|
|
A distinct “repair” role of regulatory T cells in fracture healing |
Tingting Wu1,2, Lulu Wang1,2, Chen Jian1,2, Zhenhe Zhang3, Ruiyin Zeng3, Bobin Mi3, Guohui Liu3, Yu Zhang1,2, Chen Shi1,2( ) |
1. Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China 2. Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China 3. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China |
|
|
Abstract Regulatory T cells (Tregs) suppress immune responses and inflammation. Here, we described the distinct nonimmunological role of Tregs in fracture healing. The recruitment from the circulation pool, peripheral induction, and local expansion rapidly enriched Tregs in the injured bone. The Tregs in the injured bone displayed superiority in direct osteogenesis over Tregs from lymphoid organs. Punctual depletion of Tregs compromised the fracture healing process, which leads to increased bone nonunion. In addition, bone callus Tregs showed unique T-cell receptor repertoires. Amphiregulin was the most overexpressed protein in bone callus Tregs, and it can directly facilitate the proliferation and differentiation of osteogenic precursor cells by activation of phosphatidylinositol 3-kinase/protein kinase B signaling pathways. The results of loss- and gain-function studies further evidenced that amphiregulin can reverse the compromised healing caused by Treg dysfunction. Tregs also enriched in patient bone callus and amphiregulin can promote the osteogenesis of human pre-osteoblastic cells. Our findings indicate the distinct and nonredundant role of Tregs in fracture healing, which will provide a new therapeutic target and strategy in the clinical treatment of fractures.
|
Keywords
regulatory T cells
fracture healing
amphiregulin
non-union
osteogenesis
|
Corresponding Author(s):
Chen Shi
|
Just Accepted Date: 28 November 2023
Online First Date: 15 March 2024
Issue Date: 17 June 2024
|
|
1 |
SZ Josefowicz, LF Lu, AY Rudensky. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30(1): 531–564
https://doi.org/10.1146/annurev.immunol.25.022106.141623
|
2 |
H Lei, K Schmidt-Bleek, A Dienelt, P Reinke, HD Volk. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol 2015; 6: 184
https://doi.org/10.3389/fphar.2015.00184
|
3 |
DM Rothstein, G Camirand. New insights into the mechanisms of Treg function. Curr Opin Organ Transplant 2015; 20(4): 376–384
https://doi.org/10.1097/MOT.0000000000000212
|
4 |
CT Luo, MO Li. Transcriptional control of regulatory T cell development and function. Trends Immunol 2013; 34(11): 531–539
https://doi.org/10.1016/j.it.2013.08.003
|
5 |
G Roncador, PJ Brown, L Maestre, S Hue, JL Martínez-Torrecuadrada, KL Ling, S Pratap, C Toms, BC Fox, V Cerundolo, F Powrie, AH Banham. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 2005; 35(6): 1681–1691
https://doi.org/10.1002/eji.200526189
|
6 |
M Kanamori, H Nakatsukasa, M Okada, Q Lu, A Yoshimura. Induced regulatory T cells: their development, stability, and applications. Trends Immunol 2016; 37(11): 803–811
https://doi.org/10.1016/j.it.2016.08.012
|
7 |
D Burzyn, C Benoist, D Mathis. Regulatory T cells in nonlymphoid tissues. Nat Immunol 2013; 14(10): 1007–1013
https://doi.org/10.1038/ni.2683
|
8 |
M Feuerer, L Herrero, D Cipolletta, A Naaz, J Wong, A Nayer, J Lee, AB Goldfine, C Benoist, S Shoelson, D Mathis. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15(8): 930–939
https://doi.org/10.1038/nm.2002
|
9 |
D Cipolletta, M Feuerer, A Li, N Kamei, J Lee, SE Shoelson, C Benoist, D Mathis. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012; 486(7404): 549–553
https://doi.org/10.1038/nature11132
|
10 |
D Burzyn, W Kuswanto, D Kolodin, JL Shadrach, M Cerletti, Y Jang, E Sefik, TG Tan, AJ Wagers, C Benoist, D Mathis. A special population of regulatory T cells potentiates muscle repair. Cell 2013; 155(6): 1282–1295
https://doi.org/10.1016/j.cell.2013.10.054
|
11 |
N Arpaia, JA Green, B Moltedo, A Arvey, S Hemmers, S Yuan, PM Treuting, AY Rudensky. A distinct function of regulatory T Cells in tissue protection. Cell 2015; 162(5): 1078–1089
https://doi.org/10.1016/j.cell.2015.08.021
|
12 |
N Xia, Y Lu, M Gu, N Li, M Liu, J Jiao, Z Zhu, J Li, D Li, T Tang, B Lv, S Nie, M Zhang, M Liao, Y Liao, X Yang, X Cheng. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 2020; 142(20): 1956–1973
https://doi.org/10.1161/CIRCULATIONAHA.120.046789
|
13 |
D Deliyanti, DM Talia, T Zhu, MJ Maxwell, A Agrotis, JR Jerome, EM Hargreaves, S Gerondakis, ML Hibbs, F Mackay, JL Wilkinson-Berka. Foxp3+ Tregs are recruited to the retina to repair pathological angiogenesis. Nat Commun 2017; 8(1): 748
https://doi.org/10.1038/s41467-017-00751-w
|
14 |
N Ali, B Zirak, RS Rodriguez, ML Pauli, HA Truong, K Lai, R Ahn, K Corbin, MM Lowe, TC Scharschmidt, K Taravati, MR Tan, RR Ricardo-Gonzalez, A Nosbaum, M Bertolini, W Liao, FO Nestle, R Paus, G Cotsarelis, AK Abbas, MD Rosenblum. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017; 169(6): 1119–1129.e11
https://doi.org/10.1016/j.cell.2017.05.002
|
15 |
GS Baht, L Vi, BA Alman. The role of the immune cells in fracture healing. Curr Osteoporos Rep 2018; 16(2): 138–145
https://doi.org/10.1007/s11914-018-0423-2
|
16 |
B Wildemann, A Ignatius, F Leung, LA Taitsman, RM Smith, R Pesántez, MJ Stoddart, RG Richards, JB Jupiter. Non-union bone fractures. Nat Rev Dis Primers 2021; 7(1): 57
https://doi.org/10.1038/s41572-021-00289-8
|
17 |
R Zura, Z Xiong, T Einhorn, JT Watson, RF Ostrum, MJ Prayson, GJ Della Rocca, S Mehta, T McKinley, Z Wang, RG Steen. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 2016; 151(11): e162775
https://doi.org/10.1001/jamasurg.2016.2775
|
18 |
JE Horton, LG Raisz, HA Simmons, JJ Oppenheim, SE Mergenhagen. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 1972; 177(4051): 793–795
https://doi.org/10.1126/science.177.4051.793
|
19 |
JR Arron, Y Choi. Bone versus immune system. Nature 2000; 408(6812): 535–536
https://doi.org/10.1038/35046196
|
20 |
K Wing, Y Onishi, P Prieto-Martin, T Yamaguchi, M Miyara, Z Fehervari, T Nomura, S Sakaguchi. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322(5899): 271–275
https://doi.org/10.1126/science.1160062
|
21 |
A Bozec, MM Zaiss. T regulatory cells in bone remodelling. Curr Osteoporos Rep 2017; 15(3): 121–125
https://doi.org/10.1007/s11914-017-0356-1
|
22 |
E Cano-Gamez, B Soskic, TI Roumeliotis, E So, DJ Smyth, M Baldrighi, D Willé, N Nakic, J Esparza-Gordillo, CGC Larminie, PG Bronson, DF Tough, WC Rowan, JS Choudhary, G Trynka. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat Commun 2020; 11(1): 1801
https://doi.org/10.1038/s41467-020-15543-y
|
23 |
A Butler, P Hoffman, P Smibert, E Papalexi, R Satija. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
https://doi.org/10.1038/nbt.4096
|
24 |
GX Zheng, JM Terry, P Belgrader, P Ryvkin, ZW Bent, R Wilson, SB Ziraldo, TD Wheeler, GP McDermott, J Zhu, MT Gregory, J Shuga, L Montesclaros, JG Underwood, DA Masquelier, SY Nishimura, M Schnall-Levin, PW Wyatt, CM Hindson, R Bharadwaj, A Wong, KD Ness, LW Beppu, HJ Deeg, C McFarland, KR Loeb, WJ Valente, NG Ericson, EA Stevens, JP Radich, TS Mikkelsen, BJ Hindson, JH Bielas. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049
https://doi.org/10.1038/ncomms14049
|
25 |
X Fan, J Dong, S Zhong, Y Wei, Q Wu, L Yan, J Yong, L Sun, X Wang, Y Zhao, W Wang, J Yan, X Wang, J Qiao, F Tang. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res 2018; 28(7): 730–745
https://doi.org/10.1038/s41422-018-0053-3
|
26 |
J Li, J Tan, MM Martino, KO Lui. Regulatory T-cells: potential regulator of tissue repair and regeneration. Front Immunol 2018; 9: 585
https://doi.org/10.3389/fimmu.2018.00585
|
27 |
RV Luckheeram, R Zhou, AD Verma, B Xia. CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135
https://doi.org/10.1155/2012/925135
|
28 |
C Zhang, L Li, K Feng, D Fan, W Xue, J Lu. ‘Repair’ Treg cells in tissue injury. Cell Physiol Biochem 2017; 43(6): 2155–2169
https://doi.org/10.1159/000484295
|
29 |
A Saxena, M Dobaczewski, V Rai, Z Haque, W Chen, N Li, NG Frangogiannis. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol 2014; 307(8): H1233–H1242
https://doi.org/10.1152/ajpheart.00328.2014
|
30 |
GT Kunkel, M Maceyka, S Milstien, S Spiegel. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 2013; 12(9): 688–702
https://doi.org/10.1038/nrd4099
|
31 |
M Yadav, C Louvet, D Davini, JM Gardner, M Martinez-Llordella, S Bailey-Bucktrout, BA Anthony, FM Sverdrup, R Head, DJ Kuster, P Ruminski, D Weiss, D Von Schack, JA Bluestone. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012; 209(10): 1713–1722, s1–19
https://doi.org/10.1084/jem.20120822
|
32 |
AM Thornton, PE Korty, DQ Tran, EA Wohlfert, PE Murray, Y Belkaid, EM Shevach. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010; 184(7): 3433–3441
https://doi.org/10.4049/jimmunol.0904028
|
33 |
E Nikolouli, Y Elfaki, S Herppich, C Schelmbauer, M Delacher, C Falk, IA Mufazalov, A Waisman, M Feuerer, J Huehn. Recirculating IL-1R2+ Tregs fine-tune intrathymic Treg development under inflammatory conditions. Cell Mol Immunol 2021; 18(1): 182–193
https://doi.org/10.1038/s41423-019-0352-8
|
34 |
S Cuylen, C Blaukopf, AZ Politi, T Müller-Reichert, B Neumann, I Poser, J Ellenberg, AA Hyman, DW Gerlich. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 2016; 535(7611): 308–312
https://doi.org/10.1038/nature18610
|
35 |
C Zeng, F Pan, LA Jones, MM Lim, EA Griffin, YI Sheline, MA Mintun, DM Holtzman, RH Mach. Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res 2010; 1319: 21–32
https://doi.org/10.1016/j.brainres.2009.12.092
|
36 |
L Yin, D Huang, X Liu, Y Wang, J Liu, F Liu, B Yu. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther 2017; 8(1): 224
https://doi.org/10.1186/s13287-017-0676-1
|
37 |
S Suvas, AK Azkur, BS Kim, U Kumaraguru, BT Rouse. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 2004; 172(7): 4123–4132
https://doi.org/10.4049/jimmunol.172.7.4123
|
38 |
C Shi, T Wu, Y He, Y Zhang, D Fu. Recent advances in bone-targeted therapy. Pharmacol Ther 2020; 207: 107473
https://doi.org/10.1016/j.pharmthera.2020.107473
|
39 |
Muris Consortium; Overall coordination; Logistical coordination; Organ collection Tabula, Library preparation processing;, Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators sequencing;. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018; 562(7727): 367–372
https://doi.org/10.1038/s41586-018-0590-4
|
40 |
J Li, Z Wang, J Wang, Q Guo, Y Fu, Z Dai, M Wang, Y Bai, X Liu, PR Cooper, J Wu, W He. Amphiregulin regulates odontogenic differentiation of dental pulp stem cells by activation of mitogen-activated protein kinase and the phosphatidylinositol 3-kinase signaling pathways. Stem Cell Res Ther 2022; 13(1): 304
https://doi.org/10.1186/s13287-022-02971-4
|
41 |
T Wang, X Zhang, DD Bikle. Osteogenic differentiation of periosteal cells during fracture healing. J Cell Physiol 2017; 232(5): 913–921
https://doi.org/10.1002/jcp.25641
|
42 |
C Yang, X Liu, K Zhao, Y Zhu, B Hu, Y Zhou, M Wang, Y Wu, C Zhang, J Xu, Y Ning, D Zou. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther 2019; 10(1): 65
https://doi.org/10.1186/s13287-019-1168-2
|
43 |
T Komori. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci 2020; 21(20): 7513
https://doi.org/10.3390/ijms21207513
|
44 |
S Vimalraj. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene 2020; 754: 144855
https://doi.org/10.1016/j.gene.2020.144855
|
45 |
T Furuta, S Miyaki, H Ishitobi, T Ogura, Y Kato, N Kamei, K Miyado, Y Higashi, M Ochi. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med 2016; 5(12): 1620–1630
https://doi.org/10.5966/sctm.2015-0285
|
46 |
L Claes, S Recknagel, A Ignatius. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012; 8(3): 133–143
https://doi.org/10.1038/nrrheum.2012.1
|
47 |
P Nowak-Sliwinska, K Alitalo, E Allen, A Anisimov, AC Aplin, R Auerbach, HG Augustin, DO Bates, Beijnum JR van, RHF Bender, G Bergers, A Bikfalvi, J Bischoff, BC Böck, PC Brooks, F Bussolino, B Cakir, P Carmeliet, D Castranova, AM Cimpean, O Cleaver, G Coukos, GE Davis, Palma M De, A Dimberg, RPM Dings, V Djonov, AC Dudley, NP Dufton, SM Fendt, N Ferrara, M Fruttiger, D Fukumura, B Ghesquière, Y Gong, RJ Griffin, AL Harris, CCW Hughes, NW Hultgren, ML Iruela-Arispe, M Irving, RK Jain, R Kalluri, J Kalucka, RS Kerbel, J Kitajewski, I Klaassen, HK Kleinmann, P Koolwijk, E Kuczynski, BR Kwak, K Marien, JM Melero-Martin, LL Munn, RF Nicosia, A Noel, J Nurro, AK Olsson, TV Petrova, K Pietras, R Pili, JW Pollard, MJ Post, PHA Quax, GA Rabinovich, M Raica, AM Randi, D Ribatti, C Ruegg, RO Schlingemann, S Schulte-Merker, LEH Smith, JW Song, SA Stacker, J Stalin, AN Stratman, de Velde M Van, Hinsbergh VWM van, PB Vermeulen, J Waltenberger, BM Weinstein, H Xin, B Yetkin-Arik, S Yla-Herttuala, MC Yoder, AW Griffioen. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21(3): 425–532
https://doi.org/10.1007/s10456-018-9613-x
|
48 |
NJ Protopsaltis, W Liang, E Nudleman, N Ferrara. Interleukin-22 promotes tumor angiogenesis. Angiogenesis 2019; 22(2): 311–323
https://doi.org/10.1007/s10456-018-9658-x
|
49 |
L Zhang, G Jiao, S Ren, X Zhang, C Li, W Wu, H Wang, H Liu, H Zhou, Y Chen. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther 2020; 11(1): 38
https://doi.org/10.1186/s13287-020-1562-9
|
50 |
D Taylor. Fracture and repair of bone: a multiscale problem. J Mater Sci 2007; 42(21): 8911–8918
https://doi.org/10.1007/s10853-007-1698-3
|
51 |
SAT Mitchell, LA Majuta, PW Mantyh. New insights in understanding and treating bone fracture pain. Curr Osteoporos Rep 2018; 16(4): 325–332
https://doi.org/10.1007/s11914-018-0446-8
|
52 |
D Holmes. Non-union bone fracture: a quicker fix. Nature 2017; 550(7677): S193
https://doi.org/10.1038/550S193a
|
53 |
I Marzi. Focus on non-union of fractures. Eur J Trauma Emerg Surg 2019; 45(1): 1–2
https://doi.org/10.1007/s00068-019-01079-4
|
54 |
C Schlundt, CH Bucher, S Tsitsilonis, H Schell, GN Duda, K Schmidt-Bleek. Clinical and research approaches to treat non-union fracture. Curr Osteoporos Rep 2018; 16(2): 155–168
https://doi.org/10.1007/s11914-018-0432-1
|
55 |
TC Dülgeroglu, H Metineren. Evaluation of the effect of platelet-rich fibrin on long bone healing: an experimental rat model. Orthopedics 2017; 40(3): e479–e484
https://doi.org/10.3928/01477447-20170308-02
|
56 |
OW Bastian, L Koenderman, J Alblas, LP Leenen, TJ Blokhuis. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury. Clin Immunol 2016; 164: 78–84
https://doi.org/10.1016/j.clim.2016.02.001
|
57 |
M Timlin, D Toomey, C Condron, C Power, J Street, P Murray, D Bouchier-Hayes. Fracture hematoma is a potent proinflammatory mediator of neutrophil function. J Trauma 2005; 58(6): 1223–1229
https://doi.org/10.1097/01.TA.0000169866.88781.F1
|
58 |
EA Ross, A Devitt, JR Johnson. Macrophages: the good, the bad, and the gluttony. Front Immunol 2021; 12: 708186
https://doi.org/10.3389/fimmu.2021.708186
|
59 |
S Arora, K Dev, B Agarwal, P Das, MA Syed. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology 2018; 223(4–5): 383–396
https://doi.org/10.1016/j.imbio.2017.11.001
|
60 |
I Könnecke, A Serra, Khassawna T El, C Schlundt, H Schell, A Hauser, A Ellinghaus, HD Volk, A Radbruch, GN Duda, K Schmidt-Bleek. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 2014; 64: 155–165
https://doi.org/10.1016/j.bone.2014.03.052
|
61 |
CY Luo, L Wang, C Sun, DJ Li. Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 2011; 8(1): 50–58
https://doi.org/10.1038/cmi.2010.54
|
62 |
H Kelchtermans, L Geboes, T Mitera, D Huskens, G Leclercq, P Matthys. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis 2009; 68(5): 744–750
https://doi.org/10.1136/ard.2007.086066
|
63 |
F Xu, C Guanghao, Y Liang, W Jun, W Wei, H Baorong. Treg-promoted new bone formation through suppressing TH17 by secreting Interleukin-10 in ankylosing spondylitis. Spine 2019; 44(23): E1349–E1355
https://doi.org/10.1097/BRS.0000000000003169
|
64 |
L Wang, DL Simons, X Lu, TY Tu, S Solomon, R Wang, A Rosario, C Avalos, D Schmolze, J Yim, J Waisman, PP Lee. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer. Nat Immunol 2019; 20(9): 1220–1230
https://doi.org/10.1038/s41590-019-0429-7
|
65 |
FR D’Alessio, K Tsushima, NR Aggarwal, EE West, MH Willett, MF Britos, MR Pipeling, RG Brower, RM Tuder, JF McDyer, LS King. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 2009; 119(10): 2898–2913
https://doi.org/10.1172/JCI36498
|
66 |
B Mahata, X Zhang, AA Kolodziejczyk, V Proserpio, L Haim-Vilmovsky, AE Taylor, D Hebenstreit, FA Dingler, V Moignard, B Göttgens, W Arlt, AN McKenzie, SA Teichmann. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 2014; 7(4): 1130–1142
https://doi.org/10.1016/j.celrep.2014.04.011
|
67 |
DE Rothem, L Rothem, A Dahan, R Eliakim, M Soudry. Nicotinic modulation of gene expression in osteoblast cells, MG-63. Bone 2011; 48(4): 903–909
https://doi.org/10.1016/j.bone.2010.12.007
|
68 |
DMW Zaiss, WC Gause, LC Osborne, D Artis. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42(2): 216–226
https://doi.org/10.1016/j.immuni.2015.01.020
|
69 |
K Tamama, H Kawasaki, A Wells. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol 2010; 2010: 795385
https://doi.org/10.1155/2010/795385
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|