|
|
Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in TMEM141, DDHD2, and LHFPL5 |
Liwei Sun1,2,3, Xueting Yang1, Amjad Khan1,4,5,6( ), Xue Yu1,7, Han Zhang1,8, Shirui Han1, Xiaerbati Habulieti1, Yang Sun1, Rongrong Wang1( ), Xue Zhang1 |
1. McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China 2. Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, National Key Clinical Speciality Construction Project (Obstetrics and Gynecology), Chongqing Health Center for Women and Children, Chongqing 400013, China 3. Chongqing Clinical Research Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing 400013, China 4. Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan 5. Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany 6. Alexander von Humboldt fellowship Foundation, Berlin 10117, Germany 7. Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning 530000, China 8. Department of Laboratory Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China |
|
|
Abstract Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.
|
Keywords
neurodevelopmental disorder
autosomal recessive intellectual disability
consanguinity
spastic paraplegia
hearing loss
TMEM141
|
Corresponding Author(s):
Amjad Khan,Rongrong Wang
|
About author: Li Liu and Yanqing Liu contributed equally to this work. |
Just Accepted Date: 06 September 2023
Online First Date: 17 October 2023
Issue Date: 22 April 2024
|
|
1 |
I Parenti, LG Rabaneda, H Schoen, G Novarino. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci 2020; 43(8): 608–621
https://doi.org/10.1016/j.tins.2020.05.004
|
2 |
LE Vissers, C Gilissen, JA Veltman. Genetic studies in intellectual disability and related disorders. Nat Rev Genet 2016; 17(1): 9–18
https://doi.org/10.1038/nrg3999
|
3 |
PK Maulik, MN Mascarenhas, CD Mathers, T Dua, S Saxena. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 2011; 32(2): 419–436
https://doi.org/10.1016/j.ridd.2010.12.018
|
4 |
HC Mefford, ML Batshaw, EP Hoffman. Genomics, intellectual disability, and autism. N Engl J Med 2012; 366(8): 733–743
https://doi.org/10.1056/NEJMra1114194
|
5 |
H Hu, K Kahrizi, L Musante, Z Fattahi, R Herwig, M Hosseini, C Oppitz, SS Abedini, V Suckow, F Larti, M Beheshtian, B Lipkowitz, T Akhtarkhavari, S Mehvari, S Otto, M Mohseni, S Arzhangi, P Jamali, F Mojahedi, M Taghdiri, E Papari, Banavandi MJ Soltani, S Akbari, SH Tonekaboni, H Dehghani, MR Ebrahimpour, I Bader, B Davarnia, M Cohen, H Khodaei, B Albrecht, S Azimi, B Zirn, M Bastami, D Wieczorek, G Bahrami, K Keleman, LN Vahid, A Tzschach, J Gärtner, G Gillessen-Kaesbach, JR Varaghchi, B Timmermann, F Pourfatemi, A Jankhah, W Chen, P Nikuei, VM Kalscheuer, M Oladnabi, TF Wienker, HH Ropers, H Najmabadi. Genetics of intellectual disability in consanguineous families. Mol Psychiatry 2019; 24(7): 1027–1039
https://doi.org/10.1038/s41380-017-0012-2
|
6 |
A Nazli, A Safdar, A Saleem, M Akhtar, LI Brady, J Schwartzentruber, MA Tarnopolsky. A mutation in the TMEM65 gene results in mitochondrial myopathy with severe neurological manifestations. Eur J Hum Genet 2017; 25(6): 744–751
https://doi.org/10.1038/ejhg.2017.20
|
7 |
V ČížkováA, JA Stránecký, M Mayr, V Tesarová, J Havlícková, R Paul, AW Ivánek, H Kuss, V Hansíková, M Kaplanová, H Vrbacký, L Hartmannová, T Nosková, Z Honzík, M Drahota, K Magner, W Hejzlarová, J Sperl, J Zeman, S Houstek. TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet 2008; 40(11): 1288–1290
https://doi.org/10.1038/ng.246
|
8 |
Q Thomas, M Motta, T Gautier, MS Zaki, A Ciolfi, J Paccaud, F Girodon, O Boespflug-Tanguy, T Besnard, J Kerkhof, H McConkey, A Masson, AS Denommé-Pichon, B Cogné, E Trochu, V Vignard, It F El, LH Rodan, MA Alkhateeb, RA Jamra, L Duplomb, E Tisserant, Y Duffourd, AL Bruel, A Jackson, S Banka, M McEntagart, A Saggar, JG Gleeson, D Sievert, H Bae, BH Lee, K Kwon, GH Seo, H Lee, A Saeed, N Anjum, H Cheema, S Alawbathani, I Khan, J Pinto-Basto, J Teoh, J Wong, UBM Sahari, H Houlden, K Zhelcheska, M Pannetier, MA Awad, M Lesieur-Sebellin, G Barcia, J Amiel, J Delanne, C Philippe, L Faivre, S Odent, A Bertoli-Avella, C Thauvin, B Sadikovic, B Reversade, R Maroofian, J Govin, M Tartaglia, A Vitobello. Bi-allelic loss-of-function variants in TMEM147 cause moderate to profound intellectual disability with facial dysmorphism and pseudo-Pelger-Huët anomaly. Am J Hum Genet 2022; 109(10): 1909–1922
https://doi.org/10.1016/j.ajhg.2022.08.008
|
9 |
LC Tábara, F Al-Salmi, R Maroofian, AM Al-Futaisi, F Al-Murshedi, J Kennedy, JO Day, T Courtin, A Al-Khayat, H Galedari, N Mazaheri, M Protasoni, M Johnson, JS Leslie, CG Salter, LE Rawlins, J Fasham, A Al-Maawali, N Voutsina, P Charles, L Harrold, B Keren, ERS Kunji, B Vona, G Jelodar, A Sedaghat, G Shariati, H Houlden, AH Crosby, J Prudent, EL Baple. TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia. Brain 2022; 145(9): 3095–3107
https://doi.org/10.1093/brain/awac123
|
10 |
F Brancati, L Camerota, E Colao, V Vega-Warner, X Zhao, R Zhang, I Bottillo, M Castori, A Caglioti, F Sangiuolo, G Novelli, N Perrotti, EA; Undiagnosed Disease Network Italy Otto. Biallelic variants in the ciliary gene TMEM67 cause RHYNS syndrome. Eur J Hum Genet 2018; 26(9): 1266–1271
https://doi.org/10.1038/s41431-018-0183-6
|
11 |
H Coon, T Darlington, R Pimentel, KR Smith, CD Huff, H Hu, L Jerominski, J Hansen, M Klein, WB Callor, J Byrd, A Bakian, SE Crowell, WM McMahon, V Rajamanickam, NJ Camp, E McGlade, D Yurgelun-Todd, T Grey, D Gray. Genetic risk factors in two Utah pedigrees at high risk for suicide. Transl Psychiatry 2013; 3(11): e325
https://doi.org/10.1038/tp.2013.100
|
12 |
JE Posey, T Harel, P Liu, JA Rosenfeld, RA James, ZH Coban Akdemir, M Walkiewicz, W Bi, R Xiao, Y Ding, F Xia, AL Beaudet, DM Muzny, RA Gibbs, E Boerwinkle, CM Eng, VR Sutton, CA Shaw, SE Plon, Y Yang, JR Lupski. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med 2017; 376(1): 21–31
https://doi.org/10.1056/NEJMoa1516767
|
13 |
FO Desmet, D Hamroun, M Lalande, G Collod-Béroud, M Claustres, C Béroud. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009; 37(9): e67
https://doi.org/10.1093/nar/gkp215
|
14 |
JD Martell, TJ Deerinck, Y Sancak, TL Poulos, VK Mootha, GE Sosinsky, MH Ellisman, AY Ting. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 2012; 30(11): 1143–1148
https://doi.org/10.1038/nbt.2375
|
15 |
D Li, H Wei, Z Zhang, W Liang, BG Stokke. Oriental reed warbler (Acrocephalus orientalis) nest defence behaviour towards brood parasites and nest predators. Behaviour 2015; 152(12–13): 1601–1621
https://doi.org/10.1163/1568539X-00003295
|
16 |
Z Zhang, J Hong, S Zhang, T Zhang, S Sha, R Yang, Y Qian, L Chen. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice. Psychoneuroendocrinology 2016; 66: 138–149
https://doi.org/10.1016/j.psyneuen.2016.01.013
|
17 |
JJ Ballesta, Pozo C del, J Castelló-Banyuls, CC Faura. Selective down-regulation of α4β2 neuronal nicotinic acetylcholine receptors in the brain of uremic rats with cognitive impairment. Exp Neurol 2012; 236(1): 28–33
https://doi.org/10.1016/j.expneurol.2012.03.020
|
18 |
T Abrahamsson, T Lalanne, AJ Watt, PJ Sjöström. Long-term potentiation by theta-burst stimulation using extracellular field potential recordings in acute hippocampal slices. Cold Spring Harb Protoc 2016; 2016(6): pdb.prot091298
https://doi.org/10.1101/pdb.prot091298
|
19 |
Q He, S Sha, L Sun, J Zhang, M Dong. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway. Biochem Biophys Res Commun 2016; 476(4): 196–203
https://doi.org/10.1016/j.bbrc.2016.05.086
|
20 |
JE Polli, GS Rekhi, LL Augsburger, VP Shah. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci 1997; 86(6): 690–700
https://doi.org/10.1021/js960473x
|
21 |
M Gonzalez, S Nampoothiri, C Kornblum, AC Oteyza, J Walter, I Konidari, W Hulme, F Speziani, L Schöls, S Züchner, R Schüle. Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54). Eur J Hum Genet 2013; 21(11): 1214–1218
https://doi.org/10.1038/ejhg.2013.29
|
22 |
E Kalay, Y Li, A Uzumcu, O Uyguner, RW Collin, R Caylan, M Ulubil-Emiroglu, FF Kersten, G Hafiz, Wijk E van, H Kayserili, E Rohmann, J Wagenstaller, LH Hoefsloot, TM Strom, G Nürnberg, N Baserer, Hollander AI den, FP Cremers, CW Cremers, C Becker, HG Brunner, P Nürnberg, A Karaguzel, S Basaran, C Kubisch, H Kremer, B Wollnik. Mutations in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss. Hum Mutat 2006; 27(7): 633–639
https://doi.org/10.1002/humu.20368
|
23 |
K Platzer, H Sticht, SL Edwards, W Allen, KM Angione, MT Bonati, C Brasington, MT Cho, LA Demmer, T Falik-Zaccai, CN Gamble, Y Hellenbroich, M Iascone, F Kok, S Mahida, H Mandel, T Marquardt, K McWalter, B Panis, A Pepler, H Pinz, L Ramos, DN Shinde, C Smith-Hicks, APA Stegmann, P Stöbe, CTRM Stumpel, C Wilson, JR Lemke, Donato N Di, KG Miller, R Jamra. De novo variants in MAPK8IP3 cause intellectual disability with variable brain anomalies. Am J Hum Genet 2019; 104(2): 203–212
https://doi.org/10.1016/j.ajhg.2018.12.008
|
24 |
M Dulovic-Mahlow, J Trinh, KK Kandaswamy, GJ Braathen, Donato N Di, E Rahikkala, S Beblo, M Werber, V Krajka, ØL Busk, H Baumann, NA Al-Sannaa, F Hinrichs, R Affan, N Navot, Balwi MA Al, G Oprea, ØL Holla, MER Weiss, RA Jamra, AK Kahlert, S Kishore, K Tveten, M Vos, A Rolfs, K Lohmann. De novo variants in TAOK1 cause neurodevelopmental disorders. Am J Hum Genet 2019; 105(1): 213–220
https://doi.org/10.1016/j.ajhg.2019.05.005
|
25 |
R Wang, S Han, A Khan, X Zhang. Molecular analysis of twelve Pakistani families with nonsyndromic or syndromic hearing loss. Genet Test Mol Biomarkers 2017; 21(5): 316–321
https://doi.org/10.1089/gtmb.2016.0328
|
26 |
JH Schuurs-Hoeijmakers, MT Geraghty, EJ Kamsteeg, S Ben-Salem, Bot ST de, B Nijhof, de Vondervoort II van, der Graaf M van, AC Nobau, I Otte-Höller, S Vermeer, AC Smith, P Humphreys, J Schwartzentruber, BR Ali, SA Al-Yahyaee, S Tariq, T Pramathan, R Bayoumi, HP Kremer, de Warrenburg BP van, den Akker WM van, C Gilissen, JA Veltman, IM Janssen, Silfhout AT Vulto-van, der Velde-Visser S van, DJ Lefeber, A Diekstra, CE Erasmus, MA Willemsen, LE Vissers, M Lammens, Bokhoven H van, HG Brunner, RA Wevers, A Schenck, L Al-Gazali, Vries BB de, Brouwer AP de. Mutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet 2012; 91(6): 1073–1081
https://doi.org/10.1016/j.ajhg.2012.10.017
|
27 |
JK Fink. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 2013; 126(3): 307–328
https://doi.org/10.1007/s00401-013-1115-8
|
28 |
S Marx, Maso T Dal, JW Chen, M Bury, J Wouters, C Michiels, Calvé B Le. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 2020; 60: 96–106
https://doi.org/10.1016/j.semcancer.2019.08.018
|
29 |
P Norat, S Soldozy, JD Sokolowski, CM Gorick, JS Kumar, Y Chae, K Yağmurlu, F Prada, M Walker, MR Levitt, RJ Price, P Tvrdik, MYS Kalani. Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen Med 2020; 5(1): 22
https://doi.org/10.1038/s41536-020-00107-x
|
30 |
O Kann, R Kovács. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007; 292(2): C641–C657
https://doi.org/10.1152/ajpcell.00222.2006
|
31 |
D Dutta, LC Briere, O Kanca, PC Marcogliese, MA Walker, FA High, A Vanderver, J Krier, N Carmichael, C Callahan, RJ Taft, C Simons, G Helman, UD Network, MF Wangler, S Yamamoto, DA Sweetser, HJ Bellen. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Hum Mol Genet 2020; 29(9): 1568–1579
https://doi.org/10.1093/hmg/ddaa081
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|