Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (4) : 796-803    https://doi.org/10.1007/s11684-022-0975-5
PERSPECTIVE
The nature of cancer
Min Yan1, Quentin Liu1,2()
1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
2. Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian 116023, China
 Download: PDF(754 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Quentin Liu   
Just Accepted Date: 02 February 2023   Online First Date: 10 March 2023    Issue Date: 12 October 2023
 Cite this article:   
Min Yan,Quentin Liu. The nature of cancer[J]. Front. Med., 2023, 17(4): 796-803.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0975-5
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I4/796
Fig.1  The nature of cancer. This illustration encompasses the five universal features that reflect the nature of cancer, including pliability, hybridity, aggressivity, sociality, and evolutivity, referred to hereinafter as “PHASE.”
Fig.2  Strategies for controlling cancer. Cancer is the result of a disturbance in the physiological homeostasis. To better control cancer, it is not only necessary to address the tumor (treating the symptoms), but also to remove the causes of the tumor, restore “PINE” and normal healthy homeostasis (treating the root).
1 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013 pmid: 21376230
2 D Hanahan. Hallmarks of cancer: new dimensions. Cancer Discov 2022; 12(1): 31–46
https://doi.org/10.1158/2159-8290.CD-21-1059 pmid: 35022204
3 I Pastushenko, C Blanpain. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29(3): 212–226
https://doi.org/10.1016/j.tcb.2018.12.001 pmid: 30594349
4 I Arozarena, C Wellbrock. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer 2019; 19(7): 377–391
https://doi.org/10.1038/s41568-019-0154-4 pmid: 31209265
5 KJ Kurppa, Y Liu, C To, T Zhang, M Fan, A Vajdi, EH Knelson, Y Xie, K Lim, P Cejas, A Portell, PH Lizotte, SB Ficarro, S Li, T Chen, HM Haikala, H Wang, M Bahcall, Y Gao, S Shalhout, S Boettcher, BH Shin, T Thai, MK Wilkens, ML Tillgren, M Mushajiang, M Xu, J Choi, AA Bertram, BL Ebert, R Beroukhim, P Bandopadhayay, MM Awad, PC Gokhale, PT Kirschmeier, JA Marto, FD Camargo, R Haq, CP Paweletz, KK Wong, DA Barbie, HW Long, NS Gray, PA Jänne. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 2020; 37(1): 104–122.e12
https://doi.org/10.1016/j.ccell.2019.12.006 pmid: 31935369
6 M Milanovic, Y Yu, CA Schmitt. The senescence-stemness alliance—a cancer-hijacked regeneration principle. Trends Cell Biol 2018; 28(12): 1049–1061
https://doi.org/10.1016/j.tcb.2018.09.001 pmid: 30253901
7 M Milanovic, DNY Fan, D Belenki, JHM Däbritz, Z Zhao, Y Yu, JR Dörr, L Dimitrova, D Lenze, Barbosa IA Monteiro, MA Mendoza-Parra, T Kanashova, M Metzner, K Pardon, M Reimann, A Trumpp, B Dörken, J Zuber, H Gronemeyer, M Hummel, G Dittmar, S Lee, CA Schmitt. Senescence-associated reprogramming promotes cancer stemness. Nature 2018; 553(7686): 96–100
https://doi.org/10.1038/nature25167 pmid: 29258294
8 F Li, X Han, F Li, R Wang, H Wang, Y Gao, X Wang, Z Fang, W Zhang, S Yao, X Tong, Y Wang, Y Feng, Y Sun, Y Li, KK Wong, Q Zhai, H Chen, H Ji. LKB1 inactivation elicits a Redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response. Cancer Cell 2015; 27(5): 698–711
