Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (4) : 768-780    https://doi.org/10.1007/s11684-023-0982-1
RESEARCH ARTICLE
Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature
Jiaqi Dai1,3, Tao Wang2, Ke Xu1,3, Yang Sun1,3, Zongzhe Li1,3, Peng Chen1,3, Hong Wang3, Dongyang Wu3, Yanghui Chen3, Lei Xiao3, Hao Liu3, Haoran Wei3, Rui Li1,3, Liyuan Peng1, Ting Yu1, Yan Wang1,3, Zhongsheng Sun2(), Dao Wen Wang1,3()
1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
3. Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(4006 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Previous studies have revealed that patients with hypertrophic cardiomyopathy (HCM) exhibit differences in symptom severity and prognosis, indicating potential HCM subtypes among these patients. Here, 793 patients with HCM were recruited at an average follow-up of 32.78 ± 27.58 months to identify potential HCM subtypes by performing consensus clustering on the basis of their echocardiography features. Furthermore, we proposed a systematic method for illustrating the relationship between the phenotype and genotype of each HCM subtype by using machine learning modeling and interactome network detection techniques based on whole-exome sequencing data. Another independent cohort that consisted of 414 patients with HCM was recruited to replicate the findings. Consequently, two subtypes characterized by different clinical outcomes were identified in HCM. Patients with subtype 2 presented asymmetric septal hypertrophy associated with a stable course, while those with subtype 1 displayed left ventricular systolic dysfunction and aggressive progression. Machine learning modeling based on personal whole-exome data identified 46 genes with mutation burden that could accurately predict subtype propensities. Furthermore, the patients in another cohort predicted as subtype 1 by the 46-gene model presented increased left ventricular end-diastolic diameter and reduced left ventricular ejection fraction. By employing echocardiography and genetic screening for the 46 genes, HCM can be classified into two subtypes with distinct clinical outcomes.

Keywords machine learning methods      hypertrophic cardiomyopathy      genetic risk     
Corresponding Author(s): Zhongsheng Sun,Dao Wen Wang   
Just Accepted Date: 31 March 2023   Online First Date: 08 May 2023    Issue Date: 12 October 2023
 Cite this article:   
Jiaqi Dai,Tao Wang,Ke Xu, et al. Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature[J]. Front. Med., 2023, 17(4): 768-780.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-0982-1
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I4/768
Subtype 1 (n = 229) Subtype 2 (n = 564) P value
Age of onset (year) 51.14 ± 13.89 51.41 ± 14.41 0.806
Age at enrollment (year) 51.79 ± 14.16 52.99 ± 14.11 0.281
Gender = male (%) 192 (83.8) 359 (63.7) < 0.001
Smoke (%) 92 (40.2) 193 (34.2) 0.133
Drink (%) 59 (25.8) 136 (24.1) 0.69
CAD (%) 73 (31.9) 123 (21.8) 0.004
Diabetes (%) 46 (20.1) 100 (17.7) 0.5
Systolic blood pressure (mmHg) 129.30 ± 18.37 127.17 ± 15.85 0.103
Diastolic blood pressure (mmHg) 79.36 ± 12.38 75.98 ± 10.88 < 0.001
IVS (mm) 15.61 ± 2.42 17.81 ± 4.74 < 0.001
LVPW (mm) 13.35 ± 2.65 11.64 ± 3.02 < 0.001
Apex (mm) 10.20 ± 1.29 11.24 ± 3.08 < 0.001
LAD (mm) 46.22 ± 7.26 39.72 ± 7.23 < 0.001
LVEDD (mm) 55.82 ± 9.21 44.98 ± 5.03 < 0.001
LVEF (%) 44.67 ± 12.37 64.39 ± 7.87 < 0.001
LVEF < 50% (%) 142 (62.6) 20 (3.6) < 0.001
Resting LVOTG (mmHg) 33.00 ± 42.58 41.77 ± 54.57 0.41
Valsalva LVOTG (mmHg) 29.67 ± 25.09 52.90 ± 41.89 0.104
E/A 26.41 ± 47.20 2.28 ± 10.57 < 0.001
E/E? 22.45 ± 11.94 17.38 ± 8.47 < 0.001
Tab.1  Characteristics of subtypes in the study population
Fig.1  Consensus clustering identified two subtypes that correlated with various clinical features. (A) Hierarchical subtype heat map shows the clinical characteristics and echocardiography features of the two subtypes. (B) Characteristic plots of the two subtypes, including their most representative echo variables. A positive value indicates overrepresentation of this variable in the applicable subtype. A negative value indicates underrepresentation of the corresponding variable. (C) Variable importance for clustering measured by random forests. (D) Supervised decision tree modeling provided availability in clinical practice.
Fig.2  Event-free survival stratified by subtypes as determined by the consensus clustering. Kaplan–Meier curves for (A) cardiovascular death, (B) the combined outcome of cardiovascular death and heart transplant, (C) all-cause death and (D) lifelong likelihood of progression to NYHA class III/IV, respectively. Age was used as the time scale, and events occurring before and during the follow-up were included. The probability values were calculated with the log-rank test.
Fig.3  Machine learning model construction. (A) Machine-identified genes with increased mutation burden in subtype 1. (B) ROC curves for the models based on the 46 feature genes with different classifiers. AUC was determined via stratified fivefold cross-validation. (C) Individual networks for HCM patients with reduced LVEF and enrichment analysis of the 46-gene set and endophenotype for each patient network. The rows correspond to the gene ontology (GO) classifications for genes, and the columns denote samples.
Group 1 (n = 101) Group 2 (n = 313) P value
Age at enrollment (year) 53.42 ± 12.58 53.47 ± 11.72 0.97
Gender = male (%) 85 (84.2) 233 (74.4) 0.044
Smoke (%) 51 (51.0) 135 (43.8) 0.211
Drink (%) 24 (24.0) 85 (27.6) 0.48
CAD (%) 48 (48.0) 130 (42.2) 0.31
Diabetes (%) 21 (21.0) 72 (23.3) 0.633
IVS (mm) 15.73 ± 3.12 17.09 ± 3.93 0.002
LVPW (mm) 12.10 ± 2.60 12.41 ± 2.55 0.291
Apex (mm) 10.86 ± 2.76 10.97 ± 2.71 0.725
LAD (mm) 43.36 ± 7.47 43.01 ± 7.62 0.685
LVEDD (mm) 53.47 ± 9.04 49.57 ± 7.74 < 0.001
LVEF (%) 53.00 ± 15.46 57.92 ± 12.80 0.002
Resting LVOTG (mmHg) 26.41 ± 26.65 43.99 ± 58.51 0.124
Valsalva LVOTG (mmHg) 59.00 ± 38.17 61.49 ± 60.49 0.911
E/A 1.14 ± 0.81 1.12 ± 0.90 0.914
E/E? 18.81 ± 10.52 17.68 ± 8.01 0.273
Tab.2  Characteristics of second population subtyping by the genetic model
1 BJ Maron, R Mathenge, SA Casey, LC Poliac, TF Longe. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol 1999; 33(6): 1590–1595
https://doi.org/10.1016/S0735-1097(99)00039-X pmid: 10334429
2 Y Zou, L Song, Z Wang, A Ma, T Liu, H Gu, S Lu, P Wu, Y Zhang dagger, L Shen dagger, Y Cai, Y Zhen double dagger, Y Liu, R Hui. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med 2004; 116(1): 14–18
https://doi.org/10.1016/j.amjmed.2003.05.009 pmid: 14706660
3 MJ Eriksson, B Sonnenberg, A Woo, P Rakowski, TG Parker, ED Wigle, H Rakowski. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol 2002; 39(4): 638–645
https://doi.org/10.1016/S0735-1097(01)01778-8 pmid: 11849863
4 BJ Maron, EJ Rowin, SA Casey, MS Link, JR Lesser, RH Chan, RF Garberich, JE Udelson, MS Maron. Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol 2015; 65(18): 1915–1928
https://doi.org/10.1016/j.jacc.2015.02.061 pmid: 25953744
5 I Olivotto, F Cecchi, C Poggesi, MH Yacoub. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail 2012; 5(4): 535–546
https://doi.org/10.1161/CIRCHEARTFAILURE.112.967026 pmid: 22811549
6 KM Harris, P Spirito, MS Maron, AG Zenovich, F Formisano, JR Lesser, S Mackey-Bojack, WJ Manning, JE Udelson, BJ Maron. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 2006; 114(3): 216–225
https://doi.org/10.1161/CIRCULATIONAHA.105.583500 pmid: 16831987
7 P Melacini, C Basso, A Angelini, C Calore, F Bobbo, B Tokajuk, N Bellini, G Smaniotto, M Zucchetto, S Iliceto, G Thiene, BJ Maron. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J 2010; 31(17): 2111–2123
https://doi.org/10.1093/eurheartj/ehq136 pmid: 20513729
8 H Watkins, WJ McKenna, L Thierfelder, HJ Suk, R Anan, A O’Donoghue, P Spirito, A Matsumori, CS Moravec, JG Seidman, CE Seidman. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995; 332(16): 1058–1065
https://doi.org/10.1056/NEJM199504203321603 pmid: 7898523
9 R Coppini, CY Ho, E Ashley, S Day, C Ferrantini, F Girolami, B Tomberli, S Bardi, F Torricelli, F Cecchi, A Mugelli, C Poggesi, J Tardiff, I Olivotto. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol 2014; 64(24): 2589–2600
https://doi.org/10.1016/j.jacc.2014.09.059 pmid: 25524337
10 AR Harper, A Goel, C Grace, KL Thomson, SE Petersen, X Xu, A Waring, E Ormondroyd, CM Kramer, CY Ho, S; HCMR Investigators; Tadros R Neubauer, JS Ware, CR Bezzina, M Farrall, H Watkins. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 2021; 53(2): 135–142
https://doi.org/10.1038/s41588-020-00764-0 pmid: 33495597
11 SR Ommen, S Mital, MA Burke, SM Day, A Deswal, P Elliott, LL Evanovich, J Hung, JA Joglar, P Kantor, C Kimmelstiel, M Kittleson, MS Link, MS Maron, MW Martinez, CY Miyake, HV Schaff, C Semsarian, P Sorajja. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2020; 142(25): e558–e631
pmid: 33215931
12 J Dai, Z Li, W Huang, P Chen, Y Sun, H Wang, D Wu, Y Chen, C Li, L Xiao, H Liu, H Wei, R Li, Q Duan, L Peng, X Song, T Yu, Y Wang, DW Wang. Rbm20 is a candidate gene for hypertrophic cardiomyopathy. Can J Cardiol 2021; 37(11): 1751–1759
https://doi.org/10.1016/j.cjca.2021.07.014 pmid: 34333030
13 MD Wilkerson, DN Hayes. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010; 26(12): 1572–1573
https://doi.org/10.1093/bioinformatics/btq170 pmid: 20427518
14 J Ingles, J Goldstein, C Thaxton, C Caleshu, EW Corty, SB Crowley, K Dougherty, SM Harrison, J McGlaughon, LV Milko, A Morales, BA Seifert, N Strande, K Thomson, J Peter van Tintelen, K Wallace, R Walsh, Q Wells, N Whiffin, L Witkowski, C Semsarian, JS Ware, RE Hershberger, B Funke. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med 2019; 12(2): e002460
https://doi.org/10.1161/CIRCGEN.119.002460 pmid: 30681346
15 S Richards, N Aziz, S Bale, D Bick, S Das, J Gastier-Foster, WW Grody, M Hegde, E Lyon, E Spector, K Voelkerding, HL; ACMG Laboratory Quality Assurance Committee Rehm. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405–424
https://doi.org/10.1038/gim.2015.30 pmid: 25741868
16 J Li, T Zhao, Y Zhang, K Zhang, L Shi, Y Chen, X Wang, Z Sun. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res 2018; 46(15): 7793–7804
https://doi.org/10.1093/nar/gky678 pmid: 30060008
17 G Zhou, O Soufan, J Ewald, REW Hancock, N Basu, J Xia. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019; 47(W1): W234–W241
https://doi.org/10.1093/nar/gkz240 pmid: 30931480
18 MV Kuleshov, MR Jones, AD Rouillard, NF Fernandez, Q Duan, Z Wang, S Koplev, SL Jenkins, KM Jagodnik, A Lachmann, MG McDermott, CD Monteiro, GW Gundersen, A Ma’ayan. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90–W97
https://doi.org/10.1093/nar/gkw377 pmid: 27141961
19 BA Maron, RS Wang, S Shevtsov, SG Drakos, E Arons, O Wever-Pinzon, GS Huggins, AO Samokhin, WM Oldham, Y Aguib, MH Yacoub, EJ Rowin, BJ Maron, MS Maron, J Loscalzo. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat Commun 2021; 12(1): 873
https://doi.org/10.1038/s41467-021-21146-y pmid: 33558530
20 JB Geske, KC Ong, KC Siontis, VB Hebl, MJ Ackerman, DO Hodge, VM Miller, RA Nishimura, JK Oh, HV Schaff, BJ Gersh, SR Ommen. Women with hypertrophic cardiomyopathy have worse survival. Eur Heart J 2017; 38(46): 3434–3440
https://doi.org/10.1093/eurheartj/ehx527 pmid: 29020402
21 EP Rhee, Q Yang, B Yu, X Liu, S Cheng, A Deik, KA Pierce, K Bullock, JE Ho, D Levy, JC Florez, S Kathiresan, MG Larson, RS Vasan, CB Clish, TJ Wang, E Boerwinkle, CJ O’Donnell, RE Gerszten. An exome array study of the plasma metabolome. Nat Commun 2016; 7(1): 12360
https://doi.org/10.1038/ncomms12360 pmid: 27453504
22 J Wessel, AY Chu, SM Willems, S Wang, H Yaghootkar, JA Brody, M Dauriz, MF Hivert, S Raghavan, L Lipovich, B Hidalgo, K Fox, JE Huffman, P An, Y Lu, LJ Rasmussen-Torvik, N Grarup, MG Ehm, L Li, AS Baldridge, A Stančáková, R Abrol, C Besse, A Boland, J Bork-Jensen, M Fornage, DF Freitag, ME Garcia, X Guo, K Hara, A Isaacs, J Jakobsdottir, LA Lange, JC Layton, M Li, Zhao J Hua, K Meidtner, AC Morrison, MA Nalls, MJ Peters, M Sabater-Lleal, C Schurmann, A Silveira, AV Smith, L Southam, MH Stoiber, RJ Strawbridge, KD Taylor, TV Varga, KH Allin, N Amin, JL Aponte, T Aung, C Barbieri, NA Bihlmeyer, M Boehnke, C Bombieri, DW Bowden, SM Burns, Y Chen, YD Chen, CY Cheng, A Correa, J Czajkowski, A Dehghan, GB Ehret, G Eiriksdottir, SA Escher, AE Farmaki, M Frånberg, G Gambaro, F Giulianini, WA 3rd Goddard, A Goel, O Gottesman, ML Grove, S Gustafsson, Y Hai, G Hallmans, J Heo, P Hoffmann, MK Ikram, RA Jensen, ME Jørgensen, T Jørgensen, M Karaleftheri, CC Khor, A Kirkpatrick, AT Kraja, J Kuusisto, EM Lange, IT Lee, WJ Lee, A Leong, J Liao, C Liu, Y Liu, CM Lindgren, A Linneberg, G Malerba, V Mamakou, E Marouli, NM Maruthur, A Matchan, R McKean-Cowdin, O McLeod, GA Metcalf, KL Mohlke, DM Muzny, I Ntalla, ND Palmer, D Pasko, A Peter, NW Rayner, F Renström, K Rice, CF Sala, B Sennblad, I Serafetinidis, JA Smith, N Soranzo, EK Speliotes, EA Stahl, K Stirrups, N Tentolouris, A Thanopoulou, M Torres, M Traglia, E Tsafantakis, S Javad, LR Yanek, E Zengini, DM Becker, JC Bis, JB Brown, LA Cupples, T Hansen, E Ingelsson, AJ Karter, C Lorenzo, RA Mathias, JM Norris, GM Peloso, WH Sheu, D Toniolo, D Vaidya, R Varma, LE Wagenknecht, H Boeing, EP Bottinger, G Dedoussis, P Deloukas, E Ferrannini, OH Franco, PW Franks, RA Gibbs, V Gudnason, A Hamsten, TB Harris, AT Hattersley, C Hayward, A Hofman, JH Jansson, C Langenberg, LJ Launer, D Levy, BA Oostra, CJ O'Donnell, S O'Rahilly, S Padmanabhan, JS Pankow, O Polasek, MA Province, SS Rich, PM Ridker, I Rudan, MB Schulze, BH Smith, AG Uitterlinden, M Walker, H Watkins, TY Wong, E; EPIC-InterAct Consortium; Laakso M Zeggini, IB Borecki, DI Chasman, O Pedersen, BM Psaty, ES Tai, Duijn CM van, NJ Wareham, DM Waterworth, E Boerwinkle, WH Kao, JC Florez, RJ Loos, JG Wilson, TM Frayling, DS Siscovick, J Dupuis, JI Rotter, JB Meigs, RA Scott, MO Goodarzi. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 2015; 6(1): 5897
https://doi.org/10.1038/ncomms6897 pmid: 25631608
23 O Zuk, SF Schaffner, K Samocha, R Do, E Hechter, S Kathiresan, MJ Daly, BM Neale, SR Sunyaev, ES Lander. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA 2014; 111(4): E455–E464
https://doi.org/10.1073/pnas.1322563111 pmid: 24443550
24 BJ Maron, P Spirito. Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol 1998; 81(11): 1339–1344
https://doi.org/10.1016/S0002-9149(98)00164-7 pmid: 9631972
25 HG Klues, A Schiffers, BJ Maron. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 1995; 26(7): 1699–1708
https://doi.org/10.1016/0735-1097(95)00390-8 pmid: 7594106
26 MC Wu, S Lee, T Cai, Y Li, M Boehnke, X Lin. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011; 89(1): 82–93
https://doi.org/10.1016/j.ajhg.2011.05.029 pmid: 21737059
27 AJ Marian, E Braunwald. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017; 121(7): 749–770
https://doi.org/10.1161/CIRCRESAHA.117.311059 pmid: 28912181
28 BJ Maron, MS Maron, BA Maron, J Loscalzo. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy: Jacc review topic of the week. J Am Coll Cardiol 2019; 73(15): 1978–1986
https://doi.org/10.1016/j.jacc.2019.01.061 pmid: 31000001
29 MW Friederich, S Timal, CA Powell, C Dallabona, A Kurolap, S Palacios-Zambrano, D Bratkovic, TGJ Derks, D Bick, K Bouman, KC Chatfield, N Damouny-Naoum, MK Dishop, TC Falik-Zaccai, F Fares, A Fedida, I Ferrero, RC Gallagher, R Garesse, M Gilberti, C González, K Gowan, C Habib, RK Halligan, L Kalfon, K Knight, D Lefeber, L Mamblona, H Mandel, A Mory, J Ottoson, T Paperna, GJM Pruijn, PF Rebelo-Guiomar, A Saada, B Jr Sainz, H Salvemini, MH Schoots, JA Smeitink, MJ Szukszto, Horst HJ Ter, den Brandt F van, Spronsen FJ van, JA Veltman, E Wartchow, LT Wintjes, Y Zohar, MA Fernández-Moreno, HN Baris, C Donnini, M Minczuk, RJ Rodenburg, Hove JLK Van. Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat Commun 2018; 9(1): 4065
https://doi.org/10.1038/s41467-018-06250-w pmid: 30283131
30 TM Marin, K Keith, B Davies, DA Conner, P Guha, D Kalaitzidis, X Wu, J Lauriol, B Wang, M Bauer, R Bronson, KG Franchini, BG Neel, MI Kontaridis. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 2011; 121(3): 1026–1043
https://doi.org/10.1172/JCI44972 pmid: 21339643
31 LY Lee, J Loscalzo. Network medicine in pathobiology. Am J Pathol 2019; 189(7): 1311–1326
https://doi.org/10.1016/j.ajpath.2019.03.009 pmid: 31014954
[1] FMD-23001-OF-WDW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed