Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2023, Vol. 17 Issue (6) : 1135-1169    https://doi.org/10.1007/s11684-023-1050-6
Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges
Zhichen Jiang1,2, Xiaohao Zheng3,4, Min Li5(), Mingyang Liu1()
1. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
2. Department of General Surgery, Division of Gastroenterology and Pancreas, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
3. Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
4. Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
5. Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
 Download: PDF(3106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pancreatic cancer, notorious for its late diagnosis and aggressive progression, poses a substantial challenge owing to scarce treatment alternatives. This review endeavors to furnish a holistic insight into pancreatic cancer, encompassing its epidemiology, genomic characterization, risk factors, diagnosis, therapeutic strategies, and treatment resistance mechanisms. We delve into identifying risk factors, including genetic predisposition and environmental exposures, and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer. Additionally, we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy. We also dissect the primary mechanisms underlying treatment resistance in this malignancy, illustrating the latest therapeutic options and advancements in the field. Conclusively, we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.

Keywords pancreatic cancer      cancer screening      single cell      molecular alterations      precancerous lesion      therapy resistance     
Corresponding Author(s): Min Li,Mingyang Liu   
Just Accepted Date: 07 December 2023   Online First Date: 22 December 2023    Issue Date: 06 February 2024
 Cite this article:   
Zhichen Jiang,Xiaohao Zheng,Min Li, et al. Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges[J]. Front. Med., 2023, 17(6): 1135-1169.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1050-6
https://academic.hep.com.cn/fmd/EN/Y2023/V17/I6/1135
DiseaseSourceTechnologiesTitleTypePublication date
Pancreatic cancerMoncadaSpatial transcriptomics teamIntegrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomasRNA2020
Pancreatic cancer miceSun10x VisiumHypoxic microenvironment induced spatial transcriptome changes in pancreatic cancerRNA2021
Pancreatic cancerZhou10x VisiumSpatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancerRNA2022
Pancreatic cancerHwangDSPSingle-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatmentRNA2022
Pancreatic cancerBarkley10x VisiumCancer cell states recur across tumor types and form specific interactions with the tumor microenvironmentRNA2022
IPMNSans10x VisiumSpatial transcriptomics of intraductal papillary mucinous neoplasms of the pancreas identifies NKX6-2 expression as a driver of gastric differentiation and indolent biological potentialRNAbiorxiv
IPMNAgostini10x Visium, GeoMxTranscriptomic dissection of intraepithelial papillary mucinous neoplasms progression by spatial technologies identified novel markers of pancreatic carcinogenesisRNAbiorxiv
PanINBell10x VisiumPanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integrationRNAbiorxiv
Tab.1  Summary of select high-throughput spatial transcriptomics of pancreatic ductal adenocarcinoma/ precancerous lesion
StudyTechniquesSubtypesNew subtype
WaddellWGSStable, locally rearranged, scattered and unstableYes
MoffittBulk RNAClassical, basal-likeYes
RashidBulk RNANo new; PurIST classifers for classical, basal-likeNo
CollissonBulk RNAClassical, quasi-mesenchymal, and exocrine-likeYes
BaileyBulk RNASquamous, pancreatic progenitor, immunogenic, ADEXYes
PuleoBulk RNAPure basal like, stroma activated, desmoplastic, pure classical, and immune classicalYes
Chan-Seng-YueBulk RNABasal-like A, basal-like B, hybrid, classical A, classical BYes
RaphaelMultiomicsNo new; high purity samples into basal-like/squamous or classical/progenitorNo
CaoMultiomicsAll into 4 subtypes; high purity into basal-like or classicalNo
HwangSingle cell RNA-seq7 malignant lineages: NRP, SQM, MES, ACN, NEN, BSL, CLS, cell state (cycling-S, cycling-G2/M, MYC, interferon, TNF-NFκB, ribosomal and adhesive pathways)Yes
RaghavanSingle cell RNA-seqscBasal, IC, and scClassicalYes
Tab.2  Molecular subtypes of pancreatic ductal adenocarcinoma
Fig.1  Patterns and common mutated genes of precursor lesions of pancreatic cancer. Abbrevations: ADM, acinar-to-ductal metaplasia; PanIN, pancreatic intraepithelial neoplasia; MCN, mucinous cystic neoplasm; IPMN, intraductal papillary mucinous neoplasia; IOPN, intraductal oncocytic papillary neoplasm; ITPN, intraductal tubulopapillary neoplasm.
SourceTypeModelSpecifictySensitivityAUCReferences
BloodOligosaccharidesTRA0.960.65NA164
cfDNAcfDNA0.80.790.9150
cfDNA + CA19-9 + THBS20.930.920.94150
mRNAGPC-1111154
tsRNAtRF-Pro-AGG-0040.7250.9880.9157
tRF-Leu-CAG-0020.640.7720.78157
tRF-Pro-AGG-004 + tRF-Leu-CAG-0020.9640.850.94157
DNAMethylated DNA markersNANA0.9159
Methylated DNA markers + CA19-90.920.920.97159
ProteinA multi-marker panel containing 14 proteins0.9590.9040.977160
A multi-marker panel containing 14 proteins + CA19-90.9830.9270.989160
i-Metabolic (12 analytes + CA19-9)0.8770.9080.972161
m-Metabolic (4 analytes + CA19-9) with machine learning–aided algorithm0.8960.7730.904161
Asprosin0.9240.9570.987162
LipidLipidomic profiling > 0.94 > 0.940.983163
Lipidomic profiling + CA19-9NANA0.989163
UrineProtein3 protein biomarkers (LYVE1 + REG1B + TFF1)0.9190.7250.936164
3 protein biomarkers (LYVE1 + REG1B + TFF1) + CA19-9NANA0.992164
Pancreatic juicemiRNAmiR-16 + miR-21 + miR-25 + miR-155 + miR-210 + CA19-984.281.50.91166
FaecalMicrobiotaFaecal metagenomic classifiers based on a set of 27 microbial speciesNANA0.84167
Faecal metagenomic classifiers based on a set of 27 microbial species + CA19-9NANA0.94167
Microbiota30 gut microbiomesNANA0.78–0.82155
30 gut microbiomes + CA19-9NANA0.81–0.97155
Tab.3  Various pancreatic cancer biomarkers and diagnostic efficacy
Fig.2  Formation of chemoresistance in pancreatic cancer. The pancreatic cancer tumor microenvironment is involved in the formation of chemoresistance in pancreatic cancer: (1) The massive accumulation of extracellular matrix in pancreatic cancer TME causes an increase in the IFP, forming a high-pressure barrier outside the cells. This not only inhibits drug penetration but also leads to tumor cells being in ischemic, hypoxic and acidic conditions, prompting metabolic reprogramming of tumor cells, which in turn facilitates the development of chemoresistance; (2) The emergence of crosstalk between multiple cells in pancreatic cancer TME promotes the development of chemoresistance in pancreatic cancer. Alterations in the mechanisms of pancreatic cancer cells themselves are involved in the development of chemoresistance in pancreatic cancer: (1) lncRNAs, circRNAs, and miRNAs are involved in chemoresistance related to pancreatic cancer; (2) CSCs, EMT, and epigenetic changes are involved in chemoresistance in pancreatic cancer. Abbrevations: IFP, interstitial fluid pressure; CSCs, cancer stem cells; EMT, epithelial-mesenchymal transition; TME, tumor microenvironment; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; miRNAs, microRNAs; GEM, gemcitabine.
Fig.3  The formation of immunotherapy resistance in pancreatic cancer. (1) Pancreatic cancer cells themselves exist with low immunogenicity and TMBs. (2) There exists a high-pressure barrier around tumor cells due to the accumulation of large amounts of extracellular matrix. (3) The presence of crosstalk between multiple cells (tumor cells, CAF, immune cells) in the TME promotes the formation of a tumor immunosuppressive microenvironment. Abbrevations: CAFs, cancer-associated fibroblasts; TMB, tumor mutational burden; GM-CSF, granulocyte-macrophage colony-stimulating factor; APCs, antigen-presenting cells; MDSCs, myeloid-derived suppressor cells; CTL, cytotoxic T lymphocyte; TAMs, tumor-associated macrophages; Tregs, regulatory T cells; PDAC, pancreatic ductal adenocarcinoma; ECM, extracellular matrix; M-CSF, macrophage colony-stimulating factor; CCL2, chemokine (C-C motif) ligand 2; CCR2, C-C chemokine receptor type 2; CXCL1, C-X-C motif chemokine ligand 1.
ThemeTargetIncluded populationApproachTimeEffectivenessDOIConclusion
Gem-based clinical trialsNAAdvanced PC patientsGEM+5-FU2002OS: 6.7 Ms; PFS: 2.2 Ms10.1200/JCO.2002.11.149(1) GEM-based chemotherapy can bring survival outcomes to patients with advanced PC and patients with operable PC; (2) FOLFIRINOX can bring more survival benefits than GEM, but FOLFIRINOX is more demanding for patients; (3) GEM can improve the efficacy of 5-FU-based adjuvant chemoradiotherapy, and radiotherapy can improve the therapeutic effect of GEM
GEMOS: 5.4 Ms; PFS: 2.2 Ms
Advanced PC patientspemetrexed+GEM2005OS: 6.2 Ms; PFS: 3.9 Ms10.1093/annonc/mdi309
GEMOS: 6.3 Ms; PFS: 3.3 Ms
Patients with complete surgical resection of PCPostoperative: GEM2007MDFS: 13.4 Ms; DFS at 3 years:23.5%; DFS at 5 years:16.5%; during a median follow-up of 53 Ms, 74% had relapsed10.1001/jama.297.3.267
Postoperative: untreatedMDFS: 6.9 Ms; DFS at 3 years: 7.5%; DFS at 5 years: 5.5%; during a median follow-up of 53 Ms, 92% had relapsed
Patients with locally advanced or metastatic PCPostoperative: GEM+5-FU+radiotherapy2008OS: 20.5 Ms; 3-year survival: 31%10.1001/jama.299.9.1019
Postoperative: 5-FU+radiotherapyOS: 16.9 Ms; 3-year survival: 22%
Patients with locally advanced or metastatic PCGEM2010OS: 8.3 Ms; PFS 3.9 Ms; ORR: 10.1%; CB: 23.0%10.1200/JCO.2009.25.4433
GEM+cisplatinOS: 7.2 Ms; PFS 3.8 Ms; ORR: 12.9%; CB:15.1%
Patients with inoperable PCEnzyme-therapy2010OS: 14 Ms; 1-year survival: 56%10.1200/JCO.2009.22.8429
GEM-based chemotherapyOS: 4.3 Ms; 1-year survival: 16%
Patients with metastatic PCFOLFIRINOX2011OS: 11.1 Ms; PFS: 6.4 Ms10.1056/NEJMoa1011923
GEMOS: 6.8 Ms; PFS: 3.3 Ms
Patients with unresectable PCRadiotherapy+GEM2011OS: 9.2 Ms10.1200/JCO.2011.34.8904
GEMOS: 11.1 Ms
Patients with complete surgical resection of PCGEM2013MDFS: 13.4 Ms; 5-year survival: 20.7%; 10-year survival: 12.2%10.1001/jama.2013.279201
UntreatedMDFS: 6.7 Ms; 5-year survival: 10.4%; 10-year survival: 7%
Patients with surgical resection of PCModified-FOLFIRINOX2018MDFS :21.6 Ms; OS: 54.4 Ms10.1056/NEJMoa1809775
GEMMDFS: 12.8 Ms; OS: 35 Ms
Targeted therapy related clinical trialsLOX and TBXASAdvanced PC patientsCV650420001-year survival: 25%.10.1023/a:1008303715515Most of the current clinical trials of targeted therapy are unsuccessful. Even a few of them have effects, but when they enter phase III clinical trials, they cannot achieve ideal results
Matrix metalloproteinasesUnresectable PC patientsMarimastat2001OS: 125 Ds; 1-year survival: 20%10.1200/JCO.2001.19.15.3447
Thymidylate synthaseAdvanced PC patientsGEM+Tomudex2003OS: 185 Ds10.1093/annonc/mdg150
FTaseAdvanced PC patientsR1157772003PFS: 4.9 Ws; OS: 19.7 Ws10.1200/JCO.2003.08.040
mTOR pathwayPatients with gemcitabine- refractory, metastatic PCRAD001 (everolimus)2009PFS: 1.8 Ms; OS: 4.5 Ms10.1200/JCO.2008.18.9514
EGFRPatients with R0- or R1-PCGEM+cetuximab2013OS: 22.4 Ms; DFS: 10.0 Ms10.1093/annonc/mdt270
IGF1R pathwayPatients with previously untreated metastatic PCGEM2015OS: 7.2 Ms10.1093/annonc/mdv027
Ganitumab+GEMOS: 7.0 Ms
The MEK and PI3K/AKT pathwaysPatients with gemcitabine-refractory, metastatic PCSelumetinib+MK-22062017OS: 3.9 Ms; PFS: 1.9 Ms10.1001/jamaoncol.2016.5383
mFOLFOX (oxaliplatin plus fluorouracil)OS: 6.7 Ms; PFS: 2 Ms
Src kinasePatients with locally advanced, non-metastatic PCGEM+dasatinib2017OS: 375 Ds; PFS: 167 Ds10.1093/annonc/mdw607
GEMOS: 393 Ds; PFS: 166 Ds
EGFRUntreated, unresectable, advanced/metastatic PC patientsGEM+nimotuzumab2017OS: 8.6 Ms; PFS: 5.1 Ms10.1093/annonc/mdx343
GEMOS: 6.0 Ms; PFS: 3.4 Ms
The EGFR tyrosine kinasePatients with resectable PDAC post-R0 resectionGEM+erlotinib2017OS: 24.5 Ms; DFS: 11.4 Ms10.1200/JCO.2017.72.6463
GEMOS: 26.5 Ms; DFS: 11.4 Ms
Wee1 kinaseNewly diagnosed, locally advanced PC patientsAZD1775 (adavosertib)+GEM+radiation2019OS: 21.7 Ms; DFS: 9.4 Ms10.1200/JCO.19.00730
FTaseAdvanced PC patientsTipifarnib+GEM2004OS: 193 Ds; PFS: 112 Ds10.1200/JCO.2004.10.112
GEMOS: 182 Ds; PFS: 108 Ds
Ras-dependent signaling and angiogenic pathwaysAdvanced PC patientsGEM+sorafenib2012OS: 8 Ms; PFS: 3.8 Ms; 6-month PFS: 33%10.1093/annonc/ mds135
GEMOS: 9.2 Ms; PFS: 5.7 Ms; 6-month PFS: 48%
JAK/STAT pathwayPatients with gemcitabine-refractory, metastatic PCRuxolitinib+capecitabine2015OS: 4.5 Ms10.1200/JCO.2015.61.4578
CapecitabineOS: 4.3 Ms
SHHPC patients not suitable for curative treatment with no prior metastatic therapyVismodegib+GEM2015OS: 6.9 Ms; PFS: 4.0 Ms10.1200/JCO.2015.62.8719
GEMOS: 6.1 Ms; PFS: 2.5 Ms
VEGF-AAdvanced PC patientsGEM+bevacizumab2010OS: 5.8 Ms10.1200/JCO.2010.28.1386
GEMOS: 5.9 Ms
Tab.4  Clinical trials of treatments for PC
Fig.4  Timeline of pancreatic cancer progression. Abbrevations: PC, ancreatic cancer; AI, artificial intelligence; ADM, acinar-to-ductal metaplasia; PanIN, pancreatic intraductal neoplasias; EMT, epithelial-mesenchymal transition.
1 L Rahib, MR Wehner, LM Matrisian, KT Nead. Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open 2021; 4(4): e214708
https://doi.org/10.1001/jamanetworkopen.2021.4708
2 RL Siegel, KD Miller, HE Fuchs, A Jemal. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7–33
https://doi.org/10.3322/caac.21654
3 JD Mizrahi, R Surana, JW Valle, RT Shroff. Pancreatic cancer. Lancet 2020; 395(10242): 2008–2020
https://doi.org/10.1016/S0140-6736(20)30974-0
4 W Park, A Chawla, EM O’Reilly. Pancreatic cancer: a review. JAMA 2021; 326(9): 851–862
https://doi.org/10.1001/jama.2021.13027
5 J Huang, V Lok, CH Ngai, L Zhang, J Yuan, XQ Lao, K Ng, C Chong, ZJ Zheng, MCS Wong. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology 2021; 160(3): 744–754
https://doi.org/10.1053/j.gastro.2020.10.007
6 P Maisonneuve, AB Lowenfels. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol 2015; 44(1): 186–198
https://doi.org/10.1093/ije/dyu240
7 SM Lynch, A Vrieling, JH Lubin, P Kraft, JB Mendelsohn, P Hartge, F Canzian, E Steplowski, AA Arslan, M Gross, K Helzlsouer, EJ Jacobs, A LaCroix, G Petersen, W Zheng, D Albanes, L Amundadottir, SA Bingham, P Boffetta, MC Boutron-Ruault, SJ Chanock, S Clipp, RN Hoover, K Jacobs, KC Johnson, C Kooperberg, J Luo, C Messina, D Palli, AV Patel, E Riboli, XO Shu, Suarez L Rodriguez, G Thomas, A Tjønneland, GS Tobias, E Tong, D Trichopoulos, J Virtamo, W Ye, K Yu, A Zeleniuch-Jacquette, HB Bueno-de-Mesquita, RZ Stolzenberg-Solomon. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol 2009; 170(4): 403–413
https://doi.org/10.1093/aje/kwp134
8 Y Pang, C Kartsonaki, Y Guo, F Bragg, L Yang, Z Bian, Y Chen, A Iona, IY Millwood, J Lv, C Yu, J Chen, L Li, MV Holmes, Z Chen. Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 2017; 140(8): 1781–1788
https://doi.org/10.1002/ijc.30599
9 MI Canto, JA Almario, RD Schulick, CJ Yeo, A Klein, A Blackford, EJ Shin, A Sanyal, G Yenokyan, AM Lennon, IR Kamel, EK Fishman, C Wolfgang, M Weiss, RH Hruban, M Goggins. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology 2018; 155(3): 740–751.e2
https://doi.org/10.1053/j.gastro.2018.05.035
10 JE Corral, KF Mareth, DL Riegert-Johnson, A Das, MB Wallace. Diagnostic yield from screening asymptomatic individuals at high risk for pancreatic cancer: a meta-analysis of cohort studies. Clin Gastroenterol Hepatol 2019; 17(1): 41–53
https://doi.org/10.1016/j.cgh.2018.04.065
11 C Yuan, A Babic, N Khalaf, JA Nowak, LK Brais, DA Rubinson, K Ng, AJ Aguirre, PV Pandharipande, CS Fuchs, EL Giovannucci, MJ Stampfer, MH Rosenthal, C Sander, P Kraft, BM Wolpin. Diabetes, weight change, and pancreatic cancer risk. JAMA Oncol 2020; 6(10): e202948
https://doi.org/10.1001/jamaoncol.2020.2948
12 ST Chari, CL Leibson, KG Rabe, J Ransom, M de Andrade, GM Petersen. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005; 129(2): 504–511
https://doi.org/10.1016/j.gastro.2005.05.007
13 S Gupta, E Vittinghoff, D Bertenthal, D Corley, H Shen, LC Walter, K McQuaid. New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol 2006; 4(11): 1366–1372
https://doi.org/10.1016/j.cgh.2006.06.024
14 S Munigala, A Singh, A Gelrud, B Agarwal. Predictors for pancreatic cancer diagnosis following new-onset diabetes mellitus. Clin Transl Gastroenterol 2015; 6(10): e118
https://doi.org/10.1038/ctg.2015.44
15 EJ Duell, E Lucenteforte, SH Olson, PM Bracci, D Li, HA Risch, DT Silverman, BT Ji, S Gallinger, EA Holly, EH Fontham, P Maisonneuve, HB Bueno-de-Mesquita, P Ghadirian, RC Kurtz, E Ludwig, H Yu, AB Lowenfels, D Seminara, GM Petersen, C La Vecchia, P Boffetta. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 2012; 23(11): 2964–2970
https://doi.org/10.1093/annonc/mds140
16 J Cai, H Chen, M Lu, Y Zhang, B Lu, L You, T Zhang, M Dai, Y Zhao. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett 2021; 520: 1–11
https://doi.org/10.1016/j.canlet.2021.06.027
17 C Bosetti, E Lucenteforte, DT Silverman, G Petersen, PM Bracci, BT Ji, E Negri, D Li, HA Risch, SH Olson, S Gallinger, AB Miller, HB Bueno-de-Mesquita, R Talamini, J Polesel, P Ghadirian, PA Baghurst, W Zatonski, E Fontham, WR Bamlet, EA Holly, P Bertuccio, YT Gao, M Hassan, H Yu, RC Kurtz, M Cotterchio, J Su, P Maisonneuve, EJ Duell, P Boffetta, C La Vecchia. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 2012; 23(7): 1880–1888
https://doi.org/10.1093/annonc/mdr541
18 S Iodice, S Gandini, P Maisonneuve, AB Lowenfels. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg 2008; 393(4): 535–545
https://doi.org/10.1007/s00423-007-0266-2
19 H Sung, RL Siegel, PS Rosenberg, A Jemal. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 2019; 4(3): e137–e147
https://doi.org/10.1016/S2468-2667(18)30267-6
20 JW Elena, E Steplowski, K Yu, P Hartge, GS Tobias, MJ Brotzman, SJ Chanock, RZ Stolzenberg-Solomon, AA Arslan, HB Bueno-de-Mesquita, K Helzlsouer, EJ Jacobs, A LaCroix, G Petersen, W Zheng, D Albanes, NE Allen, L Amundadottir, Y Bao, H Boeing, MC Boutron-Ruault, JE Buring, JM Gaziano, EL Giovannucci, EJ Duell, G Hallmans, BV Howard, DJ Hunter, A Hutchinson, KB Jacobs, C Kooperberg, P Kraft, JB Mendelsohn, DS Michaud, D Palli, LS Phillips, K Overvad, AV Patel, L Sansbury, XO Shu, MS Simon, N Slimani, D Trichopoulos, K Visvanathan, J Virtamo, BM Wolpin, A Zeleniuch-Jacquotte, CS Fuchs, RN Hoover, M Gross. Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes Control 2013; 24(1): 13–25
https://doi.org/10.1007/s10552-012-0078-8
21 C Bosetti, V Rosato, D Li, D Silverman, GM Petersen, PM Bracci, RE Neale, J Muscat, K Anderson, S Gallinger, SH Olson, AB Miller, H Bas Bueno-de-Mesquita, G Scelo, V Janout, I Holcatova, P Lagiou, D Serraino, E Lucenteforte, E Fabianova, PA Baghurst, W Zatonski, L Foretova, E Fontham, WR Bamlet, EA Holly, E Negri, M Hassan, A Prizment, M Cotterchio, S Cleary, RC Kurtz, P Maisonneuve, D Trichopoulos, J Polesel, EJ Duell, P Boffetta, C La Vecchia, P Ghadirian. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol 2014; 25(10): 2065–2072
https://doi.org/10.1093/annonc/mdu276
22 JM Genkinger, D Spiegelman, KE Anderson, L Bergkvist, L Bernstein, den Brandt PA van, DR English, JL Freudenheim, CS Fuchs, GG Giles, E Giovannucci, SE Hankinson, PL Horn-Ross, M Leitzmann, S Männistö, JR Marshall, ML McCullough, AB Miller, DJ Reding, K Robien, TE Rohan, A Schatzkin, VL Stevens, RZ Stolzenberg-Solomon, BA Verhage, A Wolk, RG Ziegler, SA Smith-Warner. Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev 2009; 18(3): 765–776
https://doi.org/10.1158/1055-9965.EPI-08-0880
23 D Yadav, AB Lowenfels. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144(6): 1252–1261
https://doi.org/10.1053/j.gastro.2013.01.068
24 JH Xu, JJ Fu, XL Wang, JY Zhu, XH Ye, SD Chen. Hepatitis B or C viral infection and risk of pancreatic cancer: a meta-analysis of observational studies. World J Gastroenterol 2013; 19(26): 4234–4241
https://doi.org/10.3748/wjg.v19.i26.4234
25 AB Kamiza, FH Su, WC Wang, FC Sung, SN Chang, CC Yeh. Chronic hepatitis infection is associated with extrahepatic cancer development: a nationwide population-based study in Taiwan. BMC Cancer 2016; 16(1): 861
https://doi.org/10.1186/s12885-016-2918-5
26 RD Allison, X Tong, AC Moorman, KN Ly, L Rupp, F Xu, SC Gordon, SD; Chronic Hepatitis Cohort Study (CHeCS) Investigators Holmberg. Increased incidence of cancer and cancer-related mortality among persons with chronic hepatitis C infection, 2006–2010. J Hepatol 2015; 63(4): 822–828
https://doi.org/10.1016/j.jhep.2015.04.021
27 Abe S Krull, M Inoue, N Sawada, M Iwasaki, T Shimazu, T Yamaji, S Sasazuki, E Saito, Y Tanaka, M Mizokami, S; JPHC Study Group Tsugane. Hepatitis B and C virus infection and risk of pancreatic cancer: a population-based cohort study (JPHC Study Cohort II). Cancer Epidemiol Biomarkers Prev 2016; 25(3): 555–557
https://doi.org/10.1158/1055-9965.EPI-15-1115
28 J Huang, U Zagai, G Hallmans, O Nyrén, L Engstrand, R Stolzenberg-Solomon, EJ Duell, K Overvad, VA Katzke, R Kaaks, M Jenab, JY Park, R Murillo, A Trichopoulou, P Lagiou, C Bamia, KE Bradbury, E Riboli, D Aune, KK Tsilidis, G Capellá, A Agudo, V Krogh, D Palli, S Panico, E Weiderpass, A Tjønneland, A Olsen, B Martínez, D Redondo-Sanchez, MD Chirlaque, Peeters P Hm, S Regnér, B Lindkvist, A Naccarati, E Ardanaz, N Larrañaga, MC Boutron-Ruault, V Rebours, A Barré, HB Bueno-de-Mesquita, W Ye. Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: a nested case-control study. Int J Cancer 2017; 140(8): 1727–1735
https://doi.org/10.1002/ijc.30590
29 2017 Pancreatic Cancer Collaborators GBD. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2019; 4(12): 934–947
https://doi.org/10.1016/S2468-1253(19)30347-4
30 M Zaitsu, Y Kim, HE Lee, T Takeuchi, Y Kobayashi, I Kawachi. Occupational class differences in pancreatic cancer survival: a population-based cancer registry-based study in Japan. Cancer Med 2019; 8(6): 3261–3268
https://doi.org/10.1002/cam4.2138
31 X Fan, AV Alekseyenko, J Wu, BA Peters, EJ Jacobs, SM Gapstur, MP Purdue, CC Abnet, R Stolzenberg-Solomon, G Miller, J Ravel, RB Hayes, J Ahn. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67(1): 120–127
https://doi.org/10.1136/gutjnl-2016-312580
32 M Cotterchio, E Lowcock, TJ Hudson, C Greenwood, S Gallinger. Association between allergies and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2014; 23(3): 469–480
https://doi.org/10.1158/1055-9965.EPI-13-0965
33 AD Singhi, H Ishida, SZ Ali, M Goggins, M Canto, C Wolfgang, Z Meriden, N Roberts, AP Klein, RH Hruban. A histomorphologic comparison of familial and sporadic pancreatic cancers. Pancreatology 2015; 15(4): 387–391
https://doi.org/10.1016/j.pan.2015.04.003
34 KA Overbeek, IJM Levink, BDM Koopmann, F Harinck, ICAW Konings, MGEM Ausems, A Wagner, P Fockens, Eijck CH van, Koerkamp B Groot, ORC Busch, MG Besselink, BAJ Bastiaansen, Driel LMJW van, NS Erler, FP Vleggaar, JW Poley, DL Cahen, Hooft JE van, MJ; Dutch Familial Pancreatic Cancer Surveillance Study Group Bruno. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022; 71(6): 1152–1160
https://doi.org/10.1136/gutjnl-2020-323611
35 C Wu, X Miao, L Huang, X Che, G Jiang, D Yu, X Yang, G Cao, Z Hu, Y Zhou, C Zuo, C Wang, X Zhang, Y Zhou, X Yu, W Dai, Z Li, H Shen, L Liu, Y Chen, S Zhang, X Wang, K Zhai, J Chang, Y Liu, M Sun, W Cao, J Gao, Y Ma, X Zheng, ST Cheung, Y Jia, J Xu, W Tan, P Zhao, T Wu, C Wang, D Lin. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 2012; 44: 62–66
https://doi.org/10.1038/ng.1020
36 S Holter, A Borgida, A Dodd, R Grant, K Semotiuk, D Hedley, N Dhani, S Narod, M Akbari, M Moore, S Gallinger. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015; 33(28): 3124–3129
https://doi.org/10.1200/JCO.2014.59.7401
37 RC Grant, RE Denroche, A Borgida, C Virtanen, N Cook, AL Smith, AA Connor, JM Wilson, G Peterson, NJ Roberts, AP Klein, SM Grimmond, A Biankin, S Cleary, M Moore, M Lemire, G Zogopoulos, L Stein, S Gallinger. Exome-wide association study of pancreatic cancer risk. Gastroenterology 2018; 154(3): 719–722.e3
https://doi.org/10.1053/j.gastro.2017.10.015
38 C Hu, SN Hart, EC Polley, R Gnanaolivu, H Shimelis, KY Lee, J Lilyquist, J Na, R Moore, SO Antwi, WR Bamlet, KG Chaffee, J DiCarlo, Z Wu, R Samara, PM Kasi, RR McWilliams, GM Petersen, FJ Couch. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018; 319(23): 2401–2409
https://doi.org/10.1001/jama.2018.6228
39 AP Klein. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021; 18(7): 493–502
https://doi.org/10.1038/s41575-021-00457-x
40 M Rainone, I Singh, EE Salo-Mullen, ZK Stadler, EM O’Reilly. An emerging paradigm for germline testing in pancreatic ductal adenocarcinoma and immediate implications for clinical practice: a review. JAMA Oncol 2020; 6(5): 764–771
https://doi.org/10.1001/jamaoncol.2019.5963
41 L Buscail, B Bournet, P Cordelier. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17(3): 153–168
https://doi.org/10.1038/s41575-019-0245-4
42 K Singh, M Pruski, R Bland, M Younes, S Guha, N Thosani, A Maitra, BD Cash, F McAllister, CD Logsdon, JT Chang, JM Bailey-Lundberg. Kras mutation rate precisely orchestrates ductal derived pancreatic intraepithelial neoplasia and pancreatic cancer. Lab Invest 2021; 101(2): 177–192
https://doi.org/10.1038/s41374-020-00490-5
43 Genome Atlas Research Network Cancer. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13
https://doi.org/10.1016/j.ccell.2017.07.007
44 AK Witkiewicz, EA McMillan, U Balaji, G Baek, WC Lin, J Mansour, M Mollaee, KU Wagner, P Koduru, A Yopp, MA Choti, CJ Yeo, P McCue, MA White, ES Knudsen. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 2015; 6(1): 6744
https://doi.org/10.1038/ncomms7744
45 EM O'Reilly, JF Hechtman. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann Oncol 2019; 30(Suppl_8): viii36–viii40
https://doi.org/10.1093/annonc/mdz385
46 C Heining, P Horak, S Uhrig, PL Codo, B Klink, B Hutter, M Fröhlich, D Bonekamp, D Richter, K Steiger, R Penzel, V Endris, KR Ehrenberg, S Frank, K Kleinheinz, UH Toprak, M Schlesner, R Mandal, L Schulz, H Lambertz, S Fetscher, M Bitzer, NP Malek, M Horger, NA Giese, O Strobel, T Hackert, C Springfeld, L Feuerbach, F Bergmann, E Schröck, Kalle C von, W Weichert, C Scholl, CR Ball, A Stenzinger, B Brors, S Fröhling, H Glimm. NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov 2018; 8(9): 1087–1095
https://doi.org/10.1158/2159-8290.CD-18-0036
47 MR Jones, LM Williamson, JT Topham, MKC Lee, A Goytain, J Ho, RE Denroche, G Jang, E Pleasance, Y Shen, JM Karasinska, JP McGhie, S Gill, HJ Lim, MJ Moore, HL Wong, T Ng, S Yip, W Zhang, S Sadeghi, C Reisle, AJ Mungall, KL Mungall, RA Moore, Y Ma, JJ Knox, S Gallinger, J Laskin, MA Marra, DF Schaeffer, SJM Jones, DJ Renouf. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res 2019; 25(15): 4674–4681
https://doi.org/10.1158/1078-0432.CCR-19-0191
48 A Hayashi, J Hong, CA Iacobuzio-Donahue. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021; 18(7): 469–481
https://doi.org/10.1038/s41575-021-00463-z
49 AA Connor, RE Denroche, GH Jang, M Lemire, A Zhang, M Chan-Seng-Yue, G Wilson, RC Grant, D Merico, I Lungu, JMS Bartlett, D Chadwick, SB Liang, J Eagles, F Mbabaali, JK Miller, P Krzyzanowski, H Armstrong, X Luo, LGT Jorgensen, JM Romero, P Bavi, SE Fischer, S Serra, S Hafezi-Bakhtiari, D Caglar, MHA Roehrl, S Cleary, MA Hollingsworth, GM Petersen, S Thayer, CHL Law, S Nanji, T Golan, AL Smith, A Borgida, A Dodd, D Hedley, BG Wouters, GM O’Kane, JM Wilson, G Zogopoulos, F Notta, JJ Knox, S Gallinger. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell 2019; 35(2): 267–282.e7
https://doi.org/10.1016/j.ccell.2018.12.010
50 L Cao, C Huang, Zhou D Cui, Y Hu, TM Lih, SR Savage, K Krug, DJ Clark, M Schnaubelt, L Chen, Veiga Leprevost F da, RV Eguez, W Yang, J Pan, B Wen, Y Dou, W Jiang, Y Liao, Z Shi, NV Terekhanova, S Cao, RJ Lu, Y Li, R Liu, H Zhu, P Ronning, Y Wu, MA Wyczalkowski, H Easwaran, L Danilova, AS Mer, S Yoo, JM Wang, W Liu, B Haibe-Kains, M Thiagarajan, SD Jewell, G Hostetter, CJ Newton, QK Li, MH Roehrl, D Fenyö, P Wang, AI Nesvizhskii, DR Mani, GS Omenn, ES Boja, M Mesri, AI Robles, H Rodriguez, OF Bathe, DW Chan, RH Hruban, L Ding, B Zhang, H; Clinical Proteomic Tumor Analysis Consortium Zhang. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184(19): 5031–5052.e26
https://doi.org/10.1016/j.cell.2021.08.023
51 D Xie, Z Wang, B Sun, L Qu, M Zeng, L Feng, M Guo, G Wang, J Hao, G Zhou. High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17(5): 907–923
https://doi.org/10.1007/s11684-023-1009-7
52 M Liu. Arid1a: a gatekeeper in the development of pancreatic cancer from a rare precursor lesion. Gastroenterology 2022; 163(2): 371–373
https://doi.org/10.1053/j.gastro.2022.05.046
53 ES Christenson, E Jaffee, NS Azad. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol 2020; 21(3): e135–e145
https://doi.org/10.1016/S1470-2045(19)30795-8
54 S Ahmed, AD Bradshaw, S Gera, MZ Dewan, R Xu. The TGF-β/Smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med 2017; 6(1): 5
https://doi.org/10.3390/jcm6010005
55 M Chan-Seng-Yue, JC Kim, GW Wilson, K Ng, EF Figueroa, GM O’Kane, AA Connor, RE Denroche, RC Grant, J McLeod, JM Wilson, GH Jang, A Zhang, A Dodd, SB Liang, A Borgida, D Chadwick, S Kalimuthu, I Lungu, JMS Bartlett, PM Krzyzanowski, V Sandhu, H Tiriac, FEM Froeling, JM Karasinska, JT Topham, DJ Renouf, DF Schaeffer, SJM Jones, MA Marra, J Laskin, R Chetty, LD Stein, G Zogopoulos, B Haibe-Kains, PJ Campbell, DA Tuveson, JJ Knox, SE Fischer, S Gallinger, F Notta. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 2020; 52(2): 231–240
https://doi.org/10.1038/s41588-019-0566-9
56 M Brunner, Z Wu, C Krautz, C Pilarsky, R Grützmann, GF Weber. Current clinical strategies of pancreatic cancer treatment and open molecular questions. Int J Mol Sci 2019; 20(18): 4543
https://doi.org/10.3390/ijms20184543
57 J Gao, L Wang, J Xu, J Zheng, X Man, H Wu, J Jin, K Wang, H Xiao, S Li, Z Li. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res 2013; 32(1): 86
https://doi.org/10.1186/1756-9966-32-86
58 JJ Zhang, Y Zhu, Y Zhu, JL Wu, WB Liang, R Zhu, ZK Xu, Q Du, Y Miao. Association of increased DNA methyltransferase expression with carcinogenesis and poor prognosis in pancreatic ductal adenocarcinoma. Clin Transl Oncol 2012; 14(2): 116–124
https://doi.org/10.1007/s12094-012-0770-x
59 ID Nagtegaal, RD Odze, D Klimstra, V Paradis, M Rugge, P Schirmacher, KM Washington, F Carneiro, IA; WHO Classification of Tumours Editorial Board Cree. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76(2): 182–188
https://doi.org/10.1111/his.13975
60 L Zhang, D Chen, D Song, X Liu, Y Zhang, X Xu, X Wang. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7(1): 111
https://doi.org/10.1038/s41392-022-00960-w
61 D Schäfer, S Tomiuk, LN Küster, WA Rawashdeh, J Henze, G Tischler-Höhle, DJ Agorku, J Brauner, C Linnartz, D Lock, A Kaiser, C Herbel, D Eckardt, M Lamorte, D Lenhard, J Schüler, P Ströbel, J Missbach-Guentner, D Pinkert-Leetsch, F Alves, A Bosio, O Hardt. Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic adenocarcinoma. Nat Commun 2021; 12(1): 1453
https://doi.org/10.1038/s41467-021-21774-4
62 WC Hsieh, BR Budiarto, YF Wang, CY Lin, MC Gwo, DK So, YS Tzeng, SY Chen. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci 2022; 29(1): 96
https://doi.org/10.1186/s12929-022-00879-y
63 R Moncada, D Barkley, F Wagner, M Chiodin, JC Devlin, M Baron, CH Hajdu, DM Simeone, I Yanai. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 2020; 38(3): 333–342
https://doi.org/10.1038/s41587-019-0392-8
64 WL Hwang, KA Jagadeesh, JA Guo, HI Hoffman, P Yadollahpour, JW Reeves, R Mohan, E Drokhlyansky, N Van Wittenberghe, O Ashenberg, SL Farhi, D Schapiro, P Divakar, E Miller, DR Zollinger, G Eng, JM Schenkel, J Su, C Shiau, P Yu, WA Freed-Pastor, D Abbondanza, A Mehta, J Gould, C Lambden, CBM Porter, A Tsankov, D Dionne, J Waldman, MS Cuoco, L Nguyen, T Delorey, D Phillips, JL Barth, M Kem, C Rodrigues, D Ciprani, J Roldan, P Zelga, V Jorgji, JH Chen, Z Ely, D Zhao, K Fuhrman, R Fropf, JM Beechem, JS Loeffler, DP Ryan, CD Weekes, CR Ferrone, M Qadan, MJ Aryee, RK Jain, DS Neuberg, JY Wo, TS Hong, R Xavier, AJ Aguirre, O Rozenblatt-Rosen, M Mino-Kenudson, CF Castillo, AS Liss, DT Ting, T Jacks, A Regev. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet 2022; 54(8): 1178–1191
https://doi.org/10.1038/s41588-022-01134-8
65 D Cui Zhou, RG Jayasinghe, S Chen, JM Herndon, MD Iglesia, P Navale, MC Wendl, W Caravan, K Sato, E Storrs, CK Mo, J Liu, AN Southard-Smith, Y Wu, N Naser Al Deen, JM Baer, RS Fulton, MA Wyczalkowski, R Liu, CC Fronick, LA Fulton, A Shinkle, L Thammavong, H Zhu, H Sun, LB Wang, Y Li, C Zuo, JF McMichael, SR Davies, EL Appelbaum, KJ Robbins, SE Chasnoff, X Yang, AN Reeb, C Oh, M Serasanambati, P Lal, R Varghese, JR Mashl, J Ponce, NV Terekhanova, L Yao, F Wang, L Chen, M Schnaubelt, RJ Lu, JK Schwarz, SV Puram, AH Kim, SK Song, KI Shoghi, KS Lau, T Ju, K Chen, D Chatterjee, WG Hawkins, H Zhang, S Achilefu, MG Chheda, ST Oh, WE Gillanders, F Chen, DG DeNardo, RC Fields, L Ding. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat Genet 2022; 54(9): 1390–1405
https://doi.org/10.1038/s41588-022-01157-1
66 L Tosti, Y Hang, O Debnath, S Tiesmeyer, T Trefzer, K Steiger, FW Ten, S Lukassen, S Ballke, AA Kühl, S Spieckermann, R Bottino, N Ishaque, W Weichert, SK Kim, R Eils, C Conrad. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 2021; 160(4): 1330–1344.e11
https://doi.org/10.1053/j.gastro.2020.11.010
67 D Barkley, R Moncada, M Pour, DA Liberman, I Dryg, G Werba, W Wang, M Baron, A Rao, B Xia, GS França, A Weil, DF Delair, C Hajdu, AW Lund, I Osman, I Yanai. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet 2022; 54(8): 1192–1201
https://doi.org/10.1038/s41588-022-01141-9
68 A Hayashi, J Fan, R Chen, YJ Ho, AP Makohon-Moore, N Lecomte, Y Zhong, J Hong, J Huang, H Sakamoto, MA Attiyeh, ZA Kohutek, L Zhang, A Boumiza, R Kappagantula, P Baez, J Bai, M Lisi, K Chadalavada, JP Melchor, W Wong, GJ Nanjangud, O Basturk, EM O’Reilly, DS Klimstra, RH Hruban, LD Wood, M Overholtzer, CA Iacobuzio-Donahue. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat Cancer 2020; 1(1): 59–74
https://doi.org/10.1038/s43018-019-0010-1
69 P Bailey, DK Chang, K Nones, AL Johns, AM Patch, MC Gingras, DK Miller, AN Christ, TJ Bruxner, MC Quinn, C Nourse, LC Murtaugh, I Harliwong, S Idrisoglu, S Manning, E Nourbakhsh, S Wani, L Fink, O Holmes, V Chin, MJ Anderson, S Kazakoff, C Leonard, F Newell, N Waddell, S Wood, Q Xu, PJ Wilson, N Cloonan, KS Kassahn, D Taylor, K Quek, A Robertson, L Pantano, L Mincarelli, LN Sanchez, L Evers, J Wu, M Pinese, MJ Cowley, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, LA Chantrill, A Mawson, J Humphris, A Chou, M Pajic, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Lovell, ND Merrett, CW Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, K Moran-Jones, NB Jamieson, JS Graham, F Duthie, K Oien, J Hair, R Grützmann, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, B Rusev, P Capelli, R Salvia, G Tortora, D Mukhopadhyay, GM; Australian Pancreatic Cancer Genome Initiative; Munzy DM Petersen, WE Fisher, SA Karim, JR Eshleman, RH Hruban, C Pilarsky, JP Morton, OJ Sansom, A Scarpa, EA Musgrove, UM Bailey, O Hofmann, RL Sutherland, DA Wheeler, AJ Gill, RA Gibbs, JV Pearson, N Waddell, AV Biankin, SM Grimmond. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52
https://doi.org/10.1038/nature16965
70 H Sun, D Zhang, C Huang, Y Guo, Z Yang, N Yao, X Dong, R Cheng, N Zhao, J Meng, B Sun, J Hao. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med 2021; 18(2): 616–630
https://doi.org/10.20892/j.issn.2095-3941.2021.0158
71 ATF Bell. PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration. bioRxiv 2022; 2022.07.16.500312
72 A Agostini. Transcriptomic dissection of intraepithelial papillary mucinous neoplasms progression by spatial technologies identified novel markers of pancreatic carcinogenesis. bioRxiv 2022; 2022.10.12.511894
73 M Sans, Y Makino, J Min, KI Rajapakshe, M Yip-Schneider, CM Schmidt, MW Hurd, JK Burks, JA Gomez, FI Thege, JF Fahrmann, RA Wolff, MP Kim, PA Guerrero, A Maitra. Spatial transcriptomics of intraductal papillary mucinous neoplasms of the pancreas identifies NKX6-2 as a driver of gastric differentiation and indolent biological potential. Cancer Discov 2023; 13(8): 1844–1861
https://doi.org/10.1158/2159-8290.CD-22-1200
74 J Peng, BF Sun, CY Chen, JY Zhou, YS Chen, H Chen, L Liu, D Huang, J Jiang, GS Cui, Y Yang, W Wang, D Guo, M Dai, J Guo, T Zhang, Q Liao, Y Liu, YL Zhao, DL Han, Y Zhao, YG Yang, W Wu. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725–738
https://doi.org/10.1038/s41422-019-0195-y
75 Z Ma, NK Lytle, B Chen, N Jyotsana, SW Novak, CJ Cho, L Caplan, O Ben-Levy, AC Neininger, DT Burnette, VQ Trinh, MCB Tan, EA Patterson, R Arrojo E Drigo, RR Giraddi, C Ramos, AL Means, I Matsumoto, U Manor, JC Mills, JR Goldenring, KS Lau, GM Wahl, KE DelGiorno. Single-cell transcriptomics reveals a conserved metaplasia program in pancreatic injury. Gastroenterology 2022; 162(2): 604–620.e20
https://doi.org/10.1053/j.gastro.2021.10.027
76 JJ Lee, V Bernard, A Semaan, ME Monberg, J Huang, BM Stephens, D Lin, KI Rajapakshe, BR Weston, MS Bhutani, CL Haymaker, C Bernatchez, CM Taniguchi, A Maitra, PA Guerrero. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world pancreatic cancer biopsies. Clin Cancer Res 2021; 27(21): 5912–5921
https://doi.org/10.1158/1078-0432.CCR-20-3925
77 W Lin, P Noel, EH Borazanci, J Lee, A Amini, IW Han, JS Heo, GS Jameson, C Fraser, M Steinbach, Y Woo, Y Fong, D Cridebring, DD Von Hoff, JO Park, H Han. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med 2020; 12(1): 80
https://doi.org/10.1186/s13073-020-00776-9
78 M Ligorio, S Sil, J Malagon-Lopez, LT Nieman, S Misale, M Di Pilato, RY Ebright, MN Karabacak, AS Kulkarni, A Liu, N Vincent Jordan, JW Franses, J Philipp, J Kreuzer, N Desai, KS Arora, M Rajurkar, E Horwitz, A Neyaz, E Tai, NKC Magnus, KD Vo, CN Yashaswini, F Marangoni, M Boukhali, JP Fatherree, LJ Damon, K Xega, R Desai, M Choz, F Bersani, A Langenbucher, V Thapar, R Morris, UF Wellner, O Schilling, MS Lawrence, AS Liss, MN Rivera, V Deshpande, CH Benes, S Maheswaran, DA Haber, C Fernandez-Del-Castillo, CR Ferrone, W Haas, MJ Aryee, DT Ting. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 2019; 178(1): 160–175.e27
https://doi.org/10.1016/j.cell.2019.05.012
79 E Elyada, M Bolisetty, P Laise, WF Flynn, ET Courtois, RA Burkhart, JA Teinor, P Belleau, G Biffi, MS Lucito, S Sivajothi, TD Armstrong, DD Engle, KH Yu, Y Hao, CL Wolfgang, Y Park, J Preall, EM Jaffee, A Califano, P Robson, DA Tuveson. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019; 9(8): 1102–1123
https://doi.org/10.1158/2159-8290.CD-19-0094
80 DS Foster, M Januszyk, D Delitto, KE Yost, M Griffin, J Guo, N Guardino, AE Delitto, M Chinta, AR Burcham, AT Nguyen, KE Bauer-Rowe, AL Titan, A Salhotra, RE Jones, O da Silva, HG Lindsay, CE Berry, K Chen, D Henn, S Mascharak, HE Talbott, A Kim, F Nosrati, D Sivaraj, RC Ransom, M Matthews, A Khan, D Wagh, J Coller, GC Gurtner, DC Wan, IL Wapnir, HY Chang, JA Norton, MT Longaker. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 2022; 40(11): 1392–1406.e7
https://doi.org/10.1016/j.ccell.2022.09.015
81 CX Dominguez, S Müller, S Keerthivasan, H Koeppen, J Hung, S Gierke, B Breart, O Foreman, TW Bainbridge, A Castiglioni, Y Senbabaoglu, Z Modrusan, Y Liang, MR Junttila, C Klijn, R Bourgon, SJ Turley. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 2020; 10(2): 232–253
https://doi.org/10.1158/2159-8290.CD-19-0644
82 C Hutton, F Heider, A Blanco-Gomez, A Banyard, A Kononov, X Zhang, S Karim, V Paulus-Hock, D Watt, N Steele, S Kemp, EKJ Hogg, J Kelly, RF Jackstadt, F Lopes, M Menotti, L Chisholm, A Lamarca, J Valle, OJ Sansom, C Springer, A Malliri, R Marais, di Magliano M Pasca, S Zelenay, JP Morton, C Jørgensen. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 2021; 39(9): 1227–1244.e20
https://doi.org/10.1016/j.ccell.2021.06.017
83 AN Hosein, H Huang, Z Wang, K Parmar, W Du, J Huang, A Maitra, E Olson, U Verma, RA Brekken. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 2019; 4(16): e129212
https://doi.org/10.1172/jci.insight.129212
84 MH Sherman, GL Beatty. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol 2023; 18(1): 123–148
https://doi.org/10.1146/annurev-pathmechdis-031621-024600
85 NG Steele, ES Carpenter, SB Kemp, VR Sirihorachai, S The, L Delrosario, J Lazarus, ED Amir, V Gunchick, C Espinoza, S Bell, L Harris, F Lima, V Irizarry-Negron, D Paglia, J Macchia, AKY Chu, H Schofield, EJ Wamsteker, R Kwon, A Schulman, A Prabhu, R Law, A Sondhi, J Yu, A Patel, K Donahue, H Nathan, C Cho, MA Anderson, V Sahai, CA Lyssiotis, W Zou, BL Allen, A Rao, HC Crawford, F Bednar, TL Frankel, M Pasca di Magliano. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer 2020; 1(11): 1097–1112
https://doi.org/10.1038/s43018-020-00121-4
86 WJ Ho, R Erbe, L Danilova, Z Phyo, E Bigelow, G Stein-O’Brien, DL 2nd Thomas, S Charmsaz, N Gross, S Woolman, K Cruz, RM Munday, N Zaidi, TD Armstrong, MB Sztein, M Yarchoan, ED Thompson, EM Jaffee, EJ Fertig. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways. Genome Biol 2021; 22(1): 154
https://doi.org/10.1186/s13059-021-02363-6
87 Y Du, Y Cai, Y Lv, L Zhang, H Yang, Q Liu, M Hong, Y Teng, W Tang, R Ma, J Wu, J Wu, Q Wang, H Chen, K Li, J Feng. Single-cell RNA sequencing unveils the communications between malignant T and myeloid cells contributing to tumor growth and immunosuppression in cutaneous T-cell lymphoma. Cancer Lett 2022; 551: 215972
https://doi.org/10.1016/j.canlet.2022.215972
88 C Shiau, J Su, JA Guo, TS Hong, JY Wo, KA Jagadeesh, WL Hwang. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front Oncol 2022; 12: 929950
https://doi.org/10.3389/fonc.2022.929950
89 Y Du, Z Gu, Z Li, Z Yuan, Y Zhao, X Zheng, X Bo, H Chen, C Wang. Dynamic interplay between structural variations and 3D genome organization in pancreatic cancer. Adv Sci (Weinh) 2022; 9(18): e2200818
https://doi.org/10.1002/advs.202200818
90 D Alonso-Curbelo, YJ Ho, C Burdziak, JLV Maag, JP 4th Morris, R Chandwani, HA Chen, KM Tsanov, FM Barriga, W Luan, N Tasdemir, G Livshits, E Azizi, J Chun, JE Wilkinson, L Mazutis, SD Leach, R Koche, D Pe’er, SW Lowe. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 2021; 590(7847): 642–648
https://doi.org/10.1038/s41586-020-03147-x
91 C Burdziak, D Alonso-Curbelo, T Walle, J Reyes, FM Barriga, D Haviv, Y Xie, Z Zhao, CJ Zhao, HA Chen, O Chaudhary, I Masilionis, ZN Choo, V Gao, W Luan, A Wuest, YJ Ho, Y Wei, DF Quail, R Koche, L Mazutis, R Chaligné, T Nawy, SW Lowe, D Pe’er. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380(6645): eadd5327
https://doi.org/10.1126/science.add5327
92 F Guo, L Li, J Li, X Wu, B Hu, P Zhu, L Wen, F Tang. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 2017; 27(8): 967–988
https://doi.org/10.1038/cr.2017.82
93 X Fan, P Lu, H Wang, S Bian, X Wu, Y Zhang, Y Liu, D Fu, L Wen, J Hao, F Tang. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma. Cell Discov 2022; 8(1): 13
https://doi.org/10.1038/s41421-021-00366-y
94 N Waddell, M Pajic, AM Patch, DK Chang, KS Kassahn, P Bailey, AL Johns, D Miller, K Nones, K Quek, MC Quinn, AJ Robertson, MZ Fadlullah, TJ Bruxner, AN Christ, I Harliwong, S Idrisoglu, S Manning, C Nourse, E Nourbakhsh, S Wani, PJ Wilson, E Markham, N Cloonan, MJ Anderson, JL Fink, O Holmes, SH Kazakoff, C Leonard, F Newell, B Poudel, S Song, D Taylor, N Waddell, S Wood, Q Xu, J Wu, M Pinese, MJ Cowley, HC Lee, MD Jones, AM Nagrial, J Humphris, LA Chantrill, V Chin, AM Steinmann, A Mawson, ES Humphrey, EK Colvin, A Chou, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Pettitt, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, NB Jamieson, JS Graham, SP Niclou, R Bjerkvig, R Grützmann, D Aust, RH Hruban, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, M Falconi, G Zamboni, G Tortora, MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ Tempero, JR Eshleman, C Pilarsky, A Scarpa, EA Musgrove, JV Pearson, AV Biankin, SM Grimmond. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501
https://doi.org/10.1038/nature14169
95 RA Moffitt, R Marayati, EL Flate, KE Volmar, SG Loeza, KA Hoadley, NU Rashid, LA Williams, SC Eaton, AH Chung, JK Smyla, JM Anderson, HJ Kim, DJ Bentrem, MS Talamonti, CA Iacobuzio-Donahue, MA Hollingsworth, JJ Yeh. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 2015; 47(10): 1168–1178
https://doi.org/10.1038/ng.3398
96 F Puleo, R Nicolle, Y Blum, J Cros, L Marisa, P Demetter, E Quertinmont, M Svrcek, N Elarouci, J Iovanna, D Franchimont, L Verset, MG Galdon, J Devière, Reyniès A de, P Laurent-Puig, Laethem JL Van, JB Bachet, R Maréchal. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 2018; 155(6): 1999–2013.e3
https://doi.org/10.1053/j.gastro.2018.08.033
97 EA Collisson, A Sadanandam, P Olson, WJ Gibb, M Truitt, S Gu, J Cooc, J Weinkle, GE Kim, L Jakkula, HS Feiler, AH Ko, AB Olshen, KL Danenberg, MA Tempero, PT Spellman, D Hanahan, JW Gray. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011; 17(4): 500–503
https://doi.org/10.1038/nm.2344
98 C Maurer, SR Holmstrom, J He, P Laise, T Su, A Ahmed, H Hibshoosh, JA Chabot, PE Oberstein, AR Sepulveda, JM Genkinger, J Zhang, AC Iuga, M Bansal, A Califano, KP Olive. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 2019; 68(6): 1034–1043
https://doi.org/10.1136/gutjnl-2018-317706
99 M Jamal-Hanjani, GA Wilson, N McGranahan, NJ Birkbak, TBK Watkins, S Veeriah, S Shafi, DH Johnson, R Mitter, R Rosenthal, M Salm, S Horswell, M Escudero, N Matthews, A Rowan, T Chambers, DA Moore, S Turajlic, H Xu, SM Lee, MD Forster, T Ahmad, CT Hiley, C Abbosh, M Falzon, E Borg, T Marafioti, D Lawrence, M Hayward, S Kolvekar, N Panagiotopoulos, SM Janes, R Thakrar, A Ahmed, F Blackhall, Y Summers, R Shah, L Joseph, AM Quinn, PA Crosbie, B Naidu, G Middleton, G Langman, S Trotter, M Nicolson, H Remmen, K Kerr, M Chetty, L Gomersall, DA Fennell, A Nakas, S Rathinam, G Anand, S Khan, P Russell, V Ezhil, B Ismail, M Irvin-Sellers, V Prakash, JF Lester, M Kornaszewska, R Attanoos, H Adams, H Davies, S Dentro, P Taniere, B O’Sullivan, HL Lowe, JA Hartley, N Iles, H Bell, Y Ngai, JA Shaw, J Herrero, Z Szallasi, RF Schwarz, A Stewart, SA Quezada, Quesne J Le, Loo P Van, C Dive, A Hackshaw, C; TRACERx Consortium Swanton. Tracking the evolution of non-small-cell lung cancer. N Engl J Med 2017; 376(22): 2109–2121
https://doi.org/10.1056/NEJMoa1616288
100 NU Rashid, XL Peng, C Jin, RA Moffitt, KE Volmar, BA Belt, RZ Panni, TM Nywening, SG Herrera, KJ Moore, SG Hennessey, AB Morrison, R Kawalerski, A Nayyar, AE Chang, B Schmidt, HJ Kim, DC Linehan, JJ Yeh. Purity independent subtyping of tumors (PurIST), a clinically robust, single-sample classifier for tumor subtyping in pancreatic cancer. Clin Cancer Res 2020; 26(1): 82–92
https://doi.org/10.1158/1078-0432.CCR-19-1467
101 NA Ullman, PR Burchard, RF Dunne, DC Linehan. Immunologic strategies in pancreatic cancer: making cold tumors hot. J Clin Oncol 2022; 40(24): 2789–2805
https://doi.org/10.1200/JCO.21.02616
102 X Li, M Gulati, AC Larson, JC Solheim, M Jain, S Kumar, SK Batra. Immune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin Cancer Biol 2022; 86(Pt 2): 14–27
https://doi.org/10.1016/j.semcancer.2022.08.009
103 GP Nagaraju, RR Malla, R Basha, IG Motofei. Contemporary clinical trials in pancreatic cancer immunotherapy targeting PD-1 and PD-L1. Semin Cancer Biol 2022; 86(Pt 3): 616–621
https://doi.org/10.1016/j.semcancer.2021.11.003
104 R Xue, Q Zhang, Q Cao, R Kong, X Xiang, H Liu, M Feng, F Wang, J Cheng, Z Li, Q Zhan, M Deng, J Zhu, Z Zhang, N Zhang. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022; 612(7938): 141–147
https://doi.org/10.1038/s41586-022-05400-x
105 S Raghavan, PS Winter, AW Navia, HL Williams, A DenAdel, KE Lowder, J Galvez-Reyes, RL Kalekar, N Mulugeta, KS Kapner, MS Raghavan, AA Borah, N Liu, SA Väyrynen, AD Costa, RWS Ng, J Wang, EK Hill, DY Ragon, LK Brais, AM Jaeger, LF Spurr, YY Li, AD Cherniack, MA Booker, EF Cohen, MY Tolstorukov, I Wakiro, A Rotem, BE Johnson, JM McFarland, ET Sicinska, TE Jacks, RJ Sullivan, GI Shapiro, TE Clancy, K Perez, DA Rubinson, K Ng, JM Cleary, L Crawford, SR Manalis, JA Nowak, BM Wolpin, WC Hahn, AJ Aguirre, AK Shalek. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 2021; 184(25): 6119–6137.e26
https://doi.org/10.1016/j.cell.2021.11.017
106 A Grimont, SD Leach, R Chandwani. Uncertain beginnings: acinar and ductal cell plasticity in the development of pancreatic cancer. Cell Mol Gastroenterol Hepatol 2022; 13(2): 369–382
https://doi.org/10.1016/j.jcmgh.2021.07.014
107 HA Messal, S Alt, RMM Ferreira, C Gribben, VM Wang, CG Cotoi, G Salbreux, A Behrens. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 2019; 566(7742): 126–130
https://doi.org/10.1038/s41586-019-0891-2
108 S Li, K Xie. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877(2): 188698
https://doi.org/10.1016/j.bbcan.2022.188698
109 S Parte, RK Nimmakayala, SK Batra, MP Ponnusamy. Acinar to ductal cell trans-differentiation: a prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877(1): 188669
https://doi.org/10.1016/j.bbcan.2021.188669
110 E Del Poggetto, IL Ho, C Balestrieri, EY Yen, S Zhang, F Citron, R Shah, D Corti, GR Diaferia, CY Li, S Loponte, F Carbone, Y Hayakawa, G Valenti, S Jiang, L Sapio, H Jiang, P Dey, S Gao, AK Deem, S Rose-John, W Yao, H Ying, AD Rhim, G Genovese, TP Heffernan, A Maitra, TC Wang, L Wang, GF Draetta, A Carugo, G Natoli, A Viale. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 2021; 373(6561): eabj0486
https://doi.org/10.1126/science.abj0486
111 O JP De La, LL Emerson, JL Goodman, SC Froebe, BE Illum, AB Curtis, LC Murtaugh. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 2008; 105(48): 18907–18912
https://doi.org/10.1073/pnas.0810111105
112 H Huang, M He, Y Zhang, B Zhang, Z Niu, Y Zheng, W Li, P Cui, X Wang, Q Sun. Identification and validation of heterotypic cell-in-cell structure as an adverse prognostic predictor for young patients of resectable pancreatic ductal adenocarcinoma. Signal Transduct Target Ther 2020; 5(1): 246
https://doi.org/10.1038/s41392-020-00346-w
113 J Song, R Ruze, Y Chen, R Xu, X Yin, C Wang, Q Xu, Y Zhao. Construction of a novel model based on cell-in-cell-related genes and validation of KRT7 as a biomarker for predicting survival and immune microenvironment in pancreatic cancer. BMC Cancer 2022; 22(1): 894
https://doi.org/10.1186/s12885-022-09983-6
114 NM Xi, JJ Li. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst 2021; 12(2): 176–194.e6
https://doi.org/10.1016/j.cels.2020.11.008
115 AS Bais, D Kostka. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics 2020; 36(4): 1150–1158
https://doi.org/10.1093/bioinformatics/btz698
116 VK Singh, D Yadav, PK Garg. Diagnosis and management of chronic pancreatitis: a review. JAMA 2019; 322(24): 2422–2434
https://doi.org/10.1001/jama.2019.19411
117 W Greenhalf, P Lévy, T Gress, V Rebours, RE Brand, S Pandol, S Chari, MT Jørgensen, J Mayerle, MM Lerch, P Hegyi, J Kleeff, CF Castillo, S Isaji, T Shimosegawa, A Sheel, CM Halloran, P Garg, K Takaori, MG Besselink, CE Forsmark, CM Wilcox, P Maisonneuve, D Yadav, D Whitcomb, J; Working group for the International (IAP – APA – JPS – EPC) Consensus Guidelines for Chronic Pancreatitis Neoptolemos. International consensus guidelines on surveillance for pancreatic cancer in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20(5): 910–918
https://doi.org/10.1016/j.pan.2020.05.011
118 P Hegyi, A Párniczky, MM Lerch, ARG Sheel, V Rebours, CE Forsmark, Chiaro M Del, J Rosendahl, E de-Madaria, Á Szücs, K Takaori, D Yadav, C Gheorghe, Z Jr Rakonczay, X Molero, K Inui, A Masamune, Castillo C Fernandez-Del, T Shimosegawa, JP Neoptolemos, DC Whitcomb, M; Working Group for the International (IAP–APA–JPS–EPC) Consensus Guidelines for Chronic Pancreatitis Sahin-Tóth. International consensus guidelines for risk factors in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20(4): 579–585
https://doi.org/10.1016/j.pan.2020.03.014
119 C Sun, M Liu, W An, X Mao, H Jiang, W Zou, H Wu, Z Liao, Z Li. Heterozygous Spink1 c.194+2T>C mutant mice spontaneously develop chronic pancreatitis. Gut 2020; 69(5): 967–968
https://doi.org/10.1136/gutjnl-2019-318790
120 A Geisz, M Sahin-Tóth. A preclinical model of chronic pancreatitis driven by trypsinogen autoactivation. Nat Commun 2018; 9(1): 5033
https://doi.org/10.1038/s41467-018-07347-y
121 E Hegyi, M Sahin-Tóth. Human CPA1 mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut 2019; 68(2): 301–312
https://doi.org/10.1136/gutjnl-2018-315994
122 A Kichler, S Jang. Chronic pancreatitis: epidemiology, diagnosis, and management updates. Drugs 2020; 80(12): 1155–1168
https://doi.org/10.1007/s40265-020-01360-6
123 P Storz. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol 2017; 14(5): 296–304
https://doi.org/10.1038/nrgastro.2017.12
124 CB Westphalen, Y Takemoto, T Tanaka, M Macchini, Z Jiang, BW Renz, X Chen, S Ormanns, K Nagar, Y Tailor, R May, Y Cho, S Asfaha, DL Worthley, Y Hayakawa, AM Urbanska, M Quante, M Reichert, J Broyde, PS Subramaniam, H Remotti, GH Su, AK Rustgi, RA Friedman, B Honig, A Califano, CW Houchen, KP Olive, TC Wang. Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell 2016; 18(4): 441–455
https://doi.org/10.1016/j.stem.2016.03.016
125 JM Bailey, J Alsina, ZA Rasheed, FM McAllister, YY Fu, R Plentz, H Zhang, PJ Pasricha, N Bardeesy, W Matsui, A Maitra, SD Leach. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 2014; 146(1): 245–256
https://doi.org/10.1053/j.gastro.2013.09.050
126 FM Ferguson, B Nabet, S Raghavan, Y Liu, AL Leggett, M Kuljanin, RL Kalekar, A Yang, S He, J Wang, RWS Ng, R Sulahian, L Li, EJ Poulin, L Huang, J Koren, N Dieguez-Martinez, S Espinosa, Z Zeng, CR Corona, JD Vasta, R Ohi, T Sim, ND Kim, W Harshbarger, JM Lizcano, MB Robers, S Muthaswamy, CY Lin, AT Look, KM Haigis, JD Mancias, BM Wolpin, AJ Aguirre, WC Hahn, KD Westover, NS Gray. Discovery of a selective inhibitor of doublecortin like kinase 1. Nat Chem Biol 2020; 16(6): 635–643
https://doi.org/10.1038/s41589-020-0506-0
127 O Basturk, SM Hong, LD Wood, NV Adsay, J Albores-Saavedra, AV Biankin, LA Brosens, N Fukushima, M Goggins, RH Hruban, Y Kato, DS Klimstra, G Klöppel, A Krasinskas, DS Longnecker, H Matthaei, GJ Offerhaus, M Shimizu, K Takaori, B Terris, S Yachida, I Esposito, T; Baltimore Consensus Meeting Furukawa. A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol 2015; 39(12): 1730–1741
https://doi.org/10.1097/PAS.0000000000000533
128 ST Liffers, L Godfrey, L Frohn, L Haeberle, A Yavas, R Vesce, W Goering, FV Opitz, N Stoecklein, WT Knoefel, AM Schlitter, G Klöppel, E Espinet, A Trumpp, JT Siveke, I Esposito. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype. Gut 2023; 72(3): 522–534
https://doi.org/10.1136/gutjnl-2021-326550
129 M Felsenstein, M Noë, DL Masica, W Hosoda, P Chianchiano, CG Fischer, G Lionheart, LAA Brosens, A Pea, J Yu, G Gemenetzis, VP Groot, MA Makary, J He, MJ Weiss, JL Cameron, CL Wolfgang, RH Hruban, NJ Roberts, R Karchin, MG Goggins, LD Wood. IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut 2018; 67(9): 1652–1662
https://doi.org/10.1136/gutjnl-2017-315062
130 A Scarpa, FX Real, C Luchini. Genetic unrelatedness of co-occurring pancreatic adenocarcinomas and IPMNs challenges current views of clinical management. Gut 2018; 67(9): 1561–1563
https://doi.org/10.1136/gutjnl-2018-316151
131 A Mafficini, M Simbolo, T Shibata, SM Hong, A Pea, LA Brosens, L Cheng, D Antonello, C Sciammarella, C Cantù, P Mattiolo, SV Taormina, G Malleo, G Marchegiani, E Sereni, V Corbo, G Paolino, C Ciaparrone, N Hiraoka, D Pallaoro, C Jansen, M Milella, R Salvia, RT Lawlor, V Adsay, A Scarpa, C Luchini. Integrative characterization of intraductal tubulopapillary neoplasm (ITPN) of the pancreas and associated invasive adenocarcinoma. Mod Pathol 2022; 35(12): 1929–1943
https://doi.org/10.1038/s41379-022-01143-2
132 H Yamaguchi, M Shimizu, S Ban, I Koyama, T Hatori, I Fujita, M Yamamoto, S Kawamura, M Kobayashi, K Ishida, T Morikawa, F Motoi, M Unno, A Kanno, K Satoh, T Shimosegawa, H Orikasa, T Watanabe, K Nishimura, Y Ebihara, N Koike, T Furukawa. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2009; 33(8): 1164–1172
https://doi.org/10.1097/PAS.0b013e3181a162e5
133 G Paolino, I Esposito, SM Hong, O Basturk, P Mattiolo, T Kaneko, N Veronese, A Scarpa, V Adsay, C Luchini. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology 2022; 81(3): 297–309
https://doi.org/10.1111/his.14698
134 Y Fukunaga, A Fukuda, M Omatsu, M Namikawa, M Sono, T Masuda, O Araki, M Nagao, T Yoshikawa, S Ogawa, Y Hiramatsu, Y Muta, M Tsuda, T Maruno, Y Nakanishi, J Ferrer, T Tsuruyama, T Masui, E Hatano, H Seno. Loss of Arid1a and Pten in pancreatic ductal cells induces intraductal tubulopapillary neoplasm via the YAP/TAZ pathway. Gastroenterology 2022; 163(2): 466–480.e6
https://doi.org/10.1053/j.gastro.2022.04.020
135 O Basturk, MF Berger, H Yamaguchi, V Adsay, G Askan, UK Bhanot, A Zehir, F Carneiro, SM Hong, G Zamboni, E Dikoglu, V Jobanputra, KO Wrzeszczynski, S Balci, P Allen, N Ikari, S Takeuchi, H Akagawa, A Kanno, T Shimosegawa, T Morikawa, F Motoi, M Unno, R Higuchi, M Yamamoto, K Shimizu, T Furukawa, DS Klimstra. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Mod Pathol 2017; 30(12): 1760–1772
https://doi.org/10.1038/modpathol.2017.60
136 K Sakihama, Y Koga, T Yamamoto, Y Shimada, Y Yamada, J Kawat, K Shindo, M Nakamura, Y Oda. RNF43 as a predictor of malignant transformation of pancreatic mucinous cystic neoplasm. Virchows Arch 2022; 480(6): 1189–1199
https://doi.org/10.1007/s00428-022-03277-9
137 JR Conner, AM Enríquez, MM Kenudso, E Garcia, MB Pitman, LM Sholl, A Srivastava, LA Doyle. Genomic characterization of low- and high-grade pancreatic mucinous cystic neoplasms reveals recurrent kras alterations in “high-risk” lesions. Pancreas 2017; 46(5): 665–671
https://doi.org/10.1097/MPA.0000000000000805
138 Y Maimaitiaili, Y Fukumura, K Hirabayashi, Y Kinowaki, Y Naito, A Saito, L Rong, J Nakahodo, T Yao. Investigation of -PRKACA/-PRKACB fusion genes in oncocytic tumors of the pancreatobiliary and other systems. Virchows Arch 2022; 481(6): 865–876
https://doi.org/10.1007/s00428-022-03415-3
139 AD Singhi, LD Wood, E Parks, MS Torbenson, M Felsenstein, RH Hruban, MN Nikiforova, AI Wald, C Kaya, YE Nikiforov, L Favazza, J He, K McGrath, KE Fasanella, RE Brand, AM Lennon, A Furlan, AK Dasyam, AH Zureikat, HJ Zeh, K Lee, DL Bartlett, A Slivka. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 2020; 158(3): 573–582.e2
https://doi.org/10.1053/j.gastro.2019.10.028
140 T Wang, G Askan, V Adsay, P Allen, WR Jarnagin, B Memis, C Sigel, IE Seven, DS Klimstra, O Basturk. Intraductal oncocytic papillary neoplasms: clinical-pathologic characterization of 24 cases, with an emphasis on associated invasive carcinomas. Am J Surg Pathol 2019; 43(5): 656–661
https://doi.org/10.1097/PAS.0000000000001226
141 RMM Ferreira, R Sancho, HA Messal, E Nye, B Spencer-Dene, RK Stone, G Stamp, I Rosewell, A Quaglia, A Behrens. Duct- and acinar-derived pancreatic ductal adenocarcinomas show distinct tumor progression and marker expression. Cell Rep 2017; 21(4): 966–978
https://doi.org/10.1016/j.celrep.2017.09.093
142 AP Makohon-Moore, K Matsukuma, M Zhang, JG Reiter, JM Gerold, Y Jiao, L Sikkema, MA Attiyeh, S Yachida, C Sandone, RH Hruban, DS Klimstra, N Papadopoulos, MA Nowak, KW Kinzler, B Vogelstein, CA Iacobuzio-Donahue. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 2018; 561(7722): 201–205
https://doi.org/10.1038/s41586-018-0481-8
143 D Hutchings, KM Waters, MJ Weiss, CL Wolfgang, MA Makary, J He, JL Cameron, LD Wood, RH Hruban. Cancerization of the pancreatic ducts: demonstration of a common and under-recognized process using immunolabeling of paired duct lesions and invasive pancreatic ductal adenocarcinoma for p53 and Smad4 expression. Am J Surg Pathol 2018; 42(11): 1556–1561
https://doi.org/10.1097/PAS.0000000000001148
144 Y Matsuda, T Furukawa, S Yachida, M Nishimura, A Seki, K Nonaka, J Aida, K Takubo, T Ishiwata, W Kimura, T Arai, M Mino-Kenudson. The prevalence and clinicopathological characteristics of high-grade pancreatic intraepithelial neoplasia: autopsy study evaluating the entire pancreatic parenchyma. Pancreas 2017; 46(5): 658–664
https://doi.org/10.1097/MPA.0000000000000786
145 M Goggins, RH Hruban, SE Kern. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 2000; 156(5): 1767–1771
https://doi.org/10.1016/S0002-9440(10)65047-X
146 GG Sharma, Y Okada, D Von Hoff, A Goel. Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2021; 75: 153–168
https://doi.org/10.1016/j.semcancer.2020.10.001
147 FN Al-Shaheri, MSS Alhamdani, AS Bauer, N Giese, MW Büchler, T Hackert, JD Hoheisel. Blood biomarkers for differential diagnosis and early detection of pancreatic cancer. Cancer Treat Rev 2021; 96: 102193
https://doi.org/10.1016/j.ctrv.2021.102193
148 G Luo, K Jin, S Deng, H Cheng, Z Fan, Y Gong, Y Qian, Q Huang, Q Ni, C Liu, X Yu. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188409
https://doi.org/10.1016/j.bbcan.2020.188409
149 Y Deng, Z Sun, L Wang, M Wang, J Yang, G Li. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front Med 2022; 16(2): 157–175
https://doi.org/10.1007/s11684-021-0884-z
150 AW Berger, D Schwerdel, A Reinacher-Schick, W Uhl, H Algül, H Friess, KP Janssen, A König, M Ghadimi, E Gallmeier, DK Bartsch, M Geissler, L Staib, A Tannapfel, A Kleger, A Beutel, LA Schulte, M Kornmann, TJ Ettrich, T Seufferlein. A blood-based multi marker assay supports the differential diagnosis of early-stage pancreatic cancer. Theranostics 2019; 9(5): 1280–1287
https://doi.org/10.7150/thno.29247
151 B Thibault, F Ramos-Delgado, E Pons-Tostivint, N Therville, C Cintas, S Arcucci, S Cassant-Sourdy, G Reyes-Castellanos, M Tosolini, AV Villard, C Cayron, R Baer, J Bertrand-Michel, D Pagan, Da Mota D Ferreira, H Yan, C Falcomatà, F Muscari, B Bournet, JP Delord, E Aksoy, A Carrier, P Cordelier, D Saur, C Basset, J Guillermet-Guibert. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Mol Med 2021; 13(7): e13502
https://doi.org/10.15252/emmm.202013502
152 VP Groot, S Mosier, AA Javed, JA Teinor, G Gemenetzis, D Ding, LM Haley, J Yu, RA Burkhart, A Hasanain, M Debeljak, H Kamiyama, A Narang, DA Laheru, L Zheng, MT Lin, CD Gocke, EK Fishman, RH Hruban, MG Goggins, IQ Molenaar, JL Cameron, MJ Weiss, VE Velculescu, J He, CL Wolfgang, JR Eshleman. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res 2019; 25(16): 4973–4984
https://doi.org/10.1158/1078-0432.CCR-19-0197
153 H Li, AR Warden, W Su, J He, X Zhi, K Wang, L Zhu, G Shen, X Ding. Highly sensitive and portable mRNA detection platform for early cancer detection. J Nanobiotechnology 2021; 19(1): 287
https://doi.org/10.1186/s12951-021-01039-4
154 SA Melo, LB Luecke, C Kahlert, AF Fernandez, ST Gammon, J Kaye, VS LeBleu, EA Mittendorf, J Weitz, N Rahbari, C Reissfelder, C Pilarsky, MF Fraga, D Piwnica-Worms, R Kalluri. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177–182
https://doi.org/10.1038/nature14581
155 N Nagata, S Nishijima, Y Kojima, Y Hisada, K Imbe, T Miyoshi-Akiyama, W Suda, M Kimura, R Aoki, K Sekine, M Ohsugi, K Miki, T Osawa, K Ueki, S Oka, M Mizokami, E Kartal, TSB Schmidt, E Molina-Montes, L Estudillo, N Malats, J Trebicka, S Kersting, M Langheinrich, P Bork, N Uemura, T Itoi, T Kawai. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 2022; 163(1): 222–238
https://doi.org/10.1053/j.gastro.2022.03.054
156 Y Pang, C Wang, L Lu, C Wang, Z Sun, R Xiao. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron 2019; 130: 204–213
https://doi.org/10.1016/j.bios.2019.01.039
157 GG Sharma, Y Okada, D Von Hoff, A Goel. Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2021; 75: 153–168
https://doi.org/10.1016/j.semcancer.2020.10.001
158 F Jin, L Yang, W Wang, N Yuan, S Zhan, P Yang, X Chen, T Ma, Y Wang. A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 2021; 20(1): 95
https://doi.org/10.1186/s12943-021-01389-5
159 S Zhan, P Yang, S Zhou, Y Xu, R Xu, G Liang, C Zhang, X Chen, L Yang, F Jin, Y Wang. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16(2): 216–226
https://doi.org/10.1007/s11684-022-0920-7
160 S Majumder, WR Taylor, PH Foote, CK Berger, CW Wu, DW Mahoney, WR Bamlet, KN Burger, N Postier, J de la Fuente, KA Doering, GP Lidgard, HT Allawi, GM Petersen, ST Chari, DA Ahlquist, JB Kisiel. High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9. Clin Cancer Res 2021; 27(9): 2523–2532
https://doi.org/10.1158/1078-0432.CCR-20-0235
161 Y Kim, I Yeo, I Huh, J Kim, D Han, JY Jang, Y Kim. Development and multiple validation of the protein multi-marker panel for diagnosis of pancreatic cancer. Clin Cancer Res 2021; 