691
pmid: 11014209
|
122 |
MC Barber, RA Clegg, E Finley, RG Vernon, DJ Flint. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol 1992; 135(2): 195–202
https://doi.org/10.1677/joe.0.1350195
pmid: 1474326
|
123 |
C Ling, L Svensson, B Odén, B Weijdegård, B Edén, S Edén, H Billig. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 2003; 88(4): 1804–1808
https://doi.org/10.1210/jc.2002-021137
pmid: 12679477
|
124 |
BJ Moore, T Gerardo-Gettens, BA Horwitz, JS Stern. Hyperprolactinemia stimulates food intake in the female rat. Brain Res Bull 1986; 17(4): 563–569
https://doi.org/10.1016/0361-9230(86)90226-1
pmid: 3779456
|
125 |
R Nanbu-Wakao, Y Fujitani, Y Masuho, M Muramatu, H Wakao. Prolactin enhances CCAAT enhancer-binding protein-β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol 2000; 14(2): 307–316
pmid: 10674402
|
126 |
DJ Flint, N Binart, S Boumard, JJ Kopchick, P Kelly. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. J Endocrinol 2006; 191(1): 101–111
https://doi.org/10.1677/joe.1.06939
pmid: 17065393
|
127 |
L Nilsson, N Binart, M Bohlooly-Y, M Bramnert, E Egecioglu, J Kindblom, PA Kelly, JJ Kopchick, CJ Ormandy, C Ling, H Billig. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 2005; 331(4): 1120–1126
https://doi.org/10.1016/j.bbrc.2005.04.026
pmid: 15882993
|
128 |
O Gualillo, F Lago, M García, C Menéndez, R Señarís, FF Casanueva, C Diéguez. Prolactin stimulates leptin secretion by rat white adipose tissue. Endocrinology 1999; 140(11): 5149–5153
https://doi.org/10.1210/endo.140.11.7147
pmid: 10537143
|
129 |
D Sauvé, B Woodside. Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats. Brain Res 2000; 868(2): 306–314
https://doi.org/10.1016/S0006-8993(00)02344-1
pmid: 10854583
|
130 |
M Freemark, I Avril, D Fleenor, P Driscoll, A Petro, E Opara, W Kendall, J Oden, S Bridges, N Binart, B Breant, PA Kelly. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 2002; 143(4): 1378–1385
https://doi.org/10.1210/endo.143.4.8722
pmid: 11897695
|
131 |
H Yang, J Di, J Pan, R Yu, Y Teng, Z Cai, X Deng. The association between prolactin and metabolic parameters in PCOS women: a retrospective analysis. Front Endocrinol (Lausanne) 2020; 11: 263
https://doi.org/10.3389/fendo.2020.00263
pmid: 32477263
|
132 |
SK Karnik, H Chen, GW McLean, JJ Heit, X Gu, AY Zhang, M Fontaine, MH Yen, SK Kim. Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007; 318(5851): 806–809
https://doi.org/10.1126/science.1146812
pmid: 17975067
|
133 |
V Bernard, J Young, P Chanson, N Binart. New insights in prolactin: pathological implications. Nat Rev Endocrinol 2015; 11(5): 265–275
https://doi.org/10.1038/nrendo.2015.36
pmid: 25781857
|
134 |
C Kedzia, L Lacroix, N Ameur, T Ragot, PA Kelly, B Caillou, N Binart. Medullary thyroid carcinoma arises in the absence of prolactin signaling. Cancer Res 2005; 65(18): 8497–8503
https://doi.org/10.1158/0008-5472.CAN-04-3937
pmid: 16166330
|
135 |
AA Tam, C Kaya, C Aydın, R Ersoy, B Çakır. Differentiated thyroid cancer in patients with prolactinoma. Turk J Med Sci 2016; 46(5): 1360–1365
https://doi.org/10.3906/sag-1501-58
pmid: 27966298
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|