|
|
Lack of CFAP54 causes primary ciliary dyskinesia in a mouse model and human patients |
Xinyue Zhao1, Haijun Ge1, Wenshuai Xu1, Chongsheng Cheng2, Wangji Zhou2, Yan Xu2, Junping Fan2, Yaping Liu1( ), Xinlun Tian2( ), Kai-Feng Xu2, Xue Zhang1 |
1. McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China 2. Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
|
|
Abstract Primary ciliary dyskinesia (PCD) is a highly heterogeneous recessive inherited disorder. FAP54, the homolog of CFAP54 in Chlamydomonas reinhardtii, was previously demonstrated as the C1d projection of the central microtubule apparatus of flagella. A Cfap54 knockout mouse model was then reported to have PCD-relevant phenotypes. Through whole-exome sequencing, compound heterozygous variants c.2649_2657delinC (p. E883Dfs*47) and c.7312_7313insCGCAGGCTGAATTCTTGG (p. T2438delinsTQAEFLA) in a new suspected PCD-relevant gene, CFAP54, were identified in an individual with PCD. Two missense variants, c.4112A>C (p. E1371A) and c.6559C>T (p. P2187S), in CFAP54 were detected in another unrelated patient. In this study, a minigene assay was conducted on the frameshift mutation showing a reduction in mRNA expression. In addition, a CFAP54 in-frame variant knock-in mouse model was established, which recapitulated the typical symptoms of PCD, including hydrocephalus, infertility, and mucus accumulation in nasal sinuses. Correspondingly, two missense variants were deleterious, with a dramatic reduction in mRNA abundance from bronchial tissue and sperm. The identification of PCD-causing variants of CFAP54 in two unrelated patients with PCD for the first time provides strong supportive evidence that CFAP54 is a new PCD-causing gene. This study further helps expand the disease-associated gene spectrum and improve genetic testing for PCD diagnosis in the future.
|
Keywords
primary ciliary dyskinesia
CFAP54
cilia
|
Corresponding Author(s):
Yaping Liu,Xinlun Tian
|
Just Accepted Date: 30 August 2023
Online First Date: 19 September 2023
Issue Date: 06 February 2024
|
|
1 |
V Mirra, C Werner, F Santamaria. Primary ciliary dyskinesia: an update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front Pediatr 2017; 5: 135
https://doi.org/10.3389/fped.2017.00135
|
2 |
MA ZariwalaMR KnowlesMW Leigh. Primary Ciliary Dyskinesia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A. GeneReviews. Seattle (WA): University of Washington, 1993
|
3 |
M Kurkowiak, E Ziętkiewicz, M Witt. Recent advances in primary ciliary dyskinesia genetics. J Med Genet 2015; 52(1): 1–9
https://doi.org/10.1136/jmedgenet-2014-102755
|
4 |
S Yoshiba, H Shiratori, IY Kuo, A Kawasumi, K Shinohara, S Nonaka, Y Asai, G Sasaki, JA Belo, H Sasaki, J Nakai, B Dworniczak, BE Ehrlich, P Pennekamp, H Hamada. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 2012; 338(6104): 226–231
https://doi.org/10.1126/science.1222538
|
5 |
MR Knowles, M Zariwala, M Leigh. Primary ciliary dyskinesia. Clin Chest Med 2016; 37(3): 449–461
https://doi.org/10.1016/j.ccm.2016.04.008
|
6 |
JS Lucas, SD Davis, H Omran, A Shoemark. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med 2020; 8(2): 202–216
https://doi.org/10.1016/S2213-2600(19)30374-1
|
7 |
A Horani, TW Ferkol. Understanding primary ciliary dyskinesia and other ciliopathies. J Pediatr 2021; 230: 15–22.e1
https://doi.org/10.1016/j.jpeds.2020.11.040
|
8 |
JM Brown, CG Dipetrillo, EF Smith, GBA Witman. A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J Cell Sci 2012; 125(Pt 16): 3904–3913
https://doi.org/10.1242/jcs.107151
|
9 |
K Takeuchi, M Kitano, H Ishinaga, M Kobayashi, S Ogawa, K Nakatani, S Masuda, M Nagao, T Fujisawa. Recent advances in primary ciliary dyskinesia. Auris Nasus Larynx 2016; 43(3): 229–236
https://doi.org/10.1016/j.anl.2015.09.012
|
10 |
DR Mitchell, B Smith. Analysis of the central pair microtubule complex in Chlamydomonas reinhardtii. Methods Cell Biol 2009; 92: 197–213
https://doi.org/10.1016/S0091-679X(08)92013-6
|
11 |
GJ Pazour, N Agrin, J Leszyk, GB Witman. Proteomic analysis of a eukaryotic cilium. J Cell Biol 2005; 170(1): 103–113
https://doi.org/10.1083/jcb.200504008
|
12 |
CG DiPetrillo, EF Smith. Pcdp1 is a central apparatus protein that binds Ca2+-calmodulin and regulates ciliary motility. J Cell Biol 2010; 189(3): 601–612
https://doi.org/10.1083/jcb.200912009
|
13 |
CW McKenzie, B Craige, TV Kroeger, R Finn, TA Wyatt, JH Sisson, JA Pavlik, L Strittmatter, GM Hendricks, GB Witman, L Lee. CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell 2015; 26(18): 3140–3149
https://doi.org/10.1091/mbc.e15-02-0121
|
14 |
H Li, R Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25(14): 1754–1760
https://doi.org/10.1093/bioinformatics/btp324
|
15 |
H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R; 1000 Genome Project Data Processing Subgroup Durbin. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25(16): 2078–2079
https://doi.org/10.1093/bioinformatics/btp352
|
16 |
Genomes Project Consortium; Auton A 1000, LD Brooks, RM Durbin, EP Garrison, HM Kang, JO Korbel, JL Marchini, S McCarthy, GA McVean, GR Abecasis. A global reference for human genetic variation. Nature 2015; 526(7571): 68–74
https://doi.org/10.1038/nature15393
|
17 |
KJ Karczewski, LC Francioli, G Tiao, BB Cummings, J Alföldi, Q Wang, RL Collins, KM Laricchia, A Ganna, DP Birnbaum, LD Gauthier, H Brand, M Solomonson, NA Watts, D Rhodes, M Singer-Berk, EM England, EG Seaby, JA Kosmicki, RK Walters, K Tashman, Y Farjoun, E Banks, T Poterba, A Wang, C Seed, N Whiffin, JX Chong, KE Samocha, E Pierce-Hoffman, Z Zappala, AH O'Donnell-Luria, EV Minikel, B Weisburd, M Lek, JS Ware, C Vittal, IM Armean, L Bergelson, K Cibulskis, KM Connolly, M Covarrubias, S Donnelly, S Ferriera, S Gabriel, J Gentry, N Gupta, T Jeandet, D Kaplan, C Llanwarne, R Munshi, S Novod, N Petrillo, D Roazen, V Ruano-Rubio, A Saltzman, M Schleicher, J Soto, K Tibbetts, C Tolonen, G Wade, ME; Genome Aggregation Database Consortium; Neale BM Talkowski, MJ Daly, DG MacArthur. The mutational constraint spectrum quantified from variation in 141 456 humans. Nature 2020; 581(7809): 434–443
https://doi.org/10.1038/s41586-020-2308-7
|
18 |
W Fu, TD O'Connor, G Jun, HM Kang, G Abecasis, SM Leal, S Gabriel, MJ Rieder, D Altshuler, J Shendure, DA Nickerson, MJ; NHLBI Exome Sequencing Project; Akey JM Bamshad. Analysis of 6515 exomes reveals the recent origin of most human protein-coding variants. Nature 2013; 493(7431): 216–220
https://doi.org/10.1038/nature11690
|
19 |
K Wang, M Li, H Hakonarson. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38(16): e164
https://doi.org/10.1093/nar/gkq603
|
20 |
P Kumar, S Henikoff, PC Ng. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4(7): 1073–1081
https://doi.org/10.1038/nprot.2009.86
|
21 |
IA Adzhubei, S Schmidt, L Peshkin, VE Ramensky, A Gerasimova, P Bork, AS Kondrashov, SR Sunyaev. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248
|
22 |
JM Schwarz, C Rödelsperger, M Schuelke, D Seelow. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010; 7(8): 575–576
https://doi.org/10.1038/nmeth0810-575
|
23 |
M Kircher, DM Witten, P Jain, BJ O’Roak, GM Cooper, J Shendure. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46(3): 310–315
https://doi.org/10.1038/ng.2892
|
24 |
JS Amberger, A Hamosh. Searching Online Mendelian Inheritance in Man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics 2017; 58: 1.2.1–1.2.12
https://doi.org/10.1002/cpbi.27
|
25 |
M Kanehisa, S Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27–30
https://doi.org/10.1093/nar/28.1.27
|
26 |
MJ Landrum, JM Lee, M Benson, G Brown, C Chao, S Chitipiralla, B Gu, J Hart, D Hoffman, J Hoover, W Jang, K Katz, M Ovetsky, G Riley, A Sethi, R Tully, R Villamarin-Salomon, W Rubinstein, DR Maglott. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016; 44(D1): D862–D868
https://doi.org/10.1093/nar/gkv1222
|
27 |
CF Schaefer, K Anthony, S Krupa, J Buchoff, M Day, T Hannay, KH Buetow. PID: the pathway interaction database. Nucleic Acids Res 2009; 37(Database issue suppl_1): D674–D679
https://doi.org/10.1093/nar/gkn653
|
28 |
PD Stenson, M Mort, EV Ball, K Evans, M Hayden, S Heywood, M Hussain, AD Phillips, DN Cooper. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017; 136(6): 665–677
https://doi.org/10.1007/s00439-017-1779-6
|
29 |
A Fabregat, S Jupe, L Matthews, K Sidiropoulos, M Gillespie, P Garapati, R Haw, B Jassal, F Korninger, B May, M Milacic, CD Roca, K Rothfels, C Sevilla, V Shamovsky, S Shorser, T Varusai, G Viteri, J Weiser, G Wu, L Stein, H Hermjakob, P D’Eustachio. The Reactome Pathway Knowledgebase. Nucleic Acids Res 2018; 46(D1): D649–D655
https://doi.org/10.1093/nar/gkx1132
|
30 |
W Kim, TH Han, HJ Kim, MY Park, KS Kim, RW Park. An automated measurement of ciliary beating frequency using a combined optical flow and peak detection. Healthc Inform Res 2011; 17(2): 111–119
https://doi.org/10.4258/hir.2011.17.2.111
|
31 |
CM Smith, J Djakow, RC Free, P Djakow, R Lonnen, G Williams, P Pohunek, RA Hirst, AJ Easton, PW Andrew, C O’Callaghan. ciliaFA: a research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software. Cilia 2012; 1(1): 14
https://doi.org/10.1186/2046-2530-1-14
|
32 |
P Sampaio, Silva MF da, I Vale, M Roxo-Rosa, A Pinto, C Constant, L Pereira, CM Quintão, SS Lopes. CiliarMove: new software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia. ERJ Open Res 2021; 7(1): 00792–2020
https://doi.org/10.1183/23120541.00792-2020
|
33 |
WJ Yi, KS Park, YG Min, MW Sung. Distribution mapping of ciliary beat frequencies of respiratory epithelium cells using image processing. Med Biol Eng Comput 1997; 35(6): 595–599
https://doi.org/10.1007/BF02510966
|
34 |
JH Sisson, JA Stoner, BA Ammons, TA Wyatt. All-digital image capture and whole-field analysis of ciliary beat frequency. J Microsc 2003; 211(2): 103–111
https://doi.org/10.1046/j.1365-2818.2003.01209.x
|
35 |
AJ Shapiro, SD Davis, D Polineni, M Manion, M Rosenfeld, SD Dell, MA Chilvers, TW Ferkol, MA Zariwala, SD Sagel, M Josephson, L Morgan, O Yilmaz, KN Olivier, C Milla, JE Pittman, MLA Daniels, MH Jones, IA Janahi, SM Ware, SJ Daniel, ML Cooper, LM Nogee, B Anton, T Eastvold, L Ehrne, E Guadagno, MR Knowles, MW Leigh, V; American Thoracic Society Assembly on Pediatrics Lavergne. Diagnosis of primary ciliary dyskinesia. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med 2018; 197(12): e24–e39
https://doi.org/10.1164/rccm.201805-0819ST
|
36 |
ME Teves, DR Nagarkatti-Gude, Z Zhang, JF 3rd Strauss. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken) 2016; 73(1): 3–22
https://doi.org/10.1002/cm.21271
|
37 |
SA Collins, K Gove, W Walker, JSA Lucas. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J 2014; 44(6): 1589–1599
https://doi.org/10.1183/09031936.00088614
|
38 |
E Kott, M Legendre, B Copin, JF Papon, F Dastot-Le Moal, G Montantin, P Duquesnoy, W Piterboth, D Amram, L Bassinet, J Beucher, N Beydon, E Deneuville, V Houdouin, H Journel, J Just, N Nathan, A Tamalet, N Collot, L Jeanson, M Le Gouez, B Vallette, AM Vojtek, R Epaud, A Coste, A Clement, B Housset, B Louis, E Escudier, S Amselem. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet 2013; 93(3): 561–570
https://doi.org/10.1016/j.ajhg.2013.07.013
|
39 |
MR Knowles, LE Ostrowski, MW Leigh, PR Sears, SD Davis, WE Wolf, MJ Hazucha, JL Carson, KN Olivier, SD Sagel, M Rosenfeld, TW Ferkol, SD Dell, CE Milla, SH Randell, W Yin, A Sannuti, HM Metjian, PG Noone, PJ Noone, CA Olson, MV Patrone, H Dang, HS Lee, TW Hurd, HY Gee, EA Otto, J Halbritter, S Kohl, M Kircher, J Krischer, MJ Bamshad, DA Nickerson, F Hildebrandt, J Shendure, MA Zariwala. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 2014; 189(6): 707–717
https://doi.org/10.1164/rccm.201311-2047OC
|
40 |
I Ibañez-Tallon, S Gorokhova, N Heintz. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002; 11(6): 715–721
https://doi.org/10.1093/hmg/11.6.715
|
41 |
A Becker-Heck, IE Zohn, N Okabe, A Pollock, KB Lenhart, J Sullivan-Brown, J McSheene, NT Loges, H Olbrich, K Haeffner, M Fliegauf, J Horvath, R Reinhardt, KG Nielsen, JK Marthin, G Baktai, KV Anderson, R Geisler, L Niswander, H Omran, RD Burdine. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 2011; 43(1): 79–84
https://doi.org/10.1038/ng.727
|
42 |
W Zou, Y Lv, ZI Liu, P Xia, H Li, J Jiao. Loss of Rsph9 causes neonatal hydrocephalus with abnormal development of motile cilia in mice. Sci Rep 2020; 10(1): 12435
https://doi.org/10.1038/s41598-020-69447-4
|
43 |
C Kempeneers, C Seaton, B Garcia Espinosa, MA Chilvers. Ciliary functional analysis: beating a path towards standardization. Pediatr Pulmonol 2019; 54(10): 1627–1638
https://doi.org/10.1002/ppul.24439
|
44 |
XM Bustamante-Marin, WN Yin, PR Sears, ME Werner, EJ Brotslaw, BJ Mitchell, CM Jania, KL Zeman, TD Rogers, LE Herring, L Refabért, L Thomas, S Amselem, E Escudier, M Legendre, BR Grubb, MR Knowles, MA Zariwala, LE Ostrowski. Lack of GAS2L2 causes PCD by impairing cilia orientation and mucociliary clearance. Am J Hum Genet 2019; 104(2): 229–245
https://doi.org/10.1016/j.ajhg.2018.12.009
|
45 |
E ParrillaM ArmengotM MataJ CortijoJ Riera JL HuesoD Moratal. Optical flow method in phase-contrast microscopy images for the diagnosis of primary ciliary dyskinesia through measurement of ciliary beat frequency. Preliminary results. 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2012, 1655–1658 doi:10.1109/ISBI.2012.6235895
|
46 |
NA Petriman, E Lorentzen. Structural insights into the architecture and assembly of eukaryotic flagella. Microb Cell 2020; 7(11): 289–299
https://doi.org/10.15698/mic2020.11.734
|
47 |
T Ishikawa. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography. Biophysics (Nagoya-Shi) 2013; 9(0): 141–148
https://doi.org/10.2142/biophysics.9.141
|
48 |
H Olbrich, C Cremers, NT Loges, C Werner, KG Nielsen, JK Marthin, M Philipsen, J Wallmeier, P Pennekamp, T Menchen, C Edelbusch, GW Dougherty, O Schwartz, H Thiele, J Altmüller, F Rommelmann, H Omran. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am J Hum Genet 2015; 97(4): 546–554
https://doi.org/10.1016/j.ajhg.2015.08.012
|
49 |
M Wirschell, H Olbrich, C Werner, D Tritschler, R Bower, WS Sale, NT Loges, P Pennekamp, S Lindberg, U Stenram, B Carlén, E Horak, G Köhler, P Nürnberg, G Nürnberg, ME Porter, H Omran. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 2013; 45(3): 262–268
https://doi.org/10.1038/ng.2533
|
50 |
A Horani, SL Brody, TW Ferkol, D Shoseyov, MG Wasserman, A Ta-shma, KS Wilson, PV Bayly, I Amirav, M Cohen-Cymberknoh, SK Dutcher, O Elpeleg, E Kerem. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One 2013; 8(8): e72299
https://doi.org/10.1371/journal.pone.0072299
|
51 |
JS Lucas, A Barbato, SA Collins, M Goutaki, L Behan, D Caudri, S Dell, E Eber, E Escudier, RA Hirst, C Hogg, M Jorissen, P Latzin, M Legendre, MW Leigh, F Midulla, KG Nielsen, H Omran, JF Papon, P Pohunek, B Redfern, D Rigau, B Rindlisbacher, F Santamaria, A Shoemark, D Snijders, T Tonia, A Titieni, WT Walker, C Werner, A Bush, CE Kuehni. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49(1): 1601090
https://doi.org/10.1183/13993003.01090-2016
|
52 |
A Horani, TW Ferkol, SK Dutcher, SL Brody. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev 2016; 18: 18–24
https://doi.org/10.1016/j.prrv.2015.09.001
|
53 |
L Han, Q Rao, R Yang, Y Wang, P Chai, Y Xiong, K Zhang. Cryo-EM structure of an active central apparatus. Nat Struct Mol Biol 2022; 29(5): 472–482
https://doi.org/10.1038/s41594-022-00769-9
|
54 |
M Gui, X Wang, SK Dutcher, A Brown, R Zhang. Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29(5): 483–492
https://doi.org/10.1038/s41594-022-00770-2
|
55 |
CG DiPetrillo, EF Smith. The Pcdp1 complex coordinates the activity of dynein isoforms to produce wild-type ciliary motility. Mol Biol Cell 2011; 22(23): 4527–4538
https://doi.org/10.1091/mbc.e11-08-0739
|
56 |
L Lee, DR Campagna, JL Pinkus, H Mulhern, TA Wyatt, JH Sisson, JA Pavlik, GS Pinkus, MD Fleming. Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol 2008; 28(3): 949–957
https://doi.org/10.1128/MCB.00354-07
|
57 |
XM Bustamante-Marin, A Shapiro, PR Sears, WL Charng, DF Conrad, MW Leigh, MR Knowles, LE Ostrowski, MA Zariwala. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet 2020; 65(2): 175–180
https://doi.org/10.1038/s10038-019-0686-1
|
58 |
C Liu, C Tu, L Wang, H Wu, BJ Houston, FK Mastrorosa, W Zhang, Y Shen, J Wang, S Tian, L Meng, J Cong, S Yang, Y Jiang, S Tang, Y Zeng, M Lv, G Lin, J Li, H Saiyin, X He, L Jin, A Touré, PF Ray, JA Veltman, Q Shi, MK O’Bryan, Y Cao, YQ Tan, F Zhang. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am J Hum Genet 2021; 108(2): 309–323
https://doi.org/10.1016/j.ajhg.2021.01.002
|
59 |
Y Sha, X Wei, L Ding, Z Ji, L Mei, X Huang, Z Su, W Wang, X Zhang, S Lin. Biallelic mutations of CFAP74 may cause human primary ciliary dyskinesia and MMAF phenotype. J Hum Genet 2020; 65(11): 961–969
https://doi.org/10.1038/s10038-020-0790-2
|
60 |
L Thomas, K Bouhouche, M Whitfield, G Thouvenin, A Coste, B Louis, C Szymanski, E Bequignon, JF Papon, M Castelli, M Lemullois, X Dhalluin, V Drouin-Garraud, G Montantin, S Tissier, P Duquesnoy, B Copin, F Dastot, S Couvet, AL Barbotin, C Faucon, I Honore, B Maitre, N Beydon, A Tamalet, N Rives, F Koll, E Escudier, AM Tassin, A Touré, V Mitchell, S Amselem, M Legendre. TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assembly mechanisms in motile cilia versus flagella. Am J Hum Genet 2020; 106(2): 153–169
https://doi.org/10.1016/j.ajhg.2019.12.010
|
61 |
A Sironen, N Kotaja, H Mulhern, TA Wyatt, JH Sisson, JA Pavlik, M Miiluniemi, MD Fleming, L Lee. Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia. Biol Reprod 2011; 85(4): 690–701
https://doi.org/10.1095/biolreprod.111.091132
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|