|
|
Decitabine induces IRF7-mediated immune responses in p53-mutated triple-negative breast cancer: a clinical and translational study |
Haoyu Wang1, Zhengyuan Wang2, Zheng Wang1, Xiaoyang Li3, Yuntong Li2, Ni Yan2, Lili Wu2, Ying Liang2, Jiale Wu2, Huaxin Song2, Qing Qu1, Jiahui Huang1, Chunkang Chang4, Kunwei Shen1( ), Xiaosong Chen1( ), Min Lu2( ) |
1. Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 2. Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 3. Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 4. Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200025, China |
|
|
Abstract p53 is mutated in half of cancer cases. However, no p53-targeting drugs have been approved. Here, we reposition decitabine for triple-negative breast cancer (TNBC), a subtype with frequent p53 mutations and extremely poor prognosis. In a retrospective study on tissue microarrays with 132 TNBC cases, DNMT1 overexpression was associated with p53 mutations (P = 0.037) and poor overall survival (OS) (P = 0.010). In a prospective DEciTabinE and Carboplatin in TNBC (DETECT) trial (NCT03295552), decitabine with carboplatin produced an objective response rate (ORR) of 42% in 12 patients with stage IV TNBC. Among the 9 trialed patients with available TP53 sequencing results, the 6 patients with p53 mutations had higher ORR (3/6 vs. 0/3) and better OS (16.0 vs. 4.0 months) than the patients with wild-type p53. In a mechanistic study, isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53. In the DETECT trial, decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line (upregulation by 16-fold) and the most responsive patient with TNBC. Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.
|
Keywords
p53 mutation
triple-negative breast cancer
decitabine
DNMT1
IRF7
innate immune response
|
Corresponding Author(s):
Kunwei Shen,Xiaosong Chen,Min Lu
|
Just Accepted Date: 20 October 2023
Online First Date: 25 December 2023
Issue Date: 27 May 2024
|
|
1 |
IF Tannock, JA Hickman. Limits to personalized cancer medicine. N Engl J Med 2016; 375(13): 1289–1294
https://doi.org/10.1056/NEJMsb1607705
|
2 |
V Prasad. Perspective: The precision-oncology illusion. Nature 2016; 537(7619): S63
https://doi.org/10.1038/537S63a
|
3 |
AC Joerger, AR Fersht. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 2016; 85(1): 375–404
https://doi.org/10.1146/annurev-biochem-060815-014710
|
4 |
PAJ Muller, KH Vousden. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25(3): 304–317
https://doi.org/10.1016/j.ccr.2014.01.021
|
5 |
PAJ Muller, KH Vousden. p53 mutations in cancer. Nat Cell Biol 2013; 15(1): 2–8
https://doi.org/10.1038/ncb2641
|
6 |
K Sabapathy, DP Lane. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 2018; 15(1): 13–30
https://doi.org/10.1038/nrclinonc.2017.151
|
7 |
SN Loh. Arsenic and an old place: rescuing p53 mutants in cancer. Cancer Cell 2021; 39(2): 140–142
https://doi.org/10.1016/j.ccell.2021.01.012
|
8 |
L Gummlich. ATO stabilizes structural p53 mutants. Nat Rev Cancer 2021; 21(3): 141
https://doi.org/10.1038/s41568-021-00337-1
|
9 |
S Chen, JL Wu, Y Liang, YG Tang, HX Song, LL Wu, YF Xing, N Yan, YT Li, ZY Wang, SJ Xiao, X Lu, SJ Chen, M Lu. Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell 2021; 39(2): 225–239.e8
https://doi.org/10.1016/j.ccell.2020.11.013
|
10 |
A Basu, NE Bodycombe, JH Cheah, EV Price, K Liu, GI Schaefer, RY Ebright, ML Stewart, D Ito, S Wang, AL Bracha, T Liefeld, M Wawer, JC Gilbert, AJ Wilson, N Stransky, GV Kryukov, V Dancik, J Barretina, LA Garraway, CSY Hon, B Munoz, JA Bittker, BR Stockwell, D Khabele, AM Stern, PA Clemons, AF Shamji, SL Schreiber. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 2013; 154(5): 1151–1161
https://doi.org/10.1016/j.cell.2013.08.003
|
11 |
S Leijen, RMJM van Geel, GS Sonke, D de Jong, EH Rosenberg, S Marchetti, D Pluim, E van Werkhoven, S Rose, MA Lee, T Freshwater, JH Beijnen, JHM Schellens. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol 2016; 34(36): 4354–4361
https://doi.org/10.1200/JCO.2016.67.5942
|
12 |
L Xu, ZH Gu, Y Li, JL Zhang, CK Chang, CM Pan, JY Shi, Y Shen, B Chen, YY Wang, L Jiang, J Lu, X Xu, JL Tan, Y Chen, SY Wang, X Li, Z Chen, SJ Chen. Genomic landscape of CD34+ hematopoietic cells in myelodysplastic syndrome and gene mutation profiles as prognostic markers. Proc Natl Acad Sci U S A 2014; 111(23): 8589–8594
https://doi.org/10.1073/pnas.1407688111
|
13 |
C Chang, Y Zhao, F Xu, X Li. A primary study of the gene mutations in predicting treatment response to decitabine in patients with MDS. Blood 2015; 126(23): 1689
https://doi.org/10.1182/blood.V126.23.1689.1689
|
14 |
CK Chang, YS Zhao, F Xu, J Guo, Z Zhang, Q He, D Wu, LY Wu, JY Su, LX Song, C Xiao, X Li. TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes. Br J Haematol 2017; 176(4): 600–608
https://doi.org/10.1111/bjh.14455
|
15 |
J Wu, Y Li, J Wu, H Song, Y Tang, N Yan, L Wu, S Zhang, C Chang, M Lu. Decitabine activates type I interferon signaling to inhibit p53-deficient myeloid malignant cells. Clin Transl Med 2021; 11(11): e593
https://doi.org/10.1002/ctm2.593
|
16 |
JS Welch, AA Petti, CA Miller, CC Fronick, M O’Laughlin, RS Fulton, RK Wilson, JD Baty, EJ Duncavage, B Tandon, YS Lee, LD Wartman, GL Uy, A Ghobadi, MH Tomasson, I Pusic, R Romee, TA Fehniger, KE Stockerl-Goldstein, R Vij, ST Oh, CN Abboud, AF Cashen, MA Schroeder, MA Jacoby, SE Heath, K Luber, MR Janke, A Hantel, N Khan, MJ Sukhanova, RW Knoebel, W Stock, TA Graubert, MJ Walter, P Westervelt, DC Link, JF DiPersio, TJ Ley. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med 2016; 375(21): 2023–2036
https://doi.org/10.1056/NEJMoa1605949
|
17 |
K Appleton, HJ Mackay, I Judson, JA Plumb, C McCormick, G Strathdee, C Lee, S Barrett, S Reade, D Jadayel, A Tang, K Bellenger, L Mackay, A Setanoians, A Schätzlein, C Twelves, SB Kaye, R Brown. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J Clin Oncol 2007; 25(29): 4603–4609
https://doi.org/10.1200/JCO.2007.10.8688
|
18 |
WE Samlowski, SA Leachman, M Wade, P Cassidy, P Porter-Gill, L Busby, R Wheeler, K Boucher, F Fitzpatrick, DA Jones, AR Karpf. Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 2005; 23(17): 3897–3905
https://doi.org/10.1200/JCO.2005.06.118
|
19 |
X Fu, Y Zhang, X Wang, M Chen, Y Wang, J Nie, Y Meng, W Han. Low dose decitabine combined with taxol and platinum chemotherapy to treat refractory/recurrent ovarian cancer: an open-label, single-arm, phase I/II study. Curr Protein Pept Sci 2015; 16(4): 329–336
https://doi.org/10.2174/138920371604150429155740
|
20 |
D Matei, F Fang, C Shen, J Schilder, A Arnold, Y Zeng, WA Berry, T Huang, KP Nephew. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 2012; 72(9): 2197–2205
https://doi.org/10.1158/0008-5472.CAN-11-3909
|
21 |
Y Zhang, Q Mei, Y Liu, X Li, MV Brock, M Chen, L Dong, L Shi, Y Wang, M Guo, J Nie, W Han. The safety, efficacy, and treatment outcomes of a combination of low-dose decitabine treatment in patients with recurrent ovarian cancer. Oncoimmunology 2017; 6(9): e1323619
https://doi.org/10.1080/2162402X.2017.1323619
|
22 |
A van der Westhuizen, N Knoblauch, MC Graves, R Levy, RE Vilain, NA Bowden. Pilot early phase II study of decitabine and carboplatin in patients with advanced melanoma. Medicine (Baltimore) 2020; 99(25): e20705
https://doi.org/10.1097/MD.0000000000020705
|
23 |
A Stathis, SJ Hotte, EX Chen, HW Hirte, AM Oza, P Moretto, S Webster, A Laughlin, LA Stayner, S McGill, L Wang, WJ Zhang, I Espinoza-Delgado, JL Holleran, MJ Egorin, LL Siu. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res 2011; 17(6): 1582–1590
https://doi.org/10.1158/1078-0432.CCR-10-1893
|
24 |
B Leroy, M Anderson, T Soussi. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014; 35(6): 672–688
https://doi.org/10.1002/humu.22552
|
25 |
F Fang, C Balch, J Schilder, T Breen, S Zhang, C Shen, L Li, C Kulesavage, AJ Snyder, KP Nephew, DE Matei. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010; 116(17): 4043–4053
https://doi.org/10.1002/cncr.25204
|
26 |
J Yu, B Qin, AM Moyer, S Nowsheen, T Liu, S Qin, Y Zhuang, D Liu, SW Lu, KR Kalari, DW Visscher, JA Copland, SA McLaughlin, A Moreno-Aspitia, DW Northfelt, RJ Gray, Z Lou, VJ Suman, R Weinshilboum, JC Boughey, MP Goetz, L Wang. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest 2018; 128(6): 2376–2388
https://doi.org/10.1172/JCI97924
|
27 |
A Stathis, SJ Hotte, EX Chen, HW Hirte, AM Oza, P Moretto, S Webster, A Laughlin, LA Stayner, S McGill, L Wang, WJ Zhang, I Espinoza-Delgado, JL Holleran, MJ Egorin, LL Siu. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Clin Cancer Res 2011; 17(6): 1582–1590
https://doi.org/10.1158/1078-0432.CCR-10-1893
|
28 |
K Patel, J Dickson, S Din, K Macleod, D Jodrell, B Ramsahoye. Targeting of 5-aza-2′-deoxycytidine residues by chromatin-associated DNMT1 induces proteasomal degradation of the free enzyme. Nucleic Acids Res 2010; 38(13): 4313–4324
https://doi.org/10.1093/nar/gkq187
|
29 |
F Creusot, G Acs, JK Christman. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine. J Biol Chem 1982; 257(4): 2041–2048
https://doi.org/10.1016/S0021-9258(19)68144-5
|
30 |
DJ Stewart, JP Issa, R Kurzrock, MI Nunez, J Jelinek, D Hong, Y Oki, Z Guo, S Gupta, II Wistuba. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin Cancer Res 2009; 15(11): 3881–3888
https://doi.org/10.1158/1078-0432.CCR-08-2196
|
31 |
J Yu, B Qin, AM Moyer, S Nowsheen, T Liu, S Qin, Y Zhuang, D Liu, SW Lu, KR Kalari, DW Visscher, JA Copland, SA McLaughlin, A Moreno-Aspitia, DW Northfelt, RJ Gray, Z Lou, VJ Suman, R Weinshilboum, JC Boughey, MP Goetz, L Wang. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest 2018; 128(6): 2376–2388
https://doi.org/10.1172/JCI97924
|
32 |
M Köbel, A Reuss, Bois A du, S Kommoss, F Kommoss, D Gao, SE Kalloger, DG Huntsman, CB Gilks. The biological and clinical value of p53 expression in pelvic high-grade serous carcinomas. J Pathol 2010; 222(2): 191–198
https://doi.org/10.1002/path.2744
|
33 |
A Talhouk, MK McConechy, S Leung, W Yang, A Lum, J Senz, N Boyd, J Pike, M Anglesio, JS Kwon, AN Karnezis, DG Huntsman, CB Gilks, JN McAlpine. Confirmation of ProMisE: a simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017; 123(5): 802–813
https://doi.org/10.1002/cncr.30496
|
34 |
A Talhouk, MK McConechy, S Leung, HH Li-Chang, JS Kwon, N Melnyk, W Yang, J Senz, N Boyd, AN Karnezis, DG Huntsman, CB Gilks, JN McAlpine. A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer 2015; 113(2): 299–310
https://doi.org/10.1038/bjc.2015.190
|
35 |
Genome Atlas Network Cancer. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61–70
https://doi.org/10.1038/nature11412
|
36 |
B Pereira, SF Chin, OM Rueda, HKM Vollan, E Provenzano, HA Bardwell, M Pugh, L Jones, R Russell, SJ Sammut, DWY Tsui, B Liu, SJ Dawson, J Abraham, H Northen, JF Peden, A Mukherjee, G Turashvili, AR Green, S McKinney, A Oloumi, S Shah, N Rosenfeld, L Murphy, DR Bentley, IO Ellis, A Purushotham, SE Pinder, AL Børresen-Dale, HM Earl, PD Pharoah, MT Ross, S Aparicio, C Caldas. Erratum: The somatic mutation profiles of 2433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun 2016; 7(1): 11908
https://doi.org/10.1038/ncomms11479
|
37 |
R Maisano, M Zavettieri, D Azzarello, M Raffaele, M Maisano, M Bottari, M Nardi. Carboplatin and gemcitabine combination in metastatic triple-negative anthracycline- and taxane-pretreated breast cancer patients: a phase II study. J Chemother 2011; 23(1): 40–43
https://doi.org/10.1179/joc.2011.23.1.40
|
38 |
A Tutt, H Tovey, MCU Cheang, S Kernaghan, L Kilburn, P Gazinska, J Owen, J Abraham, S Barrett, P Barrett-Lee, R Brown, S Chan, M Dowsett, JM Flanagan, L Fox, A Grigoriadis, A Gutin, C Harper-Wynne, MQ Hatton, KA Hoadley, J Parikh, P Parker, CM Perou, R Roylance, V Shah, A Shaw, IE Smith, KM Timms, AM Wardley, G Wilson, C Gillett, JS Lanchbury, A Ashworth, N Rahman, M Harries, P Ellis, SE Pinder, JM Bliss. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018; 24(5): 628–637
https://doi.org/10.1038/s41591-018-0009-7
|
39 |
J O’Shaughnessy, L Schwartzberg, MA Danso, KD Miller, HS Rugo, M Neubauer, N Robert, B Hellerstedt, M Saleh, P Richards, JM Specht, DA Yardley, RW Carlson, RS Finn, E Charpentier, I Garcia-Ribas, EP Winer. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 2014; 32(34): 3840–3847
https://doi.org/10.1200/JCO.2014.55.2984
|
40 |
SJ Isakoff, EL Mayer, L He, TA Traina, LA Carey, KJ Krag, HS Rugo, MC Liu, V Stearns, SE Come, KM Timms, AR Hartman, DR Borger, DM Finkelstein, JE Garber, PD Ryan, EP Winer, PE Goss, LW Ellisen. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol 2015; 33(17): 1902–1909
https://doi.org/10.1200/JCO.2014.57.6660
|
41 |
LA Carey, HS Rugo, PK Marcom, EL Mayer, FJ Esteva, CX Ma, MC Liu, AM Storniolo, MF Rimawi, A Forero-Torres, AC Wolff, TJ Hobday, A Ivanova, WK Chiu, M Ferraro, E Burrows, PS Bernard, KA Hoadley, CM Perou, EP Winer. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 2012; 30(21): 2615–2623
https://doi.org/10.1200/JCO.2010.34.5579
|
42 |
J Wu, H Song, Z Wang, M Lu. Three optimized assays for the evaluation of compounds that can rescue p53 mutants. STAR Protoc 2021; 2(3): 100688
https://doi.org/10.1016/j.xpro.2021.100688
|
43 |
JK Christman. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21(35): 5483–5495
https://doi.org/10.1038/sj.onc.1205699
|
44 |
C Stresemann, F Lyko. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008; 123(1): 8–13
https://doi.org/10.1002/ijc.23607
|
45 |
CA Brady, D Jiang, SS Mello, TM Johnson, LA Jarvis, MM Kozak, D Kenzelmann Broz, S Basak, EJ Park, ME McLaughlin, AN Karnezis, LD Attardi. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145(4): 571–583
https://doi.org/10.1016/j.cell.2011.03.035
|
46 |
M Olivier, M Hollstein, P Hainaut. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2(1): a001008
https://doi.org/10.1101/cshperspect.a001008
|
47 |
S Bhattacharya, P Dunn, CG Thomas, B Smith, H Schaefer, J Chen, Z Hu, KA Zalocusky, RD Shankar, SS Shen-Orr, E Thomson, J Wiser, AJ Butte. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 2018; 5(1): 180015
https://doi.org/10.1038/sdata.2018.15
|
48 |
R Colina, M Costa-Mattioli, RJ Dowling, M Jaramillo, LH Tai, CJ Breitbach, Y Martineau, O Larsson, L Rong, YV Svitkin, AP Makrigiannis, JC Bell, N Sonenberg. Translational control of the innate immune response through IRF-7. Nature 2008; 452(7185): 323–328
https://doi.org/10.1038/nature06730
|
49 |
M Sgarbanti, G Marsili, AL Remoli, R Orsatti, A Battistini. IRF-7: new role in the regulation of genes involved in adaptive immunity. Ann N Y Acad Sci 2007; 1095(1): 325–333
https://doi.org/10.1196/annals.1397.036
|
50 |
R Lu, WC Au, WS Yeow, N Hageman, PM Pitha. Regulation of the promoter activity of interferon regulatory factor-7 gene. Activation by interferon snd silencing by hypermethylation. J Biol Chem 2000; 275(41): 31805–31812
https://doi.org/10.1074/jbc.M005288200
|
51 |
J Yu, HY Zhang, ZZ Ma, W Lu, YF Wang, JD Zhu. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Cell Res 2003; 13(5): 319–333
https://doi.org/10.1038/sj.cr.7290177
|
52 |
Q Li, L Tang, PC Roberts, JM Kraniak, AL Fridman, OI Kulaeva, OS Tehrani, MA Tainsky. Interferon regulatory factors IRF5 and IRF7 inhibit growth and induce senescence in immortal Li-Fraumeni fibroblasts. Mol Cancer Res 2008; 6(5): 770–784
https://doi.org/10.1158/1541-7786.MCR-07-0114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|