Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (2) : 173-206    https://doi.org/10.1007/s11684-023-0992-z
REVIEW
Zooming in and out of ferroptosis in human disease
Xue Wang1,2, Ye Zhou3, Junxia Min1(), Fudi Wang1,2()
1. The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
2. The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
3. Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo 315000, China
 Download: PDF(2557 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.

Keywords ferroptosis      human disease      iron metabolism      lipid peroxidation      antioxidation     
Corresponding Author(s): Junxia Min,Fudi Wang   
Just Accepted Date: 28 February 2023   Online First Date: 28 April 2023    Issue Date: 26 May 2023
 Cite this article:   
Xue Wang,Ye Zhou,Junxia Min, et al. Zooming in and out of ferroptosis in human disease[J]. Front. Med., 2023, 17(2): 173-206.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-0992-z
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I2/173
Fig.1  The relationship between ferroptosis and various diseases. Ferroptosis is implicated in the regulation of multiple systemic diseases, including cancers, neurological diseases, cardiovascular diseases, respiratory diseases, liver diseases, digestive system diseases, urogenital system diseases, endocrine system diseases, iron overload diseases, musculoskeletal system diseases and autoimmune system diseases, and diseases of the visual system.
Fig.2  The molecular mechanisms of ferroptosis. The metabolic pathways that mediate ferroptosis mainly include iron metabolism, the antioxidant system and lipid metabolism. Iron metabolism: non-heme iron binds to TF and is released into the cytoplasm by TFR1 and can also be transported into cells through non-TF-bound iron uptake mediated by metal transporter SLC39A14. The metalloreductase STEAP3 reduces Fe3+ to Fe2+ in endosomes. Iron can be released from TF and exported to the cytoplasm by DMT1 or TRPML1. Heme releases iron under the catalyzed degradation of HO-1. Ferritin also releases a large amount of iron by ferritinophagy mediated by NCOA4. Further, hepcidin inhibits FPN to reduce the release of iron from the cell. Together, these processes can increase the LIP, thereby sensitizing cells to ferroptosis via the Fenton reaction. Antioxidant system: this pathway mainly involves the cysteine-GSH-GPX4 axis and FSP1-CoQ10 axis. Cystine is transported into the cell via system Xc, and promotes the synthesis of GSH. Coenzyme Q10 and VK can be reduced to CoQ10H2 and VKH2, respectively, by FSP1, inhibiting lipid peroxidation by trapping lipid peroxidation free radicals. Lipid metabolism: MUFAs incorporate into phospholipids in an ACSL3-dependent manner to inhibit lipid peroxidation. PUFAs are metabolized by ACSL4/ACSL1, and LPCAT and then oxidized by PEBP1, POR, and ALOXs to promote lipid peroxidation and ferroptosis. In addition, PKCβII senses initial lipid peroxidation events and phosphorylates ACSL4 to drive pACSL4 activation to promote PUFA incorporation into PLs. Abbreviations: TF, transferrin; TFR1, transferrin receptor protein 1; SLC39A14, solute carrier family 39 member 14; TRPML1, transient receptor potential mucolipin 1; DMT1, divalent metal transporter 1; LIP, labile iron pool; NCOA4, nuclear receptor coactivator 4; FPN, ferroportin; GSH, glutathione; GTP, guanosine triphosphate; BH4, tetrahydrobiopterin; VKH2, vitamin K hydroquinone; GCLC, glutamate-cysteine ligase catalytic subunit; GPX4, glutathione peroxidase 4; IL4i1, interleukin-4-induced-1; GCH1, GTP cyclohydrolase-1; FSP1, ferroptosis suppressor protein 1; MRP1, multidrug resistance protein 1; ACC, acetyl CoA carboxylase; AMPK, adenosine-monophosphate-activated protein kinase; PUFA-PL, polyunsaturated fatty acid-containing phospholipid; LPCAT3, lysophosphatidylcholine acyltransferase 3; ACSL, acyl-CoA synthetase long-chain family; ALOXs, arachidonate lipoxygenases; POR, P450 oxidoreductase; PKCβII, protein kinase C beta type isoform 2; MUFA, monounsaturated fatty acid; PEBP1, phosphatidylethanolamine-binding protein 1; iPLA2β, group VI calcium-independent phospholipase A2β.
Fig.3  Mitochondria iron metabolism in ferroptosis. As a major source of cellular ROS, mitochondrial metabolism plays a key role in the execution of ferroptosis. The key mitochondrial iron importer SLC25A28 is engaged in heme and Fe-S biogenesis. HO-1 catalyzes the degradation of heme to produce Fe2+, which leads to mitochondrial iron overload and promotes ferroptosis. Separate mitochondria-localized defense systems have evolved to prevent mitochondrial lipid peroxidation and ferroptosis. For example, either the mitochondrial version of phospholipid hydroperoxide GPX4 or DHODH can specifically detoxify mitochondrial lipid peroxides. Mitochondrial ferritin protects mitochondria from iron overload-induced oxidative injury. In addition, CISD1 and CISD2 suppresses ferroptosis by limiting mitochondrial iron uptake. Abbreviations: ROS, reactive oxygen species; TCA, tricarboxylic acid; DHODH, dihydroorotate dehydrogenase; CoQ10, coenzyme Q10; FSP1, ferroptosis suppressor protein 1; FTMT, mitochondrial ferritin; HO-1, heme oxygenase 1; CISD, CDGSH iron sulfur domain; GPX4, glutathione peroxidase 4; GSH, glutathione; GSSG, glutathione disulfide; LIP, labile iron pool; PL-PUFA-OOH, polyunsaturated fatty acid-containing phospholipid hydroperoxides; PLOO·, phospholipid peroxyl radical; SCL25A28, also known as MFRN2, mitoferrin 2; SLC39A14, solute carrier family 39 member 14; SLC25A39, solute carrier family 25 member 39; NFS1, cysteine desulfurase; TF, transferrin; TFR1, transferrin receptor protein 1; RNF217, E3 ubiquitin protein ligase RNF217; FPN, ferroportin.
Organs/systems Diseases Key mechanisms Inhibitors Inducers
Brain AD Decreased GPX4, GSH and increased 4-HNE and MDA protein levels [116,117]Increased lipid peroxidation [116,117]Increased ROS level [118]Iron overload [119] Lip-1 [116]ALDH2 [121]TSG [122]Eriodictyol [124]FA [123]LA [126]Apolipoprotein E [125]
PD Increased lipid peroxidation [128]Reduced GPX4 and SLC7A11 expression and GSH depletion [129,130]Increased ROS level [129,130]Deficiency of CoQ10 [127]Downregulate FTH1 [131] TRX-1 [132]Deferiprone [133]CQ [134]
HD Increased lipid peroxidation [137,138]GSH depletion [139]Iron overload [140] DFO [142]Fer-1 [143]
Brain trauma Iron overload [282] Fer-1 [282]
FRDA Iron overload [283] EPI-743 and SFN [287]
Heart IRI Increased lipid peroxidation [150]Increased the levels of ACSL4, iron and MDA [149]Decreased GPX4 level [149]Iron overload [154]Increased the transcription of FTH and FTL [66] Fer-1 [66]Lip-1 [158]DFO [161]2, 2-bipyridyl [162]mTOR [163,164]Dex [160]Baicalin [167]Britanin [168]Xanthohumol and naringenin [169,170]Resveratrol [171]Cyanidin-3-glucoside [172]
HF Increased ROS level [181]Decreased GPX4 level [178]Downregulate the expression of FTH1 [181]Iron overload [181] Puerarin [184]DFO [66]Canagliflozin [185] Doxorubicin [179,180]
Atherosclerosis Accumulation of lipid peroxides and reduced GSH synthesis [186]Iron overload [189] PDSS2 [187]Fer-1 [190]
Lung ALI Decreased GSH, GPX4 and SLC7A11 [195,196]Iron overload [195]MDA and 4-HNE accumulation [196] Fer-1 [196]iASPP [197]PX [198]Dimethyl fumarate [199]
COPD Iron overload [201]Increased phospholipid peroxidation [202]Increased ROS level and decreased GSH and NADPH levels [203] DFO [201]Fer-1 [201]
PF Reduced GPX4 expression and increased ROS [206] Lip-1 [206] Erastin [207]Paraquat [208]
Lung cancer Upregulate SCD1, FADS2, and FSP1 [45,314,315]Decreased intracellular Fe2+ and ROS levels [316,317] Curcumin [91]Orlistat [98]DHA [318]Erianin [319]APAP [320]
Breast Breast cancer Not clear 27-hydroxycholesterol [80]Metformin [321]Lidocaine [322]Sulfasalazine [323]Curcumin [109]EC330/EC359 [103]
Liver NAFLD Increased lipid peroxidation [209]Increased ACSL4 level [213]Increased GPX4 level (early stage) [220]Iron overload [210] IMA-1 [214]ECH1 [218]Lip-1 [215,216]ENO3 [220]Tβ4 [217]GB [219]
ALD Increased lipid peroxidation [224]Decreased hepatic GSH levels [225]Iron overload [223] Fer-1 [222]Frataxin [226] Lipin-1 [224]Intestinal SIRT1 [225]
Liver fibrosis Increased lipid peroxidation [227]Inhibit xCT/SLC7A11 [229]Iron overload [227] Wild bitter melon extract [230]ART [231,232]Artesunate [233]
HCC Upregulate ACSL3 and ACSL4 [93]
Stabilize SLC7A11 protein, increase intracellular GSH production, reduce lipid peroxidation [100,324]
ABCC5 [100] IFNγ [325]MicroRNA-214-3p [326]Ceruloplasmin [106]Haloperidol [107]
Gastrointestinal Gastric cancer Upregulate SCD1, ELOVL5, and FADS1 [327,328]Decreased GPX4 expression [329] Tanshinone IIA [330]ACP [331]Apatinib [329]
Colorectal cancer Upregulate SLC7A11 expression [332]Increased GSH and decreased ROS level [332] Apatinib [92]TalaA [333]miRNA-15a-3p [334]SRSF9 [335]LCN2 [105]
Pancreas Pancreatic cancer Increased ROS level [336]Increased GSH synthesis [337] MGST1 [97]BCAT2 [104] Cyst(e)inase [337]Piperlongumine [338]Ponicidin [339]DHA [110]Ruscogenin [111]
Kidney AKI Increased lipid peroxidation [236]Decreased GPX4 and GSH levels [239]Iron overload [239,241] Quercetin [245]Nuciferine [246]Vitamin D receptors [247] Legumain [244]miR-182-5p [240]miR-378a-3p [240]
CKD Increased ACSL4 content [249]Increased lipid peroxidation [249,250]Decreased expression of SLC7A11 and GPX4 protein [250]Iron overload [249] Rosiglitazone [249]Fenofibrate [252]Tocilizumab mimotopes [254]Fer-1 and DFO [255]
ADPKD Decreased expression of system Xc and GPX4 [256] Increased expression of TFR1, DMT1 and HO-1 [256]Iron overload [256,257] Fer-1 [256]CPX-O [257] Erastin [256]
Endocrine T2DM Increased whole-body iron status [261] Cryptochlorogenic acid [262]Resveratrol [263]Polyphenols [264]Quercetin [259] Acrolein [263]
Obesity Upregulate ACSL4 [266]Iron overload [268] DFO [269]
Blood HH Iron overload [273] Fer-1 [273]FGF21 [275] AUR [274]
Thalassemia Iron overload [278] Deferiprone [280]DFO [280]
Orthopedic OA Iron overload [290]Decreased expression of SLC7A11 and GPX4 [290] Fer-1 [290]D-mannose [292]
OP Iron overload (osteoblast) [294]Increased ROS level (osteoblast) [294] FTMT [294]Melatonin [295] 2ME2 [296]Artemisinin [297]
Autoimmune SLE Reduced GPX4 expression [301] Lip-1 [301]DFO [301]
RA Increased expression of FTH1, GPX4, and SLC7A11 [303] IKE [302]Glycine [303]
IBD Reduced GPX4 expression [306]Increased lipid peroxidation [306]Iron overload [307] Fer-1 [307]DFO [307]
Tab.1  Key mechanisms and regulators of ferroptosis in different diseases
1 X Jiang, BR Stockwell, M Conrad. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 2021; 22(4): 266–282
https://doi.org/10.1038/s41580-020-00324-8 pmid: 33495651
2 SJ Dixon, KM Lemberg, MR Lamprecht, R Skouta, EM Zaitsev, CE Gleason, DN Patel, AJ Bauer, AM Cantley, WS Yang, B 3rd Morrison, BR Stockwell. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072
https://doi.org/10.1016/j.cell.2012.03.042 pmid: 22632970
3 DR Green. The coming decade of cell death research: five riddles. Cell 2019; 177(5): 1094–1107
https://doi.org/10.1016/j.cell.2019.04.024 pmid: 31100266
4 Angeli JP Friedmann, M Schneider, B Proneth, YY Tyurina, VA Tyurin, VJ Hammond, N Herbach, M Aichler, A Walch, E Eggenhofer, D Basavarajappa, O Rådmark, S Kobayashi, T Seibt, H Beck, F Neff, I Esposito, R Wanke, H Förster, O Yefremova, M Heinrichmeyer, GW Bornkamm, EK Geissler, SB Thomas, BR Stockwell, VB O’Donnell, VE Kagan, JA Schick, M Conrad. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16(12): 1180–1191
https://doi.org/10.1038/ncb3064 pmid: 25402683
5 Y Xie, W Hou, X Song, Y Yu, J Huang, X Sun, R Kang, D Tang. Ferroptosis: process and function. Cell Death Differ 2016; 23(3): 369–379
https://doi.org/10.1038/cdd.2015.158 pmid: 26794443
6 SE Kim, L Zhang, K Ma, M Riegman, F Chen, I Ingold, M Conrad, MZ Turker, M Gao, X Jiang, S Monette, M Pauliah, M Gonen, P Zanzonico, T Quinn, U Wiesner, MS Bradbury, M Overholtzer. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 2016; 11(11): 977–985
https://doi.org/10.1038/nnano.2016.164 pmid: 27668796
7 VE Kagan, G Mao, F Qu, JP Angeli, S Doll, CS Croix, HH Dar, B Liu, VA Tyurin, VB Ritov, AA Kapralov, AA Amoscato, J Jiang, T Anthonymuthu, D Mohammadyani, Q Yang, B Proneth, J Klein-Seetharaman, S Watkins, I Bahar, J Greenberger, RK Mallampalli, BR Stockwell, YY Tyurina, M Conrad, H Bayır. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017; 13(1): 81–90
https://doi.org/10.1038/nchembio.2238 pmid: 27842066
8 L Magtanong, PJ Ko, M To, JY Cao, GC Forcina, A Tarangelo, CC Ward, K Cho, GJ Patti, DK Nomura, JA Olzmann, SJ Dixon. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 2019; 26(3): 420–432.e9
https://doi.org/10.1016/j.chembiol.2018.11.016 pmid: 30686757
9 Y Zou, WS Henry, EL Ricq, ET Graham, VV Phadnis, P Maretich, S Paradkar, N Boehnke, AA Deik, F Reinhardt, JK Eaton, B Ferguson, W Wang, J Fairman, HR Keys, V Dančík, CB Clish, PA Clemons, PT Hammond, LA Boyer, RA Weinberg, SL Schreiber. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020; 585(7826): 603–608
https://doi.org/10.1038/s41586-020-2732-8 pmid: 32939090
10 MA Perez, L Magtanong, SJ Dixon, JL Watts. Dietary lipids induce ferroptosis in Caenorhabditis elegans and human cancer cells. Dev Cell 2020; 54(4): 447–454.e4
https://doi.org/10.1016/j.devcel.2020.06.019 pmid: 32652074
11 W Cui, D Liu, W Gu, B Chu. Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis. Cell Death Differ 2021; 28(8): 2536–2551
https://doi.org/10.1038/s41418-021-00769-0 pmid: 33731874
12 Y Liu, L He, B Liu, Y Ying, J Xu, M Yu, J Dang, K Liu. Pharmacological inhibition of sphingolipid synthesis reduces ferroptosis by stimulating the HIF-1 pathway. iScience 2022; 25(7): 104533
https://doi.org/10.1016/j.isci.2022.104533 pmid: 35784791
13 F Thayyullathil, AR Cheratta, A Alakkal, K Subburayan, S Pallichankandy, YA Hannun, S Galadari. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis 2021; 12(1): 26
https://doi.org/10.1038/s41419-020-03297-w pmid: 33414455
14 JP Thomas, PG Geiger, M Maiorino, F Ursini, AW Girotti. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta 1990; 1045(3): 252–260
https://doi.org/10.1016/0005-2760(90)90128-K pmid: 2386798
15 J Garcia-Bermudez, L Baudrier, EC Bayraktar, Y Shen, K La, R Guarecuco, B Yucel, D Fiore, B Tavora, E Freinkman, SH Chan, C Lewis, W Min, G Inghirami, DM Sabatini, K Birsoy. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 2019; 567(7746): 118–122
https://doi.org/10.1038/s41586-019-0945-5 pmid: 30760928
16 X Ma, L Xiao, L Liu, L Ye, P Su, E Bi, Q Wang, M Yang, J Qian, Q Yi. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33(5): 1001–1012.e5
https://doi.org/10.1016/j.cmet.2021.02.015 pmid: 33691090
17 S Doll, B Proneth, YY Tyurina, E Panzilius, S Kobayashi, I Ingold, M Irmler, J Beckers, M Aichler, A Walch, H Prokisch, D Trümbach, G Mao, F Qu, H Bayir, J Füllekrug, CH Scheel, W Wurst, JA Schick, VE Kagan, JP Angeli, M Conrad. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017; 13(1): 91–98
https://doi.org/10.1038/nchembio.2239 pmid: 27842070
18 HL Zhang, BX Hu, ZL Li, T Du, JL Shan, ZP Ye, XD Peng, X Li, Y Huang, XY Zhu, YH Chen, GK Feng, D Yang, R Deng, XF Zhu. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol 2022; 24(1): 88–98
https://doi.org/10.1038/s41556-021-00818-3 pmid: 35027735
19 J Wu, AM Minikes, M Gao, H Bian, Y Li, BR Stockwell, ZN Chen, X Jiang. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 2019; 572(7769): 402–406
https://doi.org/10.1038/s41586-019-1426-6 pmid: 31341276
20 A Beatty, T Singh, YY Tyurina, VA Tyurin, S Samovich, E Nicolas, K Maslar, Y Zhou, KQ Cai, Y Tan, S Doll, M Conrad, A Subramanian, H Bayır, VE Kagan, U Rennefahrt, JR Peterson. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun 2021; 12(1): 2244
https://doi.org/10.1038/s41467-021-22471-y pmid: 33854057
21 T Hashidate-Yoshida, T Harayama, D Hishikawa, R Morimoto, F Hamano, SM Tokuoka, M Eto, M Tamura-Nakano, R Yanobu-Takanashi, Y Mukumoto, H Kiyonari, T Okamura, Y Kita, H Shindou, T Shimizu. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife 2015; 4: e06328
https://doi.org/10.7554/eLife.06328 pmid: 25898003
22 D Venkatesh, NA O’Brien, F Zandkarimi, DR Tong, ME Stokes, DE Dunn, ES Kengmana, AT Aron, AM Klein, JM Csuka, SH Moon, M Conrad, CJ Chang, DC Lo, A D’Alessandro, C Prives, BR Stockwell. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 2020; 34(7–8): 526–543
https://doi.org/10.1101/gad.334219.119 pmid: 32079652
23 M Kaller, ST Liffers, S Oeljeklaus, K Kuhlmann, S Röh, R Hoffmann, B Warscheid, H Hermeking. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 2011; 10(8): M111.010462
https://doi.org/10.1074/mcp.M111.010462 pmid: 21566225
24 C Bai, Y Gao, X Zhang, W Yang, W Guan. MicroRNA-34c acts as a bidirectional switch in the maturation of insulin-producing cells derived from mesenchymal stem cells. Oncotarget 2017; 8(63): 106844–106857
https://doi.org/10.18632/oncotarget.21883 pmid: 29290993
25 LH Dong, JJ Huang, P Zu, J Liu, X Gao, JW Du, YF Li. CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia. Environ Toxicol 2021; 36(7): 1288–1302
https://doi.org/10.1002/tox.23126 pmid: 33733556
26 S Ye, M Xu, T Zhu, J Chen, S Shi, H Jiang, Q Zheng, Q Liao, X Ding, Y Xi. Cytoglobin promotes sensitivity to ferroptosis by regulating p53-YAP1 axis in colon cancer cells. J Cell Mol Med 2021; 25(7): 3300–3311
https://doi.org/10.1111/jcmm.16400 pmid: 33611811
27 L Jiang, N Kon, T Li, SJ Wang, T Su, H Hibshoosh, R Baer, W Gu. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520(7545): 57–62
https://doi.org/10.1038/nature14344 pmid: 25799988
28 D Chen, B Chu, X Yang, Z Liu, Y Jin, N Kon, R Rabadan, X Jiang, BR Stockwell, W Gu. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 2021; 12(1): 3644
https://doi.org/10.1038/s41467-021-23902-6 pmid: 34131139
29 H Lee, F Zandkarimi, Y Zhang, JK Meena, J Kim, L Zhuang, S Tyagi, L Ma, TF Westbrook, GR Steinberg, D Nakada, BR Stockwell, B Gan. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 2020; 22(2): 225–234
https://doi.org/10.1038/s41556-020-0461-8 pmid: 32029897
30 MM Gaschler, F Hu, H Feng, A Linkermann, W Min, BR Stockwell. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol 2018; 13(4): 1013–1020
https://doi.org/10.1021/acschembio.8b00199 pmid: 29512999
31 L Hao, YM Zhong, CP Tan, ZW Mao. Quantitative tracking of endoplasmic reticulum viscosity during ferroptosis by an iridium complex via TPPLM. Chem Commun (Camb) 2021; 57(41): 5040–5042
https://doi.org/10.1039/D1CC01062J pmid: 33881416
32 E Agmon, J Solon, P Bassereau, BR Stockwell. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 2018; 8(1): 5155
https://doi.org/10.1038/s41598-018-23408-0 pmid: 29581451
33 L Pedrera, RA Espiritu, U Ros, J Weber, A Schmitt, J Stroh, S Hailfinger, Karstedt S von, AJ García-Sáez. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ 2021; 28(5): 1644–1657
https://doi.org/10.1038/s41418-020-00691-x pmid: 33335287
34 S Bannai. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 1986; 261(5): 2256–2263
https://doi.org/10.1016/S0021-9258(17)35926-4 pmid: 2868011
35 L Wang, Y Liu, T Du, H Yang, L Lei, M Guo, HF Ding, J Zhang, H Wang, X Chen, C Yan. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 2020; 27(2): 662–675
https://doi.org/10.1038/s41418-019-0380-z pmid: 31273299
36 M Rojo de la Vega, E Chapman, DD Zhang. NRF2 and the hallmarks of cancer. Cancer Cell 2018; 34(1): 21–43
https://doi.org/10.1016/j.ccell.2018.03.022 pmid: 29731393
37 Z Fan, AK Wirth, D Chen, CJ Wruck, M Rauh, M Buchfelder, N Savaskan. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017; 6(8): e371
https://doi.org/10.1038/oncsis.2017.65 pmid: 28805788
38 JY Cao, A Poddar, L Magtanong, JH Lumb, TR Mileur, MA Reid, CM Dovey, J Wang, JW Locasale, E Stone, SPC Cole, JE Carette, SJ Dixon. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep 2019; 26(6): 1544–1556.e8
https://doi.org/10.1016/j.celrep.2019.01.043 pmid: 30726737
39 S Hao, J Yu, W He, Q Huang, Y Zhao, B Liang, S Zhang, Z Wen, S Dong, J Rao, W Liao, M Shi. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 2017; 19(12): 1022–1032
https://doi.org/10.1016/j.neo.2017.10.005 pmid: 29144989
40 YP Kang, A Mockabee-Macias, C Jiang, A Falzone, N Prieto-Farigua, E Stone, IS Harris, GM DeNicola. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 2021; 33(1): 174–189.e7
https://doi.org/10.1016/j.cmet.2020.12.007 pmid: 33357455
41 X FangJ ZhangY LiY SongY Yu Z CaiF Lian J YangJ MinF Wang. Malic enzyme 1 as a novel anti-ferroptotic regulator in hepatic ischemia/reperfusion injury. Adv Sci (Weinh) 2023; [Epub ahead of print] doi:
https://doi.org/10.1002/advs.202205436 pmid: 36840630
42 K Shimada, R Skouta, A Kaplan, WS Yang, M Hayano, SJ Dixon, LM Brown, CA Valenzuela, AJ Wolpaw, BR Stockwell. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 2016; 12(7): 497–503
https://doi.org/10.1038/nchembio.2079 pmid: 27159577
43 Z Wu, Y Geng, X Lu, Y Shi, G Wu, M Zhang, B Shan, H Pan, J Yuan. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A 2019; 116(8): 2996–3005
https://doi.org/10.1073/pnas.1819728116 pmid: 30718432
44 E Mishima, J Ito, Z Wu, T Nakamura, A Wahida, S Doll, W Tonnus, P Nepachalovich, E Eggenhofer, M Aldrovandi, B Henkelmann, KI Yamada, J Wanninger, O Zilka, E Sato, R Feederle, D Hass, A Maida, ASD Mourão, A Linkermann, EK Geissler, K Nakagawa, T Abe, M Fedorova, B Proneth, DA Pratt, M Conrad. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 2022; 608(7924): 778–783
https://doi.org/10.1038/s41586-022-05022-3 pmid: 35922516
45 K Bersuker, JM Hendricks, Z Li, L Magtanong, B Ford, PH Tang, MA Roberts, B Tong, TJ Maimone, R Zoncu, MC Bassik, DK Nomura, SJ Dixon, JA Olzmann. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019; 575(7784): 688–692
https://doi.org/10.1038/s41586-019-1705-2 pmid: 31634900
46 S Doll, FP Freitas, R Shah, M Aldrovandi, Silva MC da, I Ingold, Grocin A Goya, da Silva TN Xavier, E Panzilius, CH Scheel, A Mourão, K Buday, M Sato, J Wanninger, T Vignane, V Mohana, M Rehberg, A Flatley, A Schepers, A Kurz, D White, M Sauer, M Sattler, EW Tate, W Schmitz, A Schulze, V O’Donnell, B Proneth, GM Popowicz, DA Pratt, JPF Angeli, M Conrad. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019; 575(7784): 693–698
https://doi.org/10.1038/s41586-019-1707-0 pmid: 31634899
47 C Mao, X Liu, Y Zhang, G Lei, Y Yan, H Lee, P Koppula, S Wu, L Zhuang, B Fang, MV Poyurovsky, K Olszewski, B Gan. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021; 593(7860): 586–590
https://doi.org/10.1038/s41586-021-03539-7 pmid: 33981038
48 ER Werner, N Blau, B Thöny. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 2011; 438(3): 397–414
https://doi.org/10.1042/BJ20110293 pmid: 21867484
49 VAN Kraft, CT Bezjian, S Pfeiffer, L Ringelstetter, C Müller, F Zandkarimi, J Merl-Pham, X Bao, N Anastasov, J Kössl, S Brandner, JD Daniels, P Schmitt-Kopplin, SM Hauck, BR Stockwell, K Hadian, JA Schick. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 2020; 6(1): 41–53
https://doi.org/10.1021/acscentsci.9b01063 pmid: 31989025
50 M Soula, RA Weber, O Zilka, H Alwaseem, K La, F Yen, H Molina, J Garcia-Bermudez, DA Pratt, K Birsoy. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 2020; 16(12): 1351–1360
https://doi.org/10.1038/s41589-020-0613-y pmid: 32778843
51 L Zeitler, A Fiore, C Meyer, M Russier, G Zanella, S Suppmann, M Gargaro, SS Sidhu, S Seshagiri, C Ohnmacht, T Köcher, F Fallarino, A Linkermann, PJ Murray. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Elife 2021; 10: e64806
https://doi.org/10.7554/eLife.64806 pmid: 33646117
52 Y Yu, L Jiang, H Wang, Z Shen, Q Cheng, P Zhang, J Wang, Q Wu, X Fang, L Duan, S Wang, K Wang, P An, T Shao, RT Chung, S Zheng, J Min, F Wang. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 2020; 136(6): 726–739
https://doi.org/10.1182/blood.2019002907 pmid: 32374849
53 MU Muckenthaler, S Rivella, MW Hentze, B Galy. A red carpet for iron metabolism. Cell 2017; 168(3): 344–361
https://doi.org/10.1016/j.cell.2016.12.034 pmid: 28129536
54 F Zhang, Y Tao, Z Zhang, X Guo, P An, Y Shen, Q Wu, Y Yu, F Wang. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012; 97(12): 1826–1835
https://doi.org/10.3324/haematol.2012.063974 pmid: 22689674
55 O Protchenko, E Baratz, S Jadhav, F Li, M Shakoury-Elizeh, O Gavrilova, MC Ghosh, JE Cox, JA Maschek, VA Tyurin, YY Tyurina, H Bayir, AT Aron, CJ Chang, VE Kagan, CC Philpott. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 2021; 73(3): 1176–1193
https://doi.org/10.1002/hep.31328 pmid: 32438524
56 A Donovan, CA Lima, JL Pinkus, GS Pinkus, LI Zon, S Robine, NC Andrews. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005; 1(3): 191–200
https://doi.org/10.1016/j.cmet.2005.01.003 pmid: 16054062
57 L Jiang, J Wang, K Wang, H Wang, Q Wu, C Yang, Y Yu, P Ni, Y Zhong, Z Song, E Xie, R Hu, J Min, F Wang. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021; 138(8): 689–705
https://doi.org/10.1182/blood.2020008986 pmid: 33895792
58 Z Zhang, F Zhang, P An, X Guo, Y Shen, Y Tao, Q Wu, Y Zhang, Y Yu, B Ning, G Nie, MD Knutson, GJ Anderson, F Wang. Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 2011; 118(7): 1912–1922
https://doi.org/10.1182/blood-2011-01-330324 pmid: 21705499
59 R Tian, A Abarientos, J Hong, SH Hashemi, R Yan, N Dräger, K Leng, MA Nalls, AB Singleton, K Xu, F Faghri, M Kampmann. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 2021; 24(7): 1020–1034
https://doi.org/10.1038/s41593-021-00862-0 pmid: 34031600
60 H Feng, K Schorpp, J Jin, CE Yozwiak, BG Hoffstrom, AM Decker, P Rajbhandari, ME Stokes, HG Bender, JM Csuka, PS Upadhyayula, P Canoll, K Uchida, RK Soni, K Hadian, BR Stockwell. Transferrin receptor is a specific ferroptosis marker. Cell Rep 2020; 30(10): 3411–3423.e7
https://doi.org/10.1016/j.celrep.2020.02.049 pmid: 32160546
61 PN Paradkar, KB Zumbrennen, BH Paw, DM Ward, J Kaplan. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 2009; 29(4): 1007–1016
https://doi.org/10.1128/MCB.01685-08 pmid: 19075006
62 GC Shaw, JJ Cope, L Li, K Corson, C Hersey, GE Ackermann, B Gwynn, AJ Lambert, RA Wingert, D Traver, NS Trede, BA Barut, Y Zhou, E Minet, A Donovan, A Brownlie, R Balzan, MJ Weiss, LL Peters, J Kaplan, LI Zon, BH Paw. Mitoferrin is essential for erythroid iron assimilation. Nature 2006; 440(7080): 96–100
https://doi.org/10.1038/nature04512 pmid: 16511496
63 Z Zhang, M Guo, M Shen, D Kong, F Zhang, J Shao, S Tan, S Wang, A Chen, P Cao, S Zheng. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol 2020; 36: 101619
https://doi.org/10.1016/j.redox.2020.101619 pmid: 32863216
64 MY Kwon, E Park, SJ Lee, SW Chung. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 2015; 6(27): 24393–24403
https://doi.org/10.18632/oncotarget.5162 pmid: 26405158
65 LC Chang, SK Chiang, SE Chen, YL Yu, RH Chou, WC Chang. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett 2018; 416: 124–137
https://doi.org/10.1016/j.canlet.2017.12.025 pmid: 29274359
66 X Fang, H Wang, D Han, E Xie, X Yang, J Wei, S Gu, F Gao, N Zhu, X Yin, Q Cheng, P Zhang, W Dai, J Chen, F Yang, HT Yang, A Linkermann, W Gu, J Min, F Wang. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116(7): 2672–2680
https://doi.org/10.1073/pnas.1821022116 pmid: 30692261
67 O Adedoyin, R Boddu, A Traylor, JM Lever, S Bolisetty, JF George, A Agarwal. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 2018; 314(5): F702–F714
https://doi.org/10.1152/ajprenal.00044.2017 pmid: 28515173
68 YQ Wang, SY Chang, Q Wu, YJ Gou, L Jia, YM Cui, P Yu, ZH Shi, WS Wu, G Gao, YZ Chang. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front Aging Neurosci 2016; 8: 308
https://doi.org/10.3389/fnagi.2016.00308 pmid: 28066232
69 SW Alvarez, VO Sviderskiy, EM Terzi, T Papagiannakopoulos, AL Moreira, S Adams, DM Sabatini, K Birsoy, R Possemato. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017; 551(7682): 639–643
https://doi.org/10.1038/nature24637 pmid: 29168506
70 H Yuan, X Li, X Zhang, R Kang, D Tang. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 2016; 478(2): 838–844
https://doi.org/10.1016/j.bbrc.2016.08.034 pmid: 27510639
71 EH Kim, D Shin, J Lee, AR Jung, JL Roh. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett 2018; 432: 180–190
https://doi.org/10.1016/j.canlet.2018.06.018 pmid: 29928961
72 R Shah, MS Shchepinov, DA Pratt. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci 2018; 4(3): 387–396
https://doi.org/10.1021/acscentsci.7b00589 pmid: 29632885
73 WS Yang, KJ Kim, MM Gaschler, M Patel, MS Shchepinov, BR Stockwell. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 2016; 113(34): E4966–E4975
https://doi.org/10.1073/pnas.1603244113 pmid: 27506793
74 SE Wenzel, YY Tyurina, J Zhao, Croix CM St, HH Dar, G Mao, VA Tyurin, TS Anthonymuthu, AA Kapralov, AA Amoscato, K Mikulska-Ruminska, IH Shrivastava, EM Kenny, Q Yang, JC Rosenbaum, LJ Sparvero, DR Emlet, X Wen, Y Minami, F Qu, SC Watkins, TR Holman, AP VanDemark, JA Kellum, I Bahar, H Bayır, VE Kagan. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017; 171(3): 628–641.e26
https://doi.org/10.1016/j.cell.2017.09.044 pmid: 29053969
75 B Chu, N Kon, D Chen, T Li, T Liu, L Jiang, S Song, O Tavana, W Gu. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 2019; 21(5): 579–591
https://doi.org/10.1038/s41556-019-0305-6 pmid: 30962574
76 Y Zou, H Li, ET Graham, AA Deik, JK Eaton, W Wang, G Sandoval-Gomez, CB Clish, JG Doench, SL Schreiber. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 2020; 16(3): 302–309
https://doi.org/10.1038/s41589-020-0472-6 pmid: 32080622
77 G Lei, L Zhuang, B Gan. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 2022; 22(7): 381–396
https://doi.org/10.1038/s41568-022-00459-0 pmid: 35338310
78 SK Tan, I Mahmud, F Fontanesi, M Puchowicz, CKA Neumann, AJ Griswold, R Patel, M Dispagna, HH Ahmed, ML Gonzalgo, JM Brown, TJ Garrett, SM Welford. Obesity-dependent adipokine chemerin suppresses fatty acid oxidation to confer ferroptosis resistance. Cancer Discov 2021; 11(8): 2072–2093
https://doi.org/10.1158/2159-8290.CD-20-1453 pmid: 33757970
79 WY Sun, VA Tyurin, K Mikulska-Ruminska, IH Shrivastava, TS Anthonymuthu, YJ Zhai, MH Pan, HB Gong, DH Lu, J Sun, WJ Duan, S Korolev, AY Abramov, PR Angelova, I Miller, O Beharier, GW Mao, HH Dar, AA Kapralov, AA Amoscato, TG Hastings, TJ Greenamyre, CT Chu, Y Sadovsky, I Bahar, H Bayır, YY Tyurina, RR He, VE Kagan. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol 2021; 17(4): 465–476
https://doi.org/10.1038/s41589-020-00734-x pmid: 33542532
80 W Liu, B Chakraborty, R Safi, D Kazmin, CY Chang, DP McDonnell. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun 2021; 12(1): 5103
https://doi.org/10.1038/s41467-021-25354-4 pmid: 34429409
81 P Koppula, Y Zhang, L Zhuang, B Gan. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 2018; 38(1): 12
https://doi.org/10.1186/s40880-018-0288-x pmid: 29764521
82 P Koppula, L Zhuang, B Gan. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021; 12(8): 599–620
https://doi.org/10.1007/s13238-020-00789-5 pmid: 33000412
83 M Dodson, R Castro-Portuguez, DD Zhang. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 2019; 23: 101107
https://doi.org/10.1016/j.redox.2019.101107 pmid: 30692038
84 A Anandhan, M Dodson, CJ Schmidlin, P Liu, DD Zhang. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 2020; 27(4): 436–447
https://doi.org/10.1016/j.chembiol.2020.03.011 pmid: 32275864
85 Y Zhang, J Shi, X Liu, L Feng, Z Gong, P Koppula, K Sirohi, X Li, Y Wei, H Lee, L Zhuang, G Chen, ZD Xiao, MC Hung, J Chen, P Huang, W Li, B Gan. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018; 20(10): 1181–1192
https://doi.org/10.1038/s41556-018-0178-0 pmid: 30202049
86 K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F Cheng, W Jiang, J Wang, H Pei, PJ Chiao, Z Cai, Y Chen, M Liu, X Pang. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 2020; 130(4): 1752–1766
https://doi.org/10.1172/JCI124049 pmid: 31874110
87 JKM Lim, A Delaidelli, SW Minaker, HF Zhang, M Colovic, H Yang, GL Negri, S von Karstedt, WW Lockwood, P Schaffer, G Leprivier, PH Sorensen. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A 2019; 116(19): 9433–9442
https://doi.org/10.1073/pnas.1821323116 pmid: 31000598
88 DH Manz, NL Blanchette, BT Paul, FM Torti, SV Torti. Iron and cancer: recent insights. Ann N Y Acad Sci 2016; 1368(1): 149–161
https://doi.org/10.1111/nyas.13008 pmid: 26890363
89 J Du, Y Zhou, Y Li, J Xia, Y Chen, S Chen, X Wang, W Sun, T Wang, X Ren, X Wang, Y An, K Lu, W Hu, S Huang, J Li, X Tong, Y Wang. Identification of frataxin as a regulator of ferroptosis. Redox Biol 2020; 32: 101483
https://doi.org/10.1016/j.redox.2020.101483 pmid: 32169822
90 C Zhang, X Liu, S Jin, Y Chen, R Guo. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 2022; 21(1): 47
https://doi.org/10.1186/s12943-022-01530-y pmid: 35151318
91 X Tang, H Ding, M Liang, X Chen, Y Yan, N Wan, Q Chen, J Zhang, J Cao. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer 2021; 12(8): 1219–1230
https://doi.org/10.1111/1759-7714.13904 pmid: 33656766
92 X Tian, S Li, G Ge. Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res 2021; 13: 1333–1342
https://doi.org/10.2147/CMAR.S274631 pmid: 33603479
93 H Ndiaye, JY Liu, A Hall, S Minogue, MY Morgan, MG Waugh. Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases. Biosci Rep 2020; 40(4): BSR20200219
https://doi.org/10.1042/BSR20200219 pmid: 32286604
94 H Yuan, X Li, X Zhang, R Kang, D Tang. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 2016; 478(3): 1338–1343
https://doi.org/10.1016/j.bbrc.2016.08.124 pmid: 27565726
95 Z Ye, Q Hu, Q Zhuo, Y Zhu, G Fan, M Liu, Q Sun, Z Zhang, W Liu, W Xu, S Ji, X Yu, X Xu, Y Qin. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. Am J Cancer Res 2020; 10(4): 1182–1193
pmid: 32368394
96 H Zhang, T Deng, R Liu, T Ning, H Yang, D Liu, Q Zhang, D Lin, S Ge, M Bai, X Wang, L Zhang, H Li, Y Yang, Z Ji, H Wang, G Ying, Y Ba. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 2020; 19(1): 43
https://doi.org/10.1186/s12943-020-01168-8 pmid: 32106859
97 F Kuang, J Liu, Y Xie, D Tang, R Kang. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol 2021; 28(6): 765–775.e5
https://doi.org/10.1016/j.chembiol.2021.01.006 pmid: 33539732
98 W Zhou, J Zhang, M Yan, J Wu, S Lian, K Sun, B Li, J Ma, J Xia, C Lian. Orlistat induces ferroptosis-like cell death of lung cancer cells. Front Med 2021; 15(6): 922–932
https://doi.org/10.1007/s11684-020-0804-7 pmid: 34085184
99 C Yang, Y Zhang, S Lin, Y Liu, W Li. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging (Albany NY) 2021; 13(10): 13515–13534
https://doi.org/10.18632/aging.202774 pmid: 33819186
100 W Huang, K Chen, Y Lu, D Zhang, Y Cheng, L Li, W Huang, G He, H Liao, L Cai, Y Tang, L Zhao, M Pan. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia 2021; 23(12): 1227–1239
https://doi.org/10.1016/j.neo.2021.11.002 pmid: 34768109
101 D Fu, C Wang, L Yu, R Yu. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell Mol Biol Lett 2021; 26(1): 26
https://doi.org/10.1186/s11658-021-00271-y pmid: 34098867
102 S Cai, S Fu, W Zhang, X Yuan, Y Cheng, J Fang. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer. Biochem Biophys Res Commun 2021; 577: 158–164
https://doi.org/10.1016/j.bbrc.2021.08.080 pmid: 34530350
103 CZ FengNZ LiXB HuYY XieQH Huang J ZhangZ ChenSJ ChenF WangXJ Sun. The LIFR-targeting small molecules EC330/EC359 are potent ferroptosis inducers. Genes Dis 2022; [Epub ahead of print] doi:10.1016/j.gendis.2022.10.016
104 K Wang, Z Zhang, HI Tsai, Y Liu, J Gao, M Wang, L Song, X Cao, Z Xu, H Chen, A Gong, D Wang, F Cheng, H Zhu. Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ 2021; 28(4): 1222–1236
https://doi.org/10.1038/s41418-020-00644-4 pmid: 33097833
105 N Chaudhary, BS Choudhary, SG Shah, N Khapare, N Dwivedi, A Gaikwad, N Joshi, J Raichanna, S Basu, M Gurjar, K S P, A Saklani, P Gera, M Ramadwar, P Patil, R Thorat, V Gota, SK Dhar, S Gupta, M Das, SN Dalal. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer 2021; 149(7): 1495–1511
https://doi.org/10.1002/ijc.33711 pmid: 34146401
106 Y Shang, M Luo, F Yao, S Wang, Z Yuan, Y Yang. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal 2020; 72: 109633
https://doi.org/10.1016/j.cellsig.2020.109633 pmid: 32283255
107 T Bai, S Wang, Y Zhao, R Zhu, W Wang, Y Sun. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2017; 491(4): 919–925
https://doi.org/10.1016/j.bbrc.2017.07.136 pmid: 28756230
108 AL Turcu, A Versini, N Khene, C Gaillet, T Cañeque, S Müller, R Rodriguez. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation. Chemistry 2020; 26(33): 7369–7373
https://doi.org/10.1002/chem.202000159 pmid: 32083771
109 X Cao, Y Li, Y Wang, T Yu, C Zhu, X Zhang, J Guan. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One 2022; 17(1): e0261370
https://doi.org/10.1371/journal.pone.0261370 pmid: 35041678
110 J Du, X Wang, Y Li, X Ren, Y Zhou, W Hu, C Zhou, Q Jing, C Yang, L Wang, H Li, L Fang, Y Zhou, X Tong, Y Wang. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 2021; 12(7): 705
https://doi.org/10.1038/s41419-021-03996-y pmid: 34262021
111 Z Song, X Xiang, J Li, J Deng, Z Fang, L Zhang, J Xiong. Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncol Rep 2020; 43(2): 516–524
pmid: 31894321
112 HT Wang, J Ju, SC Wang, YH Zhang, CY Liu, T Wang, X Yu, F Wang, XR Cheng, K Wang, ZY Chen. Insights into ferroptosis, a novel target for the therapy of cancer. Front Oncol 2022; 12: 812534
https://doi.org/10.3389/fonc.2022.812534 pmid: 35280796
113 G Lei, C Mao, Y Yan, L Zhuang, B Gan. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021; 12(11): 836–857
https://doi.org/10.1007/s13238-021-00841-y pmid: 33891303
114 S Xu, J Min, F Wang. Ferroptosis: an emerging player in immune cells. Sci Bull (Beijing) 2021; 66(22): 2257–2260
https://doi.org/10.1016/j.scib.2021.02.026 pmid: 36654451
115 Q Mu, L Chen, X Gao, S Shen, W Sheng, J Min, F Wang. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing) 2021; 66(17): 1806–1816
https://doi.org/10.1016/j.scib.2021.02.010 pmid: 36654387
116 WS Hambright, RS Fonseca, L Chen, R Na, Q Ran. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 2017; 12: 8–17
https://doi.org/10.1016/j.redox.2017.01.021 pmid: 28212525
117 MW Park, HW Cha, J Kim, JH Kim, H Yang, S Yoon, N Boonpraman, SS Yi, ID Yoo, JS Moon. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 2021; 41: 101947
https://doi.org/10.1016/j.redox.2021.101947 pmid: 33774476
118 L Huang, DB McClatchy, P Maher, Z Liang, JK Diedrich, D Soriano-Castell, J Goldberg, M Shokhirev, JR 3rd Yates, D Schubert, A Currais. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death Dis 2020; 11(10): 828
https://doi.org/10.1038/s41419-020-03020-9 pmid: 33024077
119 S Ayton, S Portbury, P Kalinowski, P Agarwal, I Diouf, JA Schneider, MC Morris, AI Bush. Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimers Dement 2021; 17(7): 1244–1256
https://doi.org/10.1002/alz.12282 pmid: 33491917
120 WD Bao, P Pang, XT Zhou, F Hu, W Xiong, K Chen, J Wang, F Wang, D Xie, YZ Hu, ZT Han, HH Zhang, WX Wang, PT Nelson, JG Chen, Y Lu, HY Man, D Liu, LQ Zhu. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 2021; 28(5): 1548–1562
https://doi.org/10.1038/s41418-020-00685-9 pmid: 33398092
121 ZY Zhu, YD Liu, Y Gong, W Jin, E Topchiy, S Turdi, YF Gao, B Culver, SY Wang, W Ge, WL Zha, J Ren, ZH Pei, X Qin. Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer’s disease via inhibition of ACSL4-dependent ferroptosis. Acta Pharmacol Sin 2022; 43(1): 39–49
https://doi.org/10.1038/s41401-021-00635-2 pmid: 33767380
122 Y Gao, J Li, Q Wu, S Wang, S Yang, X Li, N Chen, L Li, L Zhang. Tetrahydroxy stilbene glycoside ameliorates Alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int Immunopharmacol 2021; 99: 108002
https://doi.org/10.1016/j.intimp.2021.108002 pmid: 34333354
123 C Wang, S Chen, H Guo, H Jiang, H Liu, H Fu, D Wang. Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci 2022; 18(5): 2075–2090
https://doi.org/10.7150/ijbs.69714 pmid: 35342364
124 L Li, WJ Li, XR Zheng, QL Liu, Q Du, YJ Lai, SQ Liu. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol Med 2022; 28(1): 11
https://doi.org/10.1186/s10020-022-00442-3 pmid: 35093024
125 AA BelaidiS MasaldanA SouthonP KalinowskiK Acevedo AT AppukuttanS PortburyP Lei P AgarwalSE LeurgansJ SchneiderM ConradAI Bush S Ayton. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol Psychiatry 2022; [Epub ahead of print] doi:10.1038/s41380-022-01568-w
pmid: 35484240
126 YH Zhang, DW Wang, SF Xu, S Zhang, YG Fan, YY Yang, SQ Guo, S Wang, T Guo, ZY Wang, C Guo. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 2018; 14: 535–548
https://doi.org/10.1016/j.redox.2017.11.001 pmid: 29126071
127 L Mahoney-Sánchez, H Bouchaoui, S Ayton, D Devos, JA Duce, JC Devedjian. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol 2021; 196: 101890
https://doi.org/10.1016/j.pneurobio.2020.101890 pmid: 32726602
128 PR Angelova, ML Choi, AV Berezhnov, MH Horrocks, CD Hughes, S De, M Rodrigues, R Yapom, D Little, KS Dolt, T Kunath, MJ Devine, P Gissen, MS Shchepinov, S Sylantyev, EV Pavlov, D Klenerman, AY Abramov, S Gandhi. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 2020; 27(10): 2781–2796
https://doi.org/10.1038/s41418-020-0542-z pmid: 32341450
129 CL Vallerga, F Zhang, J Fowdar, AF McRae, T Qi, MF Nabais, Q Zhang, I Kassam, AK Henders, L Wallace, G Montgomery, YH Chuang, S Horvath, B Ritz, G Halliday, I Hickie, JB Kwok, J Pearson, T Pitcher, M Kennedy, SR Bentley, PA Silburn, J Yang, NR Wray, SJG Lewis, T Anderson, J Dalrymple-Alford, GD Mellick, PM Visscher, J Gratten. Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson’s disease. Nat Commun 2020; 11(1): 1238
https://doi.org/10.1038/s41467-020-15065-7 pmid: 32144264
130 M Asanuma, I Miyazaki. Glutathione and related molecules in Parkinsonism. Int J Mol Sci 2021; 22(16): 8689
https://doi.org/10.3390/ijms22168689 pmid: 34445395
131 Y Tian, J Lu, X Hao, H Li, G Zhang, X Liu, X Li, C Zhao, W Kuang, D Chen, M Zhu. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 2020; 17(4): 1796–1812
https://doi.org/10.1007/s13311-020-00929-z pmid: 32959272
132 L Bai, F Yan, R Deng, R Gu, X Zhang, J Bai. Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol 2021; 58(7): 3187–3197
https://doi.org/10.1007/s12035-021-02320-1 pmid: 33634378
133 D Devos, C Moreau, JC Devedjian, J Kluza, M Petrault, C Laloux, A Jonneaux, G Ryckewaert, G Garçon, N Rouaix, A Duhamel, P Jissendi, K Dujardin, F Auger, L Ravasi, L Hopes, G Grolez, W Firdaus, B Sablonnière, I Strubi-Vuillaume, N Zahr, A Destée, JC Corvol, D Pöltl, M Leist, C Rose, L Defebvre, P Marchetti, ZI Cabantchik, R Bordet. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014; 21(2): 195–210
https://doi.org/10.1089/ars.2013.5593 pmid: 24251381
134 L Shi, C Huang, Q Luo, Y Xia, W Liu, W Zeng, A Cheng, R Shi, C Zhengli. Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson’s disease through AKT/mTOR pathway. Aging (Albany NY) 2020; 12(10): 9515–9533
https://doi.org/10.18632/aging.103225 pmid: 32424108
135 Z Huang, W Si, X Li, S Ye, X Liu, Y Ji, X Hao, D Chen, M Zhu. Moxibustion protects dopaminergic neurons in Parkinson’s disease through antiferroptosis. Evid Based Complement Alternat Med 2021; 2021: 6668249
https://doi.org/10.1155/2021/6668249 pmid: 34122606
136 J Lu, X Liu, Y Tian, H Li, Z Ren, S Liang, G Zhang, C Zhao, X Li, T Wang, D Chen, W Kuang, M Zhu. Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019; 2019: 2735492
https://doi.org/10.1155/2019/2735492 pmid: 31467572
137 PS Brocardo, E McGinnis, BR Christie, J Gil-Mohapel. Time-course analysis of protein and lipid oxidation in the brains of Yac128 Huntington’s disease transgenic mice. Rejuvenation Res 2016; 19(2): 140–148
https://doi.org/10.1089/rej.2015.1736 pmid: 26371883
138 A Hatami, C Zhu, A Relaño-Gines, C Elias, A Galstyan, M Jun, G Milne, CR Cantor, MF Chesselet, MS Shchepinov. Deuterium-reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington’s disease. FEBS J 2018; 285(16): 3002–3012
https://doi.org/10.1111/febs.14590 pmid: 29933522
139 M Ribeiro, TR Rosenstock, T Cunha-Oliveira, IL Ferreira, CR Oliveira, AC Rego. Glutathione redox cycle dysregulation in Huntington’s disease knock-in striatal cells. Free Radic Biol Med 2012; 53(10): 1857–1867
https://doi.org/10.1016/j.freeradbiomed.2012.09.004 pmid: 22982598
140 JF Domínguez, AC Ng, G Poudel, JC Stout, A Churchyard, P Chua, GF Egan, N Georgiou-Karistianis. Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study. J Neurol Neurosurg Psychiatry 2016; 87(5): 545–549
https://doi.org/10.1136/jnnp-2014-310183 pmid: 25952334
141 Q Tan, Y Fang, Q Gu. Mechanisms of modulation of ferroptosis and its role in central nervous system diseases. Front Pharmacol 2021; 12: 657033
https://doi.org/10.3389/fphar.2021.657033 pmid: 34149412
142 J Chen, E Marks, B Lai, Z Zhang, JA Duce, LQ Lam, I Volitakis, AI Bush, S Hersch, JH Fox. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 2013; 8(10): e77023
https://doi.org/10.1371/journal.pone.0077023 pmid: 24146952
143 R Skouta, SJ Dixon, J Wang, DE Dunn, M Orman, K Shimada, PA Rosenberg, DC Lo, JM Weinberg, A Linkermann, BR Stockwell. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 2014; 136(12): 4551–4556
https://doi.org/10.1021/ja411006a pmid: 24592866
144 M Ou, Y Jiang, Y Ji, Q Zhou, Z Du, H Zhu, Z Zhou. Role and mechanism of ferroptosis in neurological diseases. Mol Metab 2022; 61: 101502
https://doi.org/10.1016/j.molmet.2022.101502 pmid: 35447365
145 QZ Tuo, P Lei, KA Jackman, XL Li, H Xiong, XL Li, ZY Liuyang, L Roisman, ST Zhang, S Ayton, Q Wang, PJ Crouch, K Ganio, XC Wang, L Pei, PA Adlard, YM Lu, R Cappai, JZ Wang, R Liu, AI Bush. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017; 22(11): 1520–1530
https://doi.org/10.1038/mp.2017.171 pmid: 28886009
146 QZ Tuo, S Masaldan, A Southon, C Mawal, S Ayton, AI Bush, P Lei, AA Belaidi. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics 2021; 18(4): 2682–2691
https://doi.org/10.1007/s13311-021-01111-9 pmid: 34498224
147 QZ Tuo, Y Liu, Z Xiang, HF Yan, T Zou, Y Shu, XL Ding, JJ Zou, S Xu, F Tang, YQ Gong, XL Li, YJ Guo, ZY Zheng, AP Deng, ZZ Yang, WJ Li, ST Zhang, S Ayton, AI Bush, H Xu, L Dai, B Dong, P Lei. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 2022; 7(1): 59
https://doi.org/10.1038/s41392-022-00917-z pmid: 35197442
148 HK Eltzschig, T Eckle. Ischemia and reperfusion—from mechanism to translation. Nat Med 2011; 17(11): 1391–1401
https://doi.org/10.1038/nm.2507 pmid: 22064429
149 LJ Tang, XJ Luo, H Tu, H Chen, XM Xiong, NS Li, J Peng. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(2): 401–410
https://doi.org/10.1007/s00210-020-01932-z pmid: 32621060
150 DT Lucas, LI Szweda. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 1998; 95(2): 510–514
https://doi.org/10.1073/pnas.95.2.510 pmid: 9435222
151 R Ganguly, D Hasanally, A Stamenkovic, TG Maddaford, R Chaudhary, GN Pierce, A Ravandi. Alpha linolenic acid decreases apoptosis and oxidized phospholipids in cardiomyocytes during ischemia/reperfusion. Mol Cell Biochem 2018; 437(1–2): 163–175
https://doi.org/10.1007/s11010-017-3104-z pmid: 28634855
152 C Yeang, D Hasanally, X Que, MY Hung, A Stamenkovic, D Chan, R Chaudhary, V Margulets, AL Edel, M Hoshijima, Y Gu, W Bradford, N Dalton, P Miu, DY Cheung, DS Jassal, GN Pierce, KL Peterson, LA Kirshenbaum, JL Witztum, S Tsimikas, A Ravandi. Reduction of myocardial ischaemia-reperfusion injury by inactivating oxidized phospholipids. Cardiovasc Res 2019; 115(1): 179–189
https://doi.org/10.1093/cvr/cvy136 pmid: 29850765
153 A Stamenkovic, KA O’Hara, DC Nelson, TG Maddaford, AL Edel, G Maddaford, E Dibrov, M Aghanoori, LA Kirshenbaum, P Fernyhough, M Aliani, GN Pierce, A Ravandi. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2021; 320(3): H1170–H1184
https://doi.org/10.1152/ajpheart.00237.2020 pmid: 33513080
154 E Park, SW Chung. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 2019; 10(11): 822
https://doi.org/10.1038/s41419-019-2064-5 pmid: 31659150
155 H Liu, H Mo, C Yang, X Mei, X Song, W Lu, H Xiao, J Yan, X Wang, J Yan, T Luo, Y Lin, D Wen, G Chen, A Chen, Y Ling. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 2022; 189: 122–135
https://doi.org/10.1016/j.freeradbiomed.2022.07.006 pmid: 35843476
156 LJ Tang, YJ Zhou, XM Xiong, NS Li, JJ Zhang, XJ Luo, J Peng. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med 2021; 162: 339–352
https://doi.org/10.1016/j.freeradbiomed.2020.10.307 pmid: 33157209
157 HD Miyamoto, M Ikeda, T Ide, T Tadokoro, S Furusawa, K Abe, K Ishimaru, N Enzan, M Sada, T Yamamoto, S Matsushima, T Koumura, KI Yamada, H Imai, H Tsutsui. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci 2022; 7(8): 800–819
https://doi.org/10.1016/j.jacbts.2022.03.012 pmid: 36061338
158 Y Feng, NB Madungwe, AD Imam Aliagan, N Tombo, JC Bopassa. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun 2019; 520(3): 606–611
https://doi.org/10.1016/j.bbrc.2019.10.006 pmid: 31623831
159 Z Wang, M Yao, L Jiang, L Wang, Y Yang, Q Wang, X Qian, Y Zhao, J Qian. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother 2022; 154: 113572
https://doi.org/10.1016/j.biopha.2022.113572 pmid: 35988428
160 S Ma, L Sun, W Wu, J Wu, Z Sun, J Ren. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol 2020; 11: 551318
https://doi.org/10.3389/fphys.2020.551318 pmid: 33192549
161 M Gao, P Monian, N Quadri, R Ramasamy, X Jiang. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 2015; 59(2): 298–308
https://doi.org/10.1016/j.molcel.2015.06.011 pmid: 26166707
162 HC Chang, R Wu, M Shang, T Sato, C Chen, JS Shapiro, T Liu, A Thakur, KT Sawicki, SV Prasad, H Ardehali. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 2016; 8(3): 247–267
https://doi.org/10.15252/emmm.201505748 pmid: 26896449
163 T Aoyagi, Y Kusakari, CY Xiao, BT Inouye, M Takahashi, M Scherrer-Crosbie, A Rosenzweig, K Hara, T Matsui. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2012; 303(1): H75–H85
https://doi.org/10.1152/ajpheart.00241.2012 pmid: 22561297
164 Y Baba, JK Higa, BK Shimada, KM Horiuchi, T Suhara, M Kobayashi, JD Woo, H Aoyagi, KS Marh, H Kitaoka, T Matsui. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2018; 314(3): H659–H668
https://doi.org/10.1152/ajpheart.00452.2017 pmid: 29127238
165 P He, M Zhang, M Zhao, M Zhang, B Ma, H Lv, Y Han, D Wu, Z Zhong, W Zhao. A novel polysaccharide from Chuanminshen violaceum and its protective effect against myocardial injury. Front Nutr 2022; 9: 961182
https://doi.org/10.3389/fnut.2022.961182 pmid: 35911096
166 SL Mei, ZY Xia, Z Qiu, YF Jia, JJ Zhou, B Zhou. Shenmai Injection attenuates myocardial ischemia/reperfusion injury by targeting Nrf2/GPX4 signalling-mediated ferroptosis. Chin J Integr Med 2022; 28(11): 983–991
https://doi.org/10.1007/s11655-022-3620-x pmid: 35997859
167 Z Fan, L Cai, S Wang, J Wang, B Chen. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol 2021; 12: 628988
https://doi.org/10.3389/fphar.2021.628988 pmid: 33935719
168 H Lu, H Xiao, M Dai, Y Xue, R Zhao. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol 2022; 60(1): 38–45
https://doi.org/10.1080/13880209.2021.2007269 pmid: 34860639
169 JH Lin, KT Yang, WS Lee, PC Ting, YP Luo, DJ Lin, YS Wang, JC Chang. Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev 2022; 2022: 9523491
https://doi.org/10.1155/2022/9523491 pmid: 35082973
170 S Xu, B Wu, B Zhong, L Lin, Y Ding, X Jin, Z Huang, M Lin, H Wu, D Xu. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc–/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered 2021; 12(2): 10924–10934
https://doi.org/10.1080/21655979.2021.1995994 pmid: 34699317
171 T Li, Y Tan, S Ouyang, J He, L Liu. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 2022; 808: 145968
https://doi.org/10.1016/j.gene.2021.145968 pmid: 34530090
172 X Shan, ZY Lv, MJ Yin, J Chen, J Wang, QN Wu. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev 2021; 2021: 8880141
https://doi.org/10.1155/2021/8880141 pmid: 33628391
173 W Sun, X Wu, P Yu, Q Zhang, L Shen, J Chen, H Tong, M Fan, H Shi, X Chen. LncAABR07025387.1 enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis. Front Cell Dev Biol 2022; 10: 672391
https://doi.org/10.3389/fcell.2022.672391 pmid: 35186915
174 W Sun, R Shi, J Guo, H Wang, L Shen, H Shi, P Yu, X Chen. miR-135b-3p promotes cardiomyocyte ferroptosis by targeting GPX4 and aggravates myocardial ischemia/reperfusion injury. Front Cardiovasc Med 2021; 8: 663832
https://doi.org/10.3389/fcvm.2021.663832 pmid: 34485394
175 JK Zhang, Z Zhang, ZA Guo, Y Fu, XJ Chen, WJ Chen, HF Wu, XJ Cui. The BMSC-derived exosomal lncRNA Mir9-3hg suppresses cardiomyocyte ferroptosis in ischemia-reperfusion mice via the Pum2/PRDX6 axis. Nutr Metab Cardiovasc Dis 2022; 32(2): 515–527
https://doi.org/10.1016/j.numecd.2021.10.017 pmid: 34953631
176 PE Miller, S van Diepen, T Ahmad. Acute decompensated heart failure complicated by respiratory failure. Circ Heart Fail 2019; 12(5): e006013
https://doi.org/10.1161/CIRCHEARTFAILURE.119.006013 pmid: 31030542
177 X Yang, NK Kawasaki, J Min, T Matsui, F Wang. Ferroptosis in heart failure. J Mol Cell Cardiol 2022; 173: 141–153
https://doi.org/10.1016/j.yjmcc.2022.10.004 pmid: 36273661
178 X Chen, S Xu, C Zhao, B Liu. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 2019; 516(1): 37–43
https://doi.org/10.1016/j.bbrc.2019.06.015 pmid: 31196626
179 GS Panjrath, V Patel, CI Valdiviezo, N Narula, J Narula, D Jain. Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. J Am Coll Cardiol 2007; 49(25): 2457–2464
https://doi.org/10.1016/j.jacc.2007.02.060 pmid: 17599610
180 CJ Miranda, H Makui, RJ Soares, M Bilodeau, J Mui, H Vali, R Bertrand, NC Andrews, MM Santos. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 2003; 102(7): 2574–2580
https://doi.org/10.1182/blood-2003-03-0869 pmid: 12805055
181 H Zheng, L Shi, C Tong, Y Liu, M Hou. circSnx12 is involved in ferroptosis during heart failure by targeting miR-224-5p. Front Cardiovasc Med 2021; 8: 656093
https://doi.org/10.3389/fcvm.2021.656093 pmid: 33969020
182 X Fang, Z Cai, H Wang, D Han, Q Cheng, P Zhang, F Gao, Y Yu, Z Song, Q Wu, P An, S Huang, J Pan, HZ Chen, J Chen, A Linkermann, J Min, F Wang. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 2020; 127(4): 486–501
https://doi.org/10.1161/CIRCRESAHA.120.316509 pmid: 32349646
183 YT Bai, R Chang, H Wang, FJ Xiao, RL Ge, LS Wang. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun 2018; 499(1): 44–51
https://doi.org/10.1016/j.bbrc.2018.03.113 pmid: 29551679
184 B Liu, C Zhao, H Li, X Chen, Y Ding, S Xu. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 2018; 497(1): 233–240
https://doi.org/10.1016/j.bbrc.2018.02.061 pmid: 29427658
185 S Ma, LL He, GR Zhang, QJ Zuo, ZL Wang, JL Zhai, TT Zhang, Y Wang, HJ Ma, YF Guo. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(8): 945–962
https://doi.org/10.1007/s00210-022-02243-1 pmid: 35476142
186 Y Zhou, H Zhou, L Hua, C Hou, Q Jia, J Chen, S Zhang, Y Wang, S He, E Jia. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med 2021; 171: 55–68
https://doi.org/10.1016/j.freeradbiomed.2021.05.009 pmid: 33974977
187 K Yang, H Song, D Yin. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol 2021; 77(6): 767–776
https://doi.org/10.1097/FJC.0000000000001030 pmid: 33929387
188 Z Meng, H Liang, J Zhao, J Gao, C Liu, X Ma, J Liu, B Liang, X Jiao, J Cao, Y Wang. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci 2021; 284: 119935
https://doi.org/10.1016/j.lfs.2021.119935 pmid: 34508760
189 J Cai, M Zhang, Y Liu, H Li, L Shang, T Xu, Z Chen, F Wang, T Qiao, K Li. Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci 2020; 10(1): 137
https://doi.org/10.1186/s13578-020-00500-5 pmid: 33292517
190 T Bai, M Li, Y Liu, Z Qiao, Z Wang. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 2020; 160: 92–102
https://doi.org/10.1016/j.freeradbiomed.2020.07.026 pmid: 32768568
191 TL Ma, Y Zhou, C Wang, L Wang, JX Chen, HH Yang, CY Zhang, Y Zhou, CX Guan. Targeting ferroptosis for lung diseases: exploring novel strategies in ferroptosis-associated mechanisms. Oxid Med Cell Longev 2021; 2021: 1098970
https://doi.org/10.1155/2021/1098970 pmid: 34630843
192 Y Xu, X Li, Y Cheng, M Yang, R Wang. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J 2020; 34(12): 16262–16275
https://doi.org/10.1096/fj.202001758R pmid: 33070393
193 H Dong, Z Qiang, D Chai, J Peng, Y Xia, R Hu, H Jiang. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY) 2020; 12(13): 12943–12959
https://doi.org/10.18632/aging.103378 pmid: 32601262
194 Z Qiang, H Dong, Y Xia, D Chai, R Hu, H Jiang. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11. Oxid Med Cell Longev 2020; 2020: 5146982
https://doi.org/10.1155/2020/5146982 pmid: 33014271
195 H ZhouF LiJY NiuWY ZhongMY Tang D LinHH Cui XH HuangYY ChenHY WangYS Tu. Ferroptosis was involved in the oleic acid-induced acute lung injury in mice. Acta Physiologica Sinica (Sheng Li Xue Bao) 2019; 71(5): 689–697 (in Chinese)
196 P Liu, Y Feng, H Li, X Chen, G Wang, S Xu, Y Li, L Zhao. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25(1): 10
https://doi.org/10.1186/s11658-020-00205-0 pmid: 32161620
197 Y Li, Y Cao, J Xiao, J Shang, Q Tan, F Ping, W Huang, F Wu, H Zhang, X Zhang. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 2020; 27(9): 2635–2650
https://doi.org/10.1038/s41418-020-0528-x pmid: 32203170
198 J Li, K Lu, F Sun, S Tan, X Zhang, W Sheng, W Hao, M Liu, W Lv, W Han. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med 2021; 19(1): 96
https://doi.org/10.1186/s12967-021-02745-1 pmid: 33653364
199 YB Qiu, BB Wan, G Liu, YX Wu, D Chen, MD Lu, JL Chen, RQ Yu, DZ Chen, QF Pang. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respir Res 2020; 21(1): 232
https://doi.org/10.1186/s12931-020-01500-2 pmid: 32907551
200 KF Rabe, H Watz. Chronic obstructive pulmonary disease. Lancet 2017; 389(10082): 1931–1940
https://doi.org/10.1016/S0140-6736(17)31222-9 pmid: 28513453
201 EJ Park, YJ Park, SJ Lee, K Lee, C Yoon. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett 2019; 303: 55–66
https://doi.org/10.1016/j.toxlet.2018.12.007 pmid: 30579903
202 M Yoshida, S Minagawa, J Araya, T Sakamoto, H Hara, K Tsubouchi, Y Hosaka, A Ichikawa, N Saito, T Kadota, N Sato, Y Kurita, K Kobayashi, S Ito, H Utsumi, H Wakui, T Numata, Y Kaneko, S Mori, H Asano, M Yamashita, M Odaka, T Morikawa, K Nakayama, T Iwamoto, H Imai, K Kuwano. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun 2019; 10(1): 3145
https://doi.org/10.1038/s41467-019-10991-7 pmid: 31316058
203 Y Wang, M Tang. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut 2019; 254(Pt A): 112937
https://doi.org/10.1016/j.envpol.2019.07.105 pmid: 31401526
204 KC Meyer. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med 2017; 11(5): 343–359
https://doi.org/10.1080/17476348.2017.1312346 pmid: 28345383
205 M Zanoni, M Cortesi, A Zamagni, A Tesei. The role of mesenchymal stem cells in radiation-induced lung fibrosis. Int J Mol Sci 2019; 20(16): 3876
https://doi.org/10.3390/ijms20163876 pmid: 31398940
206 X Li, L Duan, S Yuan, X Zhuang, T Qiao, J He. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm (Lond) 2019; 16(1): 11
https://doi.org/10.1186/s12950-019-0216-0 pmid: 31160885
207 Y Gong, N Wang, N Liu, H Dong. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis. DNA Cell Biol 2019; 38(7): 725–733
https://doi.org/10.1089/dna.2018.4541 pmid: 31140862
208 N Rashidipour, S Karami-Mohajeri, A Mandegary, R Mohammadinejad, A Wong, M Mohit, J Salehi, M Ashrafizadeh, A Najafi, A Abiri. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies. Toxicology 2020; 433–434: 152407
https://doi.org/10.1016/j.tox.2020.152407 pmid: 32061663
209 F Bellanti, R Villani, A Facciorusso, G Vendemiale, G Serviddio. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med 2017; 111: 173–185
https://doi.org/10.1016/j.freeradbiomed.2017.01.023 pmid: 28109892
210 T Ota. Molecular mechanisms of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). Adv Exp Med Biol 2021; 1261: 223–229
https://doi.org/10.1007/978-981-15-7360-6_20 pmid: 33783745
211 LA Videla, R Valenzuela. Perspectives in liver redox imbalance: toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48(2): 400–415
https://doi.org/10.1002/biof.1797 pmid: 34687092
212 S Tsurusaki, Y Tsuchiya, T Koumura, M Nakasone, T Sakamoto, M Matsuoka, H Imai, C Yuet-Yin Kok, H Okochi, H Nakano, A Miyajima, M Tanaka. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis 2019; 10(6): 449
https://doi.org/10.1038/s41419-019-1678-y pmid: 31209199
213 S Wei, T Qiu, N Wang, X Yao, L Jiang, X Jia, Y Tao, J Zhang, Y Zhu, G Yang, X Liu, S Liu, X Sun. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. Environ Res 2020; 188: 109824
https://doi.org/10.1016/j.envres.2020.109824 pmid: 32593899
214 XJ Zhang, YX Ji, X Cheng, Y Cheng, H Yang, J Wang, LP Zhao, YP Huang, D Sun, H Xiang, LJ Shen, PL Li, JP Ma, RF Tian, J Yang, X Yao, H Xu, R Liao, L Xiao, P Zhang, X Zhang, GN Zhao, X Wang, ML Hu, S Tian, J Wan, J Cai, X Ma, Q Xu, Y Wang, RM Touyz, PP Liu, R Loomba, ZG She, H Li. A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med 2021; 13(624): eabg8116
https://doi.org/10.1126/scitranslmed.abg8116 pmid: 34910548
215 X Li, TX Wang, X Huang, Y Li, T Sun, S Zang, KL Guan, Y Xiong, J Liu, HX Yuan. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 2020; 40(6): 1378–1394
https://doi.org/10.1111/liv.14428 pmid: 32145145
216 J Qi, JW Kim, Z Zhou, CW Lim, B Kim. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol 2020; 190(1): 68–81
https://doi.org/10.1016/j.ajpath.2019.09.011 pmid: 31610178
217 Z Zhu, Y Zhang, X Huang, L Can, X Zhao, Y Wang, J Xue, M Cheng, L Zhu. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4. Eur J Pharmacol 2021; 908: 174351
https://doi.org/10.1016/j.ejphar.2021.174351 pmid: 34280397
218 B Liu, W Yi, X Mao, L Yang, C Rao. Enoyl coenzyme A hydratase 1 alleviates nonalcoholic steatohepatitis in mice by suppressing hepatic ferroptosis. Am J Physiol Endocrinol Metab 2021; 320(5): E925–E937
https://doi.org/10.1152/ajpendo.00614.2020 pmid: 33813878
219 Y Yang, J Chen, Q Gao, X Shan, J Wang, Z Lv. Study on the attenuated effect of ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 2020; 445: 152599
https://doi.org/10.1016/j.tox.2020.152599 pmid: 32976958
220 D Lu, Q Xia, Z Yang, S Gao, S Sun, X Luo, Z Li, X Zhang, S Han, X Li, M Cao. ENO3 promoted the progression of NASH by negatively regulating ferroptosis via elevation of GPX4 expression and lipid accumulation. Ann Transl Med 2021; 9(8): 661
https://doi.org/10.21037/atm-21-471 pmid: 33987359
221 J Chen, X Li, C Ge, J Min, F Wang. The multifaceted role of ferroptosis in liver disease. Cell Death Differ 2022; 29(3): 467–480
https://doi.org/10.1038/s41418-022-00941-0 pmid: 35075250
222 CY Liu, M Wang, HM Yu, FX Han, QS Wu, XJ Cai, H Kurihara, YX Chen, YF Li, RR He. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci Biotechnol Biochem 2020; 84(8): 1621–1628
https://doi.org/10.1080/09168451.2020.1763155 pmid: 32419644
223 L Costa-Matos, P Batista, N Monteiro, M Simões, C Egas, J Pereira, H Pinho, N Santos, J Ribeiro, MA Cipriano, P Henriques, F Girão, A Rodrigues, A Carvalho. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients compared with healthy controls. Eur J Gastroenterol Hepatol 2012; 24(10): 1158–1165
https://doi.org/10.1097/MEG.0b013e328355cfd0 pmid: 22732356
224 Z Zhou, TJ Ye, G Bonavita, M Daniels, N Kainrad, A Jogasuria, M You. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice. Hepatol Commun 2019; 3(5): 656–669
https://doi.org/10.1002/hep4.1333 pmid: 31061954
225 Z Zhou, TJ Ye, E DeCaro, B Buehler, Z Stahl, G Bonavita, M Daniels, M You. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis. Am J Pathol 2020; 190(1): 82–92
https://doi.org/10.1016/j.ajpath.2019.09.012 pmid: 31610175
226 J Liu, H He, J Wang, X Guo, H Lin, H Chen, C Jiang, L Chen, P Yao, Y Tang. Oxidative stress-dependent frataxin inhibition mediated alcoholic hepatocytotoxicity through ferroptosis. Toxicology 2020; 445: 152584
https://doi.org/10.1016/j.tox.2020.152584 pmid: 33017621
227 KJ Mehta, SJ Farnaud, PA Sharp. Iron and liver fibrosis: mechanistic and clinical aspects. World J Gastroenterol 2019; 25(5): 521–538
https://doi.org/10.3748/wjg.v25.i5.521 pmid: 30774269
228 J Tak, YS Kim, TH Kim, GC Park, S Hwang, SG Kim. Gα12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation. Theranostics 2022; 12(4): 1570–1588
https://doi.org/10.7150/thno.67722 pmid: 35198058
229 K Du, SH Oh, RK Dutta, T Sun, WH Yang, JT Chi, AM Diehl. Inhibiting xCT/SLC7A11 induces ferroptosis of myofibroblastic hepatic stellate cells but exacerbates chronic liver injury. Liver Int 2021; 41(9): 2214–2227
https://doi.org/10.1111/liv.14945 pmid: 33991158
230 CH Ho, JH Huang, MS Sun, IS Tzeng, YC Hsu, CY Kuo. Wild bitter melon extract regulates LPS-induced hepatic stellate cell activation, inflammation, endoplasmic reticulum stress, and ferroptosis. Evid Based Complement Alternat Med 2021; 2021: 6671129
https://doi.org/10.1155/2021/6671129 pmid: 34239589
231 L Wang, Z Zhang, M Li, F Wang, Y Jia, F Zhang, J Shao, A Chen, S Zheng. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life 2019; 71(1): 45–56
https://doi.org/10.1002/iub.1895 pmid: 30321484
232 Y Li, C Jin, M Shen, Z Wang, S Tan, A Chen, S Wang, J Shao, F Zhang, Z Zhang, S Zheng. Iron regulatory protein 2 is required for artemether-mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med 2020; 160: 845–859
https://doi.org/10.1016/j.freeradbiomed.2020.09.008 pmid: 32947011
233 Z Kong, R Liu, Y Cheng. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 2019; 109: 2043–2053
https://doi.org/10.1016/j.biopha.2018.11.030 pmid: 30551460
234 X Zhou, Y Fu, W Liu, Y Mu, H Zhang, J Chen, P Liu. Ferroptosis in chronic liver diseases: opportunities and challenges. Front Mol Biosci 2022; 9: 928321
https://doi.org/10.3389/fmolb.2022.928321 pmid: 35720113
235 W Tonnus, A Linkermann. The in vivo evidence for regulated necrosis. Immunol Rev 2017; 277(1): 128–149
https://doi.org/10.1111/imr.12551 pmid: 28462528
236 MM Mata-Miranda, CE Bernal-Barquero, A Martinez-Cuazitl, CI Guerrero-Robles, V Sanchez-Monroy, M Rojas-Lopez, GJ Vazquez-Zapien. Nephroprotective effect of embryonic stem cells reducing lipid peroxidation in kidney injury induced by cisplatin. Oxid Med Cell Longev 2019; 2019: 5420624
https://doi.org/10.1155/2019/5420624 pmid: 31001374
237 S He, R Li, Y Peng, Z Wang, J Huang, H Meng, J Min, F Wang, Q Ma. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle 2022; 13(3): 1717–1730
https://doi.org/10.1002/jcsm.12953 pmid: 35243801
238 Y Wang, M Zhang, R Bi, Y Su, F Quan, Y Lin, C Yue, X Cui, Q Zhao, S Liu, Y Yang, D Zhang, Q Cao, X Gao. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 2022; 51: 102262
https://doi.org/10.1016/j.redox.2022.102262 pmid: 35180475
239 D Ma, C Li, P Jiang, Y Jiang, J Wang, D Zhang. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci 2021; 66(2): 483–492
https://doi.org/10.1007/s10620-020-06225-2 pmid: 32219613
240 C Ding, X Ding, J Zheng, B Wang, Y Li, H Xiang, M Dou, Y Qiao, P Tian, W Xue. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 2020; 11(10): 929
https://doi.org/10.1038/s41419-020-03135-z pmid: 33116120
241 DE Leaf, M Rajapurkar, SS Lele, B Mukhopadhyay, EAS Boerger, FR Mc Causland, MF Eisenga, K Singh, JL Babitt, JA Kellum, PM Palevsky, M Christov, SS Waikar. Iron, hepcidin, and death in human AKI. J Am Soc Nephrol 2019; 30(3): 493–504
https://doi.org/10.1681/ASN.2018100979 pmid: 30737269
242 X Wang, X Zheng, J Zhang, S Zhao, Z Wang, F Wang, W Shang, J Barasch, A Qiu. Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 2018; 315(4): F1042–F1057
https://doi.org/10.1152/ajprenal.00072.2018 pmid: 29923765
243 X Zhang, X Li. Abnormal iron and lipid metabolism mediated ferroptosis in kidney diseases and its therapeutic potential. Metabolites 2022; 12(1): 58
https://doi.org/10.3390/metabo12010058 pmid: 35050181
244 C Chen, D Wang, Y Yu, T Zhao, N Min, Y Wu, L Kang, Y Zhao, L Du, M Zhang, J Gong, Z Zhang, Y Zhang, X Mi, S Yue, X Tan. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis 2021; 12(1): 65
https://doi.org/10.1038/s41419-020-03362-4 pmid: 33431801
245 Y Wang, F Quan, Q Cao, Y Lin, C Yue, R Bi, X Cui, H Yang, Y Yang, L Birnbaumer, X Li, X Gao. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 2020; 28: 231–243
https://doi.org/10.1016/j.jare.2020.07.007 pmid: 33364059
246 D Li, B Liu, Y Fan, M Liu, B Han, Y Meng, X Xu, Z Song, X Liu, Q Hao, X Duan, A Nakai, Y Chang, P Cao, K Tan. Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis. Br J Pharmacol 2021; 178(5): 1182–1199
https://doi.org/10.1111/bph.15364 pmid: 33450067
247 Z Hu, H Zhang, B Yi, S Yang, J Liu, J Hu, J Wang, K Cao, W Zhang. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis 2020; 11(1): 73
https://doi.org/10.1038/s41419-020-2256-z pmid: 31996668
248 AC Webster, EV Nagler, RL Morton, P Masson. Chronic kidney disease. Lancet 2017; 389(10075): 1238–1252
https://doi.org/10.1016/S0140-6736(16)32064-5 pmid: 27887750
249 Y Wang, R Bi, F Quan, Q Cao, Y Lin, C Yue, X Cui, H Yang, X Gao, D Zhang. Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol 2020; 888: 173574
https://doi.org/10.1016/j.ejphar.2020.173574 pmid: 32976829
250 S Kim, SW Kang, J Joo, SH Han, H Shin, BY Nam, J Park, TH Yoo, G Kim, P Lee, JT Park. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 2021; 12(2): 160
https://doi.org/10.1038/s41419-021-03452-x pmid: 33558472
251 Y Wu, Y Zhao, HZ Yang, YJ Wang, Y Chen. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep 2021; 41(2): BSR20202924
https://doi.org/10.1042/BSR20202924 pmid: 33565572
252 S Li, L Zheng, J Zhang, X Liu, Z Wu. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 2021; 162: 435–449
https://doi.org/10.1016/j.freeradbiomed.2020.10.323 pmid: 33152439
253 Y Zhang, Y Mou, J Zhang, C Suo, H Zhou, M Gu, Z Wang, R Tan. Therapeutic implications of ferroptosis in renal fibrosis. Front Mol Biosci 2022; 9: 890766
https://doi.org/10.3389/fmolb.2022.890766 pmid: 35655759
254 L Yang, J Guo, N Yu, Y Liu, H Song, J Niu, Y Gu. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci 2020; 261: 118487
https://doi.org/10.1016/j.lfs.2020.118487 pmid: 32979361
255 L Zhou, X Xue, Q Hou, C Dai. Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel) 2021; 8(1): 57–71
https://doi.org/10.1159/000517723 pmid: 35224007
256 X Zhang, LX Li, H Ding, VE Torres, C Yu, X Li. Ferroptosis promotes cyst growth in autosomal dominant polycystic kidney disease mouse models. J Am Soc Nephrol 2021; 32(11): 2759–2776
https://doi.org/10.1681/ASN.2021040460 pmid: 34716241
257 PS Radadiya, MM Thornton, RV Puri, S Yerrathota, J Dinh-Phan, B Magenheimer, D Subramaniam, PV Tran, H Zhu, S Bolisetty, JP Calvet, DP Wallace, M Sharma. Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight 2021; 6(8): e141299
https://doi.org/10.1172/jci.insight.141299 pmid: 33784251
258 S Wei, T Qiu, X Yao, N Wang, L Jiang, X Jia, Y Tao, Z Wang, P Pei, J Zhang, Y Zhu, G Yang, X Liu, S Liu, X Sun. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 2020; 384: 121390
https://doi.org/10.1016/j.jhazmat.2019.121390 pmid: 31735470
259 D Li, C Jiang, G Mei, Y Zhao, L Chen, J Liu, Y Tang, C Gao, P Yao. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 2020; 12(10): 2954
https://doi.org/10.3390/nu12102954 pmid: 32992479
260 A Bruni, AR Pepper, RL Pawlick, B Gala-Lopez, AF Gamble, T Kin, K Seeberger, GS Korbutt, SR Bornstein, A Linkermann, AMJ Shapiro. Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death Dis 2018; 9(6): 595
https://doi.org/10.1038/s41419-018-0506-0 pmid: 29789532
261 X Wang, X Fang, W Zheng, J Zhou, Z Song, M Xu, J Min, F Wang. Genetic support of a causal relationship between iron status and type 2 diabetes: a Mendelian randomization study. J Clin Endocrinol Metab 2021; 106(11): e4641–e4651
https://doi.org/10.1210/clinem/dgab454 pmid: 34147035
262 Y Zhou. The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis. Diabetes Metab Syndr Obes 2020; 13: 1921–1931
https://doi.org/10.2147/DMSO.S249382 pmid: 32606852
263 X Zhang, L Jiang, H Chen, S Wei, K Yao, X Sun, G Yang, L Jiang, C Zhang, N Wang, Y Wang, X Liu. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress-related PERK pathway in MIN6 cells. Toxicology 2022; 465: 153048
https://doi.org/10.1016/j.tox.2021.153048 pmid: 34813903
264 T Kose, M Vera-Aviles, PA Sharp, GO Latunde-Dada. Curcumin and (–)-epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals (Basel) 2019; 12(1): 26
https://doi.org/10.3390/ph12010026 pmid: 30736288
265 W Sha, F Hu, Y Xi, Y Chu, S Bu. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021; 2021: 9999612
https://doi.org/10.1155/2021/9999612 pmid: 34258295
266 EA Killion, AR Reeves, MA El Azzouny, QW Yan, D Surujon, JD Griffin, TA Bowman, C Wang, NR Matthan, EL Klett, D Kong, JW Newman, X Han, MJ Lee, RA Coleman, AS Greenberg. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab 2018; 9: 43–56
https://doi.org/10.1016/j.molmet.2018.01.012 pmid: 29398618
267 B Segrestin, JM Moreno-Navarrete, K Seyssel, M Alligier, E Meugnier, JA Nazare, H Vidal, JM Fernandez-Real, M Laville. Adipose tissue expansion by overfeeding healthy men alters iron gene expression. J Clin Endocrinol Metab 2019; 104(3): 688–696
https://doi.org/10.1210/jc.2018-01169 pmid: 30260393
268 X Ma, VT Pham, H Mori, OA MacDougald, YM Shah, PF Bodary. Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity. PLoS One 2017; 12(6): e0179889
https://doi.org/10.1371/journal.pone.0179889 pmid: 28651003
269 HF Yan, ZY Liu, ZA Guan, C Guo. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 2018; 7(4): 604–616
https://doi.org/10.1530/EC-18-0054 pmid: 29678877
270 W Ma, L Jia, Q Xiong, H Du. Iron overload protects from obesity by ferroptosis. Foods 2021; 10(8): 1787
https://doi.org/10.3390/foods10081787 pmid: 34441564
271 BR Stockwell. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022; 185(14): 2401–2421
https://doi.org/10.1016/j.cell.2022.06.003 pmid: 35803244
272 LW Powell, RC Seckington, Y Deugnier. Haemochromatosis. Lancet 2016; 388(10045): 706–716
https://doi.org/10.1016/S0140-6736(15)01315-X pmid: 26975792
273 H Wang, P An, E Xie, Q Wu, X Fang, H Gao, Z Zhang, Y Li, X Wang, J Zhang, G Li, L Yang, W Liu, J Min, F Wang. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 2017; 66(2): 449–465
https://doi.org/10.1002/hep.29117 pmid: 28195347
274 L Yang, H Wang, X Yang, Q Wu, P An, X Jin, W Liu, X Huang, Y Li, S Yan, S Shen, T Liang, J Min, F Wang. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther 2020; 5(1): 138
https://doi.org/10.1038/s41392-020-00253-0 pmid: 32732975
275 A Wu, B Feng, J Yu, L Yan, L Che, Y Zhuo, Y Luo, B Yu, D Wu, D Chen. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol 2021; 46: 102131
https://doi.org/10.1016/j.redox.2021.102131 pmid: 34530349
276 WC Palmer, P Vishnu, W Sanchez, B Aqel, D Riegert-Johnson, LAK Seaman, AW Bowman, CE Rivera. Diagnosis and management of genetic iron overload disorders. J Gen Intern Med 2018; 33(12): 2230–2236
https://doi.org/10.1007/s11606-018-4669-2 pmid: 30225768
277 X Fang, H Ardehali, J Min, F Wang. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 2023; 20(1): 7–23
https://doi.org/10.1038/s41569-022-00735-4 pmid: 35788564
278 S Rivella. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133(1): 51–58
https://doi.org/10.1182/blood-2018-07-815928 pmid: 30401707
279 A Saliba, A Taher. Iron overload in transfusion-dependent thalassemia. Hematology 2015; 20(5): 311–312
https://doi.org/10.1179/1024533215Z.000000000365 pmid: 25967377
280 DJ Pennell, V Berdoukas, M Karagiorga, V Ladis, A Piga, A Aessopos, ED Gotsis, MA Tanner, GC Smith, MA Westwood, B Wonke, R Galanello. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood 2006; 107(9): 3738–3744
https://doi.org/10.1182/blood-2005-07-2948 pmid: 16352815
281 C Casu, E Nemeth, S Rivella. Hepcidin agonists as therapeutic tools. Blood 2018; 131(16): 1790–1794
https://doi.org/10.1182/blood-2017-11-737411 pmid: 29523504
282 KN Chen, QW Guan, XX Yin, ZJ Wang, HH Zhou, XY Mao. Ferrostatin-1 obviates seizures and associated cognitive deficits in ferric chloride-induced posttraumatic epilepsy via suppressing ferroptosis. Free Radic Biol Med 2022; 179: 109–118
https://doi.org/10.1016/j.freeradbiomed.2021.12.268 pmid: 34952157
283 V Campuzano, L Montermini, MD Moltò, L Pianese, M Cossée, F Cavalcanti, E Monros, F Rodius, F Duclos, A Monticelli, F Zara, J Cañizares, H Koutnikova, SI Bidichandani, C Gellera, A Brice, P Trouillas, Michele G De, A Filla, Frutos R De, F Palau, PI Patel, Donato S Di, JL Mandel, S Cocozza, M Koenig, M Pandolfo. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271(5254): 1423–1427
https://doi.org/10.1126/science.271.5254.1423 pmid: 8596916
284 R Abeti, MH Parkinson, IP Hargreaves, PR Angelova, C Sandi, MA Pook, P Giunti, AY Abramov. ‘Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia’. Cell Death Dis 2016; 7(5): e2237
https://doi.org/10.1038/cddis.2016.111 pmid: 27228352
285 CM Gomes, R Santos. Neurodegeneration in Friedreich’s ataxia: from defective frataxin to oxidative stress. Oxid Med Cell Longev 2013; 2013: 487534
https://doi.org/10.1155/2013/487534 pmid: 23936609
286 F Petit, A Drecourt, M Dussiot, C Zangarelli, O Hermine, A Munnich, A Rötig. Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts. Blood 2021; 137(15): 2090–2102
https://doi.org/10.1182/blood.2020006987 pmid: 33529321
287 P La Rosa, S Petrillo, R Turchi, F Berardinelli, T Schirinzi, G Vasco, D Lettieri-Barbato, MT Fiorenza, ES Bertini, K Aquilano, F Piemonte. The Nrf2 induction prevents ferroptosis in Friedreich’s ataxia. Redox Biol 2021; 38: 101791
https://doi.org/10.1016/j.redox.2020.101791 pmid: 33197769
288 L Gao, W Hua, L Tian, X Zhou, D Wang, Y Yang, G Ni. Molecular mechanism of ferroptosis in orthopedic diseases. Cells 2022; 11(19): 2979
https://doi.org/10.3390/cells11192979 pmid: 36230941
289 RF Loeser, SR Goldring, CR Scanzello, MB Goldring. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697–1707
https://doi.org/10.1002/art.34453 pmid: 22392533
290 X Yao, K Sun, S Yu, J Luo, J Guo, J Lin, G Wang, Z Guo, Y Ye, F Guo. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2020; 27: 33–43
https://doi.org/10.1016/j.jot.2020.09.006 pmid: 33376672
291 Y Miao, Y Chen, F Xue, K Liu, B Zhu, J Gao, J Yin, C Zhang, G Li. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine 2022; 76: 103847
https://doi.org/10.1016/j.ebiom.2022.103847 pmid: 35101656
292 X Zhou, Y Zheng, W Sun, Z Zhang, J Liu, W Yang, W Yuan, Y Yi, J Wang, J Liu. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif 2021; 54(11): e13134
https://doi.org/10.1111/cpr.13134 pmid: 34561933
293 KH Park-Min. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci 2018; 75(14): 2519–2528
https://doi.org/10.1007/s00018-018-2817-9 pmid: 29670999
294 X Wang, H Ma, J Sun, T Zheng, P Zhao, H Li, M Yang. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol Trace Elem Res 2022; 200(1): 298–307
https://doi.org/10.1007/s12011-021-02627-z pmid: 33594527
295 H Ma, X Wang, W Zhang, H Li, W Zhao, J Sun, M Yang. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev 2020; 2020: 9067610
https://doi.org/10.1155/2020/9067610 pmid: 33343809
296 S Ni, Y Yuan, Z Qian, Z Zhong, T Lv, Y Kuang, B Yu. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med 2021; 169: 271–282
https://doi.org/10.1016/j.freeradbiomed.2021.04.027 pmid: 33895289
297 J Zhang. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: a review of in vivo and in vitro studies. Environ Toxicol Pharmacol 2020; 76: 103358
https://doi.org/10.1016/j.etap.2020.103358 pmid: 32143118
298 B Lai, CH Wu, CY Wu, SF Luo, JH Lai. Ferroptosis and autoimmune diseases. Front Immunol 2022; 13: 916664
https://doi.org/10.3389/fimmu.2022.916664 pmid: 35720308
299 C Mao, G Lei, L Zhuang, B Gan. Ferroptosis as an important driver of lupus. Protein Cell 2022; 13(5): 313–315
https://doi.org/10.1007/s13238-021-00892-1 pmid: 34826064
300 D Zhang, Y Li, C Du, L Sang, L Liu, Y Li, F Wang, W Fan, P Tang, S Zhang, D Chen, Y Wang, X Wang, X Xie, Z Jiang, Y Song, R Guo. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med 2022; 20(1): 363
https://doi.org/10.1186/s12967-022-03566-6 pmid: 35962439
301 P Li, M Jiang, K Li, H Li, Y Zhou, X Xiao, Y Xu, S Krishfield, PE Lipsky, GC Tsokos, X Zhang. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 2021; 22(9): 1107–1117
https://doi.org/10.1038/s41590-021-00993-3 pmid: 34385713
302 J Wu, Z Feng, L Chen, Y Li, H Bian, J Geng, ZH Zheng, X Fu, Z Pei, Y Qin, L Yang, Y Zhao, K Wang, R Chen, Q He, G Nan, X Jiang, ZN Chen, P Zhu. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun 2022; 13(1): 676
https://doi.org/10.1038/s41467-021-27948-4 pmid: 35115492
303 H Ling, M Li, C Yang, S Sun, W Zhang, L Zhao, N Xu, J Zhang, Y Shen, X Zhang, C Liu, L Lu, J Wang. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatology (Oxford) 2022; 61(11): 4521–4534
https://doi.org/10.1093/rheumatology/keac069 pmid: 35136972
304 GD Kalliolias, LB Ivashkiv. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016; 12(1): 49–62
https://doi.org/10.1038/nrrheum.2015.169 pmid: 26656660
305 C Günther, H Neumann, MF Neurath, C Becker. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 2013; 62(7): 1062–1071
https://doi.org/10.1136/gutjnl-2011-301364 pmid: 22689519
306 L Mayr, F Grabherr, J Schwärzler, I Reitmeier, F Sommer, T Gehmacher, L Niederreiter, GW He, B Ruder, KTR Kunz, P Tymoszuk, R Hilbe, D Haschka, C Feistritzer, RR Gerner, B Enrich, N Przysiecki, M Seifert, MA Keller, G Oberhuber, S Sprung, Q Ran, R Koch, M Effenberger, I Tancevski, H Zoller, AR Moschen, G Weiss, C Becker, P Rosenstiel, A Kaser, H Tilg, TE Adolph. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 2020; 11(1): 1775
https://doi.org/10.1038/s41467-020-15646-6 pmid: 32286299
307 M Xu, J Tao, Y Yang, S Tan, H Liu, J Jiang, F Zheng, B Wu. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis 2020; 11(2): 86
https://doi.org/10.1038/s41419-020-2299-1 pmid: 32015337
308 MP McGinley, CH Goldschmidt, AD Rae-Grant. Diagnosis and treatment of multiple sclerosis: a review. JAMA 2021; 325(8): 765–779
https://doi.org/10.1001/jama.2020.26858 pmid: 33620411
309 J Luoqian, W Yang, X Ding, QZ Tuo, Z Xiang, Z Zheng, YJ Guo, L Li, P Guan, S Ayton, B Dong, H Zhang, H Hu, P Lei. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol 2022; 19(8): 913–924
https://doi.org/10.1038/s41423-022-00883-0 pmid: 35676325
310 AR White. Ferroptosis drives immune-mediated neurodegeneration in multiple sclerosis. Cell Mol Immunol 2023; 20(1): 112–113
https://doi.org/10.1038/s41423-022-00941-7 pmid: 36357520
311 X Li, Y Chu, R Ma, M Dou, S Li, Y Song, Y Lv, L Zhu. Ferroptosis as a mechanism of oligodendrocyte loss and demyelination in experimental autoimmune encephalomyelitis. J Neuroimmunol 2022; 373: 577995
https://doi.org/10.1016/j.jneuroim.2022.577995 pmid: 36327618
312 A Rayatpour, F Foolad, M Heibatollahi, K Khajeh, M Javan. Ferroptosis inhibition by deferiprone, attenuates myelin damage and promotes neuroprotection in demyelinated optic nerve. Sci Rep 2022; 12(1): 19630
https://doi.org/10.1038/s41598-022-24152-2 pmid: 36385152
313 L Jiao, X Li, Y Luo, J Wei, X Ding, H Xiong, X Liu, P Lei. Iron metabolism mediates microglia susceptibility in ferroptosis. Front Cell Neurosci 2022; 16: 995084
https://doi.org/10.3389/fncel.2022.995084 pmid: 36111246
314 Y Jiang, C Mao, R Yang, B Yan, Y Shi, X Liu, W Lai, Y Liu, X Wang, D Xiao, H Zhou, Y Cheng, F Yu, Y Cao, S Liu, Q Yan, Y Tao. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics 2017; 7(13): 3293–3305
https://doi.org/10.7150/thno.19988 pmid: 28900510
315 Y Jiang, Y He, S Liu, Y Tao. Chromatin remodeling factor lymphoid-specific helicase inhibits ferroptosis through lipid metabolic genes in lung cancer progression. Chin J Cancer 2017; 36(1): 82
https://doi.org/10.1186/s40880-017-0248-x pmid: 29037212
316 N Jiang, X Zhang, X Gu, X Li, L Shang. Progress in understanding the role of lncRNA in programmed cell death. Cell Death Discov 2021; 7(1): 30
https://doi.org/10.1038/s41420-021-00407-1 pmid: 33558499
317 M Wang, C Mao, L Ouyang, Y Liu, W Lai, N Liu, Y Shi, L Chen, D Xiao, F Yu, X Wang, H Zhou, Y Cao, S Liu, Q Yan, Y Tao, B Zhang. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26(11): 2329–2343
https://doi.org/10.1038/s41418-019-0304-y pmid: 30787392
318 B Yuan, F Liao, ZZ Shi, Y Ren, XL Deng, TT Yang, DY Li, RF Li, DD Pu, YJ Wang, Y Tan, Z Yang, YH Zhang. Dihydroartemisinin inhibits the proliferation, colony formation and induces ferroptosis of lung cancer cells by inhibiting PRIM2/SLC7A11 axis. Onco Targets Ther 2020; 13: 10829–10840
https://doi.org/10.2147/OTT.S248492 pmid: 33149601
319 P Chen, Q Wu, J Feng, L Yan, Y Sun, S Liu, Y Xiang, M Zhang, T Pan, X Chen, T Duan, L Zhai, B Zhai, W Wang, R Zhang, B Chen, X Han, Y Li, L Chen, Y Liu, X Huang, T Jin, W Zhang, H Luo, X Chen, Y Li, Q Li, G Li, Q Zhang, L Zhuo, Z Yang, H Tang, T Xie, X Ouyang, X Sui. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther 2020; 5(1): 51
https://doi.org/10.1038/s41392-020-0149-3 pmid: 32382060
320 C Gai, M Yu, Z Li, Y Wang, D Ding, J Zheng, S Lv, W Zhang, W Li. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer. J Cell Physiol 2020; 235(4): 3329–3339
https://doi.org/10.1002/jcp.29221 pmid: 31541463
321 J Yang, Y Zhou, S Xie, J Wang, Z Li, L Chen, M Mao, C Chen, A Huang, Y Chen, X Zhang, NUH Khan, L Wang, J Zhou. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res 2021; 40(1): 206
https://doi.org/10.1186/s13046-021-02012-7 pmid: 34162423
322 D Sun, YC Li, XY Zhang. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front Pharmacol 2021; 12: 681223
https://doi.org/10.3389/fphar.2021.681223 pmid: 34122108
323 H Yu, C Yang, L Jian, S Guo, R Chen, K Li, F Qu, K Tao, Y Fu, F Luo, S Liu. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep 2019; 42(2): 826–838
pmid: 31173262
324 R Gao, RKR Kalathur, M Coto-Llerena, C Ercan, D Buechel, S Shuang, S Piscuoglio, MT Dill, FD Camargo, G Christofori, F Tang. YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 2021; 13(12): e14351
https://doi.org/10.15252/emmm.202114351 pmid: 34664408
325 R Kong, N Wang, W Han, W Bao, J Lu. IFNγ-mediated repression of system xc– drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol 2021; 110(2): 301–314
https://doi.org/10.1002/JLB.3MA1220-815RRR pmid: 34318944
326 T Bai, R Liang, R Zhu, W Wang, L Zhou, Y Sun. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol 2020; 235(7–8): 5637–5648
https://doi.org/10.1002/jcp.29496 pmid: 31960438
327 JY Lee, M Nam, HY Son, K Hyun, SY Jang, JW Kim, MW Kim, Y Jung, E Jang, SJ Yoon, J Kim, J Kim, J Seo, JK Min, KJ Oh, BS Han, WK Kim, KH Bae, J Song, J Kim, YM Huh, GS Hwang, EW Lee, SC Lee. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci U S A 2020; 117(51): 32433–32442
https://doi.org/10.1073/pnas.2006828117 pmid: 33288688
328 C Wang, M Shi, J Ji, Q Cai, Q Zhao, J Jiang, J Liu, H Zhang, Z Zhu, J Zhang. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY) 2020; 12(15): 15374–15391
https://doi.org/10.18632/aging.103598 pmid: 32726752
329 L Zhao, Y Peng, S He, R Li, Z Wang, J Huang, X Lei, G Li, Q Ma. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer 2021; 24(3): 642–654
https://doi.org/10.1007/s10120-021-01159-8 pmid: 33544270
330 H Ni, G Ruan, C Sun, X Yang, Z Miao, J Li, Y Chen, H Qin, Y Liu, L Zheng, Y Xing, T Xi, X Li. Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. Environ Toxicol 2022; 37(2): 192–200
https://doi.org/10.1002/tox.23388 pmid: 34661962
331 Z Gao, G Deng, Y Li, H Huang, X Sun, H Shi, X Yao, L Gao, Y Ju, M Luo. Actinidia chinensis Planch prevents proliferation and migration of gastric cancer associated with apoptosis, ferroptosis activation and mesenchymal phenotype suppression. Biomed Pharmacother 2020; 126: 110092
https://doi.org/10.1016/j.biopha.2020.110092 pmid: 32203890
332 X Xu, X Zhang, C Wei, D Zheng, X Lu, Y Yang, A Luo, K Zhang, X Duan, Y Wang. Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis. Eur J Pharm Sci 2020; 152: 105450
https://doi.org/10.1016/j.ejps.2020.105450 pmid: 32621966
333 Y Xia, S Liu, C Li, Z Ai, W Shen, W Ren, X Yang. Discovery of a novel ferroptosis inducer-talaroconvolutin A-killing colorectal cancer cells in vitro and in vivo. Cell Death Dis 2020; 11(11): 988
https://doi.org/10.1038/s41419-020-03194-2 pmid: 33203867
334 L Liu, H Yao, X Zhou, J Chen, G Chen, X Shi, G Wu, G Zhou, S He. miR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog 2022; 61(3): 301–310
https://doi.org/10.1002/mc.23367 pmid: 34727409
335 R Wang, Q Su, H Yin, D Wu, C Lv, Z Yan. Inhibition of SRSF9 enhances the sensitivity of colorectal cancer to erastin-induced ferroptosis by reducing glutathione peroxidase 4 expression. Int J Biochem Cell Biol 2021; 134: 105948
https://doi.org/10.1016/j.biocel.2021.105948 pmid: 33609745
336 P Storz. KRas, ROS and the initiation of pancreatic cancer. Small GTPases 2017; 8(1): 38–42
https://doi.org/10.1080/21541248.2016.1192714 pmid: 27215184
337 MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CEM Firl, AR Decker, SA Sastra, CF Palermo, LR Andrade, P Sajjakulnukit, L Zhang, ZP Tolstyka, T Hirschhorn, C Lamb, T Liu, W Gu, ES Seeley, E Stone, G Georgiou, U Manor, A Iuga, GM Wahl, BR Stockwell, CA Lyssiotis, KP Olive. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020; 368(6486): 85–89
https://doi.org/10.1126/science.aaw9872 pmid: 32241947
338 Y Yamaguchi, T Kasukabe, S Kumakura. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 2018; 52(3): 1011–1022
https://doi.org/10.3892/ijo.2018.4259 pmid: 29393418
339 W Cui, J Zhang, D Wu, J Zhang, H Zhou, Y Rong, F Liu, B Wei, X Xu. Ponicidin suppresses pancreatic cancer growth by inducing ferroptosis: insight gained by mass spectrometry-based metabolomics. Phytomedicine 2022; 98: 153943
https://doi.org/10.1016/j.phymed.2022.153943 pmid: 35104766
[1] Wenjing Zhou, Jing Zhang, Mingkun Yan, Jin Wu, Shuo Lian, Kang Sun, Baiqing Li, Jia Ma, Jun Xia, Chaoqun Lian. Orlistat induces ferroptosis-like cell death of lung cancer cells[J]. Front. Med., 2021, 15(6): 922-932.
[2] HE Zhongye, GUO Renxuan, LI Yang, XIE Chengyao, LIU Nan, SONG Wen. Alleviation of cell damage in experimental ANP in rats by administration of chondroitin-sulfate reduces[J]. Front. Med., 2007, 1(1): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed