|
|
Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature |
Jiaqi Dai1,3, Tao Wang2, Ke Xu1,3, Yang Sun1,3, Zongzhe Li1,3, Peng Chen1,3, Hong Wang3, Dongyang Wu3, Yanghui Chen3, Lei Xiao3, Hao Liu3, Haoran Wei3, Rui Li1,3, Liyuan Peng1, Ting Yu1, Yan Wang1,3, Zhongsheng Sun2( ), Dao Wen Wang1,3( ) |
1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China 3. Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430030, China |
|
|
Abstract Previous studies have revealed that patients with hypertrophic cardiomyopathy (HCM) exhibit differences in symptom severity and prognosis, indicating potential HCM subtypes among these patients. Here, 793 patients with HCM were recruited at an average follow-up of 32.78 ± 27.58 months to identify potential HCM subtypes by performing consensus clustering on the basis of their echocardiography features. Furthermore, we proposed a systematic method for illustrating the relationship between the phenotype and genotype of each HCM subtype by using machine learning modeling and interactome network detection techniques based on whole-exome sequencing data. Another independent cohort that consisted of 414 patients with HCM was recruited to replicate the findings. Consequently, two subtypes characterized by different clinical outcomes were identified in HCM. Patients with subtype 2 presented asymmetric septal hypertrophy associated with a stable course, while those with subtype 1 displayed left ventricular systolic dysfunction and aggressive progression. Machine learning modeling based on personal whole-exome data identified 46 genes with mutation burden that could accurately predict subtype propensities. Furthermore, the patients in another cohort predicted as subtype 1 by the 46-gene model presented increased left ventricular end-diastolic diameter and reduced left ventricular ejection fraction. By employing echocardiography and genetic screening for the 46 genes, HCM can be classified into two subtypes with distinct clinical outcomes.
|
Keywords
machine learning methods
hypertrophic cardiomyopathy
genetic risk
|
Corresponding Author(s):
Zhongsheng Sun,Dao Wen Wang
|
Just Accepted Date: 31 March 2023
Online First Date: 08 May 2023
Issue Date: 12 October 2023
|
|
1 |
BJ Maron, R Mathenge, SA Casey, LC Poliac, TF Longe. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol 1999; 33(6): 1590–1595
https://doi.org/10.1016/S0735-1097(99)00039-X
pmid: 10334429
|
2 |
Y Zou, L Song, Z Wang, A Ma, T Liu, H Gu, S Lu, P Wu, Y Zhang dagger, L Shen dagger, Y Cai, Y Zhen double dagger, Y Liu, R Hui. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med 2004; 116(1): 14–18
https://doi.org/10.1016/j.amjmed.2003.05.009
pmid: 14706660
|
3 |
MJ Eriksson, B Sonnenberg, A Woo, P Rakowski, TG Parker, ED Wigle, H Rakowski. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol 2002; 39(4): 638–645
https://doi.org/10.1016/S0735-1097(01)01778-8
pmid: 11849863
|
4 |
BJ Maron, EJ Rowin, SA Casey, MS Link, JR Lesser, RH Chan, RF Garberich, JE Udelson, MS Maron. Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol 2015; 65(18): 1915–1928
https://doi.org/10.1016/j.jacc.2015.02.061
pmid: 25953744
|
5 |
I Olivotto, F Cecchi, C Poggesi, MH Yacoub. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail 2012; 5(4): 535–546
https://doi.org/10.1161/CIRCHEARTFAILURE.112.967026
pmid: 22811549
|
6 |
KM Harris, P Spirito, MS Maron, AG Zenovich, F Formisano, JR Lesser, S Mackey-Bojack, WJ Manning, JE Udelson, BJ Maron. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 2006; 114(3): 216–225
https://doi.org/10.1161/CIRCULATIONAHA.105.583500
pmid: 16831987
|
7 |
P Melacini, C Basso, A Angelini, C Calore, F Bobbo, B Tokajuk, N Bellini, G Smaniotto, M Zucchetto, S Iliceto, G Thiene, BJ Maron. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J 2010; 31(17): 2111–2123
https://doi.org/10.1093/eurheartj/ehq136
pmid: 20513729
|
8 |
H Watkins, WJ McKenna, L Thierfelder, HJ Suk, R Anan, A O’Donoghue, P Spirito, A Matsumori, CS Moravec, JG Seidman, CE Seidman. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995; 332(16): 1058–1065
https://doi.org/10.1056/NEJM199504203321603
pmid: 7898523
|
9 |
R Coppini, CY Ho, E Ashley, S Day, C Ferrantini, F Girolami, B Tomberli, S Bardi, F Torricelli, F Cecchi, A Mugelli, C Poggesi, J Tardiff, I Olivotto. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol 2014; 64(24): 2589–2600
https://doi.org/10.1016/j.jacc.2014.09.059
pmid: 25524337
|
10 |
AR Harper, A Goel, C Grace, KL Thomson, SE Petersen, X Xu, A Waring, E Ormondroyd, CM Kramer, CY Ho, S; HCMR Investigators; Tadros R Neubauer, JS Ware, CR Bezzina, M Farrall, H Watkins. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 2021; 53(2): 135–142
https://doi.org/10.1038/s41588-020-00764-0
pmid: 33495597
|
11 |
SR Ommen, S Mital, MA Burke, SM Day, A Deswal, P Elliott, LL Evanovich, J Hung, JA Joglar, P Kantor, C Kimmelstiel, M Kittleson, MS Link, MS Maron, MW Martinez, CY Miyake, HV Schaff, C Semsarian, P Sorajja. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2020; 142(25): e558–e631
pmid: 33215931
|
12 |
J Dai, Z Li, W Huang, P Chen, Y Sun, H Wang, D Wu, Y Chen, C Li, L Xiao, H Liu, H Wei, R Li, Q Duan, L Peng, X Song, T Yu, Y Wang, DW Wang. Rbm20 is a candidate gene for hypertrophic cardiomyopathy. Can J Cardiol 2021; 37(11): 1751–1759
https://doi.org/10.1016/j.cjca.2021.07.014
pmid: 34333030
|
13 |
MD Wilkerson, DN Hayes. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010; 26(12): 1572–1573
https://doi.org/10.1093/bioinformatics/btq170
pmid: 20427518
|
14 |
J Ingles, J Goldstein, C Thaxton, C Caleshu, EW Corty, SB Crowley, K Dougherty, SM Harrison, J McGlaughon, LV Milko, A Morales, BA Seifert, N Strande, K Thomson, J Peter van Tintelen, K Wallace, R Walsh, Q Wells, N Whiffin, L Witkowski, C Semsarian, JS Ware, RE Hershberger, B Funke. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med 2019; 12(2): e002460
https://doi.org/10.1161/CIRCGEN.119.002460
pmid: 30681346
|
15 |
S Richards, N Aziz, S Bale, D Bick, S Das, J Gastier-Foster, WW Grody, M Hegde, E Lyon, E Spector, K Voelkerding, HL; ACMG Laboratory Quality Assurance Committee Rehm. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405–424
https://doi.org/10.1038/gim.2015.30
pmid: 25741868
|
16 |
J Li, T Zhao, Y Zhang, K Zhang, L Shi, Y Chen, X Wang, Z Sun. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res 2018; 46(15): 7793–7804
https://doi.org/10.1093/nar/gky678
pmid: 30060008
|
17 |
G Zhou, O Soufan, J Ewald, REW Hancock, N Basu, J Xia. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019; 47(W1): W234–W241
https://doi.org/10.1093/nar/gkz240
pmid: 30931480
|
18 |
MV Kuleshov, MR Jones, AD Rouillard, NF Fernandez, Q Duan, Z Wang, S Koplev, SL Jenkins, KM Jagodnik, A Lachmann, MG McDermott, CD Monteiro, GW Gundersen, A Ma’ayan. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90–W97
https://doi.org/10.1093/nar/gkw377
pmid: 27141961
|
19 |
BA Maron, RS Wang, S Shevtsov, SG Drakos, E Arons, O Wever-Pinzon, GS Huggins, AO Samokhin, WM Oldham, Y Aguib, MH Yacoub, EJ Rowin, BJ Maron, MS Maron, J Loscalzo. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat Commun 2021; 12(1): 873
https://doi.org/10.1038/s41467-021-21146-y
pmid: 33558530
|
20 |
JB Geske, KC Ong, KC Siontis, VB Hebl, MJ Ackerman, DO Hodge, VM Miller, RA Nishimura, JK Oh, HV Schaff, BJ Gersh, SR Ommen. Women with hypertrophic cardiomyopathy have worse survival. Eur Heart J 2017; 38(46): 3434–3440
https://doi.org/10.1093/eurheartj/ehx527
pmid: 29020402
|
21 |
EP Rhee, Q Yang, B Yu, X Liu, S Cheng, A Deik, KA Pierce, K Bullock, JE Ho, D Levy, JC Florez, S Kathiresan, MG Larson, RS Vasan, CB Clish, TJ Wang, E Boerwinkle, CJ O’Donnell, RE Gerszten. An exome array study of the plasma metabolome. Nat Commun 2016; 7(1): 12360
https://doi.org/10.1038/ncomms12360
pmid: 27453504
|
22 |
J Wessel, AY Chu, SM Willems, S Wang, H Yaghootkar, JA Brody, M Dauriz, MF Hivert, S Raghavan, L Lipovich, B Hidalgo, K Fox, JE Huffman, P An, Y Lu, LJ Rasmussen-Torvik, N Grarup, MG Ehm, L Li, AS Baldridge, A Stančáková, R Abrol, C Besse, A Boland, J Bork-Jensen, M Fornage, DF Freitag, ME Garcia, X Guo, K Hara, A Isaacs, J Jakobsdottir, LA Lange, JC Layton, M Li, Zhao J Hua, K Meidtner, AC Morrison, MA Nalls, MJ Peters, M Sabater-Lleal, C Schurmann, A Silveira, AV Smith, L Southam, MH Stoiber, RJ Strawbridge, KD Taylor, TV Varga, KH Allin, N Amin, JL Aponte, T Aung, C Barbieri, NA Bihlmeyer, M Boehnke, C Bombieri, DW Bowden, SM Burns, Y Chen, YD Chen, CY Cheng, A Correa, J Czajkowski, A Dehghan, GB Ehret, G Eiriksdottir, SA Escher, AE Farmaki, M Frånberg, G Gambaro, F Giulianini, WA 3rd Goddard, A Goel, O Gottesman, ML Grove, S Gustafsson, Y Hai, G Hallmans, J Heo, P Hoffmann, MK Ikram, RA Jensen, ME Jørgensen, T Jørgensen, M Karaleftheri, CC Khor, A Kirkpatrick, AT Kraja, J Kuusisto, EM Lange, IT Lee, WJ Lee, A Leong, J Liao, C Liu, Y Liu, CM Lindgren, A Linneberg, G Malerba, V Mamakou, E Marouli, NM Maruthur, A Matchan, R McKean-Cowdin, O McLeod, GA Metcalf, KL Mohlke, DM Muzny, I Ntalla, ND Palmer, D Pasko, A Peter, NW Rayner, F Renström, K Rice, CF Sala, B Sennblad, I Serafetinidis, JA Smith, N Soranzo, EK Speliotes, EA Stahl, K Stirrups, N Tentolouris, A Thanopoulou, M Torres, M Traglia, E Tsafantakis, S Javad, LR Yanek, E Zengini, DM Becker, JC Bis, JB Brown, LA Cupples, T Hansen, E Ingelsson, AJ Karter, C Lorenzo, RA Mathias, JM Norris, GM Peloso, WH Sheu, D Toniolo, D Vaidya, R Varma, LE Wagenknecht, H Boeing, EP Bottinger, G Dedoussis, P Deloukas, E Ferrannini, OH Franco, PW Franks, RA Gibbs, V Gudnason, A Hamsten, TB Harris, AT Hattersley, C Hayward, A Hofman, JH Jansson, C Langenberg, LJ Launer, D Levy, BA Oostra, CJ O'Donnell, S O'Rahilly, S Padmanabhan, JS Pankow, O Polasek, MA Province, SS Rich, PM Ridker, I Rudan, MB Schulze, BH Smith, AG Uitterlinden, M Walker, H Watkins, TY Wong, E; EPIC-InterAct Consortium; Laakso M Zeggini, IB Borecki, DI Chasman, O Pedersen, BM Psaty, ES Tai, Duijn CM van, NJ Wareham, DM Waterworth, E Boerwinkle, WH Kao, JC Florez, RJ Loos, JG Wilson, TM Frayling, DS Siscovick, J Dupuis, JI Rotter, JB Meigs, RA Scott, MO Goodarzi. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 2015; 6(1): 5897
https://doi.org/10.1038/ncomms6897
pmid: 25631608
|
23 |
O Zuk, SF Schaffner, K Samocha, R Do, E Hechter, S Kathiresan, MJ Daly, BM Neale, SR Sunyaev, ES Lander. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA 2014; 111(4): E455–E464
https://doi.org/10.1073/pnas.1322563111
pmid: 24443550
|
24 |
BJ Maron, P Spirito. Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol 1998; 81(11): 1339–1344
https://doi.org/10.1016/S0002-9149(98)00164-7
pmid: 9631972
|
25 |
HG Klues, A Schiffers, BJ Maron. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 1995; 26(7): 1699–1708
https://doi.org/10.1016/0735-1097(95)00390-8
pmid: 7594106
|
26 |
MC Wu, S Lee, T Cai, Y Li, M Boehnke, X Lin. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011; 89(1): 82–93
https://doi.org/10.1016/j.ajhg.2011.05.029
pmid: 21737059
|
27 |
AJ Marian, E Braunwald. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017; 121(7): 749–770
https://doi.org/10.1161/CIRCRESAHA.117.311059
pmid: 28912181
|
28 |
BJ Maron, MS Maron, BA Maron, J Loscalzo. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy: Jacc review topic of the week. J Am Coll Cardiol 2019; 73(15): 1978–1986
https://doi.org/10.1016/j.jacc.2019.01.061
pmid: 31000001
|
29 |
MW Friederich, S Timal, CA Powell, C Dallabona, A Kurolap, S Palacios-Zambrano, D Bratkovic, TGJ Derks, D Bick, K Bouman, KC Chatfield, N Damouny-Naoum, MK Dishop, TC Falik-Zaccai, F Fares, A Fedida, I Ferrero, RC Gallagher, R Garesse, M Gilberti, C González, K Gowan, C Habib, RK Halligan, L Kalfon, K Knight, D Lefeber, L Mamblona, H Mandel, A Mory, J Ottoson, T Paperna, GJM Pruijn, PF Rebelo-Guiomar, A Saada, B Jr Sainz, H Salvemini, MH Schoots, JA Smeitink, MJ Szukszto, Horst HJ Ter, den Brandt F van, Spronsen FJ van, JA Veltman, E Wartchow, LT Wintjes, Y Zohar, MA Fernández-Moreno, HN Baris, C Donnini, M Minczuk, RJ Rodenburg, Hove JLK Van. Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat Commun 2018; 9(1): 4065
https://doi.org/10.1038/s41467-018-06250-w
pmid: 30283131
|
30 |
TM Marin, K Keith, B Davies, DA Conner, P Guha, D Kalaitzidis, X Wu, J Lauriol, B Wang, M Bauer, R Bronson, KG Franchini, BG Neel, MI Kontaridis. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 2011; 121(3): 1026–1043
https://doi.org/10.1172/JCI44972
pmid: 21339643
|
31 |
LY Lee, J Loscalzo. Network medicine in pathobiology. Am J Pathol 2019; 189(7): 1311–1326
https://doi.org/10.1016/j.ajpath.2019.03.009
pmid: 31014954
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|