https://doi.org/10.1016/j.ccell.2015.04.001 pmid: 25936644
9 H Zhang, C Fillmore Brainson, S Koyama, AJ Redig, T Chen, S Li, M Gupta, C Garcia-de-Alba, M Paschini, GS Herter-Sprie, G Lu, X Zhang, BP Marsh, SJ Tuminello, C Xu, Z Chen, X Wang, EA Akbay, M Zheng, S Palakurthi, LM Sholl, AK Rustgi, DJ Kwiatkowski, JA Diehl, AJ Bass, NE Sharpless, G Dranoff, PS Hammerman, H Ji, N Bardeesy, D Saur, H Watanabe, CF Kim, KK Wong. Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2. Nat Commun 2017; 8: 14922
https://doi.org/10.1038/ncomms14922 pmid: 28387316
10 Á Quintanal-Villalonga, JM Chan, HA Yu, D Pe’er, CL Sawyers, T Sen, CM Rudin. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol 2020; 17(6): 360–371
https://doi.org/10.1038/s41571-020-0340-z pmid: 32152485
11 B Biehs, GJP Dijkgraaf, R Piskol, B Alicke, S Boumahdi, F Peale, SE Gould, FJ de Sauvage. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. Nature 2018; 562(7727): 429–433
https://doi.org/10.1038/s41586-018-0596-y pmid: 30297801
12 V Venkataramani, DI Tanev, C Strahle, A Studier-Fischer, L Fankhauser, T Kessler, C Körber, M Kardorff, M Ratliff, R Xie, H Horstmann, M Messer, SP Paik, J Knabbe, F Sahm, FT Kurz, AA Acikgöz, F Herrmannsdörfer, A Agarwal, DE Bergles, A Chalmers, H Miletic, S Turcan, C Mawrin, D Hänggi, HK Liu, W Wick, F Winkler, T Kuner. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 2019; 573(7775): 532–538
https://doi.org/10.1038/s41586-019-1564-x pmid: 31534219
13 Q Zeng, IP Michael, P Zhang, S Saghafinia, G Knott, W Jiao, BD McCabe, JA Galván, HPC Robinson, I Zlobec, G Ciriello, D Hanahan. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 2019; 573(7775): 526–531
https://doi.org/10.1038/s41586-019-1576-6 pmid: 31534217
14 I Pastushenko, F Mauri, Y Song, Cock F de, B Meeusen, B Swedlund, F Impens, Haver D Van, M Opitz, M Thery, Y Bareche, G Lapouge, M Vermeersch, Eycke YR Van, C Balsat, C Decaestecker, Y Sokolow, S Hassid, A Perez-Bustillo, B Agreda-Moreno, L Rios-Buceta, P Jaen, P Redondo, R Sieira-Gil, JF Millan-Cayetano, O Sanmatrtin, N D’Haene, V Moers, M Rozzi, J Blondeau, S Lemaire, S Scozzaro, V Janssens, Troya M De, C Dubois, D Pérez-Morga, I Salmon, C Sotiriou, F Helmbacher, C Blanpain. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 2021; 589(7842): 448–455
https://doi.org/10.1038/s41586-020-03046-1 pmid: 33328637
15 GS Gulati, SS Sikandar, DJ Wesche, A Manjunath, A Bharadwaj, MJ Berger, F Ilagan, AH Kuo, RW Hsieh, S Cai, M Zabala, FA Scheeren, NA Lobo, D Qian, FB Yu, FM Dirbas, MF Clarke, AM Newman. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 2020; 367(6476): 405–411
https://doi.org/10.1126/science.aax0249 pmid: 31974247
16 CL Chaffer, ND Marjanovic, T Lee, G Bell, CG Kleer, F Reinhardt, AC D’Alessio, RA Young, RA Weinberg. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013; 154(1): 61–74
https://doi.org/10.1016/j.cell.2013.06.005 pmid: 23827675
17 F Dupuy, S Tabariès, S Andrzejewski, Z Dong, J Blagih, MG Annis, A Omeroglu, D Gao, S Leung, E Amir, M Clemons, A Aguilar-Mahecha, M Basik, EE Vincent, J St-Pierre, RG Jones, PM Siegel. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 2015; 22(4): 577–589
https://doi.org/10.1016/j.cmet.2015.08.007 pmid: 26365179
18 V Venkataramani, Y Yang, MC Schubert, E Reyhan, SK Tetzlaff, N Wißmann, M Botz, SJ Soyka, CA Beretta, RL Pramatarov, L Fankhauser, L Garofano, A Freudenberg, J Wagner, DI Tanev, M Ratliff, R Xie, T Kessler, DC Hoffmann, L Hai, Y Dörflinger, S Hoppe, YA Yabo, A Golebiewska, SP Niclou, F Sahm, A Lasorella, M Slowik, L Döring, A Iavarone, W Wick, T Kuner, F Winkler. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 2022; 185(16): 2899–2917.e31
https://doi.org/10.1016/j.cell.2022.06.054 pmid: 35914528
19 M Georgouli, C Herraiz, E Crosas-Molist, B Fanshawe, O Maiques, A Perdrix, P Pandya, I Rodriguez-Hernandez, KM Ilieva, G Cantelli, P Karagiannis, S Mele, H Lam, DH Josephs, X Matias-Guiu, RM Marti, FO Nestle, JL Orgaz, I Malanchi, GO Fruhwirth, SN Karagiannis, V Sanz-Moreno. Regional activation of myosin II in cancer cells drives tumor progression via a secretory cross-talk with the immune microenvironment. Cell 2019; 176(4): 757–774.e23
https://doi.org/10.1016/j.cell.2018.12.038 pmid: 30712866
20 AH Zahalka, PS Frenette. Nerves in cancer. Nat Rev Cancer 2020; 20(3): 143–157
https://doi.org/10.1038/s41568-019-0237-2 pmid: 31974491
21 R Lu, C Fan, W Shangguan, Y Liu, Y Li, Y Shang, D Yin, S Zhang, Q Huang, X Li, W Meng, H Xu, Z Zhou, J Hu, W Li, L Liu, X Mo. Neurons generated from carcinoma stem cells support cancer progression. Signal Transduct Target Ther 2017; 2(1): 16036
https://doi.org/10.1038/sigtrans.2016.36 pmid: 29263908
22 NM Aiello, Y Kang. Context-dependent EMT programs in cancer metastasis. J Exp Med 2019; 216(5): 1016–1026
https://doi.org/10.1084/jem.20181827 pmid: 30975895
23 AL Ji, AJ Rubin, K Thrane, S Jiang, DL Reynolds, RM Meyers, MG Guo, BM George, A Mollbrink, J Bergenstråhle, L Larsson, Y Bai, B Zhu, A Bhaduri, JM Meyers, X Rovira-Clavé, ST Hollmig, SZ Aasi, GP Nolan, J Lundeberg, PA Khavari. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 2020; 182(2): 497–514.e22
https://doi.org/10.1016/j.cell.2020.05.039 pmid: 32579974
24 W Yan, X Wu, W Zhou, MY Fong, M Cao, J Liu, X Liu, CH Chen, O Fadare, DP Pizzo, J Wu, L Liu, X Liu, AR Chin, X Ren, Y Chen, JW Locasale, SE Wang. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 2018; 20(5): 597–609
https://doi.org/10.1038/s41556-018-0083-6 pmid: 29662176
25 AS Cleary, TL Leonard, SA Gestl, EJ Gunther. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 2014; 508(7494): 113–117
https://doi.org/10.1038/nature13187 pmid: 24695311
26 K Polyak, A Marusyk. Cancer: clonal cooperation. Nature 2014; 508(7494): 52–53
https://doi.org/10.1038/508052a pmid: 24695309
27 S Seton-Rogers. Tumour heterogeneity: a cooperative tumour cell community. Nat Rev Cancer 2014; 14(5): 294
https://doi.org/10.1038/nrc3732 pmid: 24739580
28 N McGranahan, C Swanton. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 2015; 27(1): 15–26
https://doi.org/10.1016/j.ccell.2014.12.001 pmid: 25584892
29 N McGranahan, C Swanton. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017; 168(4): 613–628
https://doi.org/10.1016/j.cell.2017.01.018 pmid: 28187284
30 C Hiley, EC de Bruin, N McGranahan, C Swanton. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol 2014; 15(8): 453
https://doi.org/10.1186/s13059-014-0453-8 pmid: 25222836
31 A Cipponi, DL Goode, J Bedo, MJ McCabe, M Pajic, DR Croucher, AG Rajal, SR Junankar, DN Saunders, P Lobachevsky, AT Papenfuss, D Nessem, M Nobis, SC Warren, P Timpson, M Cowley, AC Vargas, MR Qiu, DG Generali, S Keerthikumar, U Nguyen, NM Corcoran, GV Long, JY Blay, DM Thomas. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science 2020; 368(6495): 1127–1131
https://doi.org/10.1126/science.aau8768 pmid: 32499442
32 X Chen, E Song. The theory of tumor ecosystem. Cancer Commun (Lond) 2022; 42(7): 587–608
https://doi.org/10.1002/cac2.12316 pmid: 35642770
33 S Mueller, T Engleitner, R Maresch, M Zukowska, S Lange, T Kaltenbacher, B Konukiewitz, R Öllinger, M Zwiebel, A Strong, HY Yen, R Banerjee, S Louzada, B Fu, B Seidler, J Götzfried, K Schuck, Z Hassan, A Arbeiter, N Schönhuber, S Klein, C Veltkamp, M Friedrich, L Rad, M Barenboim, C Ziegenhain, J Hess, OM Dovey, S Eser, S Parekh, F Constantino-Casas, la Rosa J de, MI Sierra, M Fraga, J Mayerle, G Klöppel, J Cadiñanos, P Liu, G Vassiliou, W Weichert, K Steiger, W Enard, RM Schmid, F Yang, K Unger, G Schneider, I Varela, A Bradley, D Saur, R Rad. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 2018; 554(7690): 62–68
https://doi.org/10.1038/nature25459 pmid: 29364867
34 Keymeulen A Van, MY Lee, M Ousset, S Brohée, S Rorive, RR Giraddi, A Wuidart, G Bouvencourt, C Dubois, I Salmon, C Sotiriou, WA Phillips, C Blanpain. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 2015; 525(7567): 119–123
https://doi.org/10.1038/nature14665 pmid: 26266985
35 S Koren, L Reavie, JP Couto, D De Silva, MB Stadler, T Roloff, A Britschgi, T Eichlisberger, H Kohler, O Aina, RD Cardiff, M Bentires-Alj. PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 2015; 525(7567): 114–118
https://doi.org/10.1038/nature14669 pmid: 26266975
36 B Cui, F Peng, J Lu, B He, Q Su, H Luo, Z Deng, T Jiang, K Su, Y Huang, Z Ud Din, EW Lam, KW Kelley, Q Liu. Cancer and stress: NextGen strategies. Brain Behav Immun 2021; 93: 368–383
https://doi.org/10.1016/j.bbi.2020.11.005 pmid: 33160090
37 EMV Reiche, SOV Nunes, HK Morimoto. Stress, depression, the immune system, and cancer. Lancet Oncol 2004; 5(10): 617–625
https://doi.org/10.1016/S1470-2045(04)01597-9 pmid: 15465465
38 ND Powell, AJ Tarr, JF Sheridan. Psychosocial stress and inflammation in cancer. Brain Behav Immun 2013; 30(Suppl): S41–S47
https://doi.org/10.1016/j.bbi.2012.06.015 pmid: 22790082
39 MA Schneider, L Heeb, MM Beffinger, S Pantelyushin, M Linecker, L Roth, K Lehmann, U Ungethüm, S Kobold, R Graf, den Broek M van, Berg J Vom, A Gupta, PA Clavien. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci Transl Med 2021; 13(611): eabc8188
https://doi.org/10.1126/scitranslmed.abc8188 pmid: 34524861
40 MS Carlino, J Larkin, GV Long. Immune checkpoint inhibitors in melanoma. Lancet 2021; 398(10304): 1002–1014
https://doi.org/10.1016/S0140-6736(21)01206-X pmid: 34509219
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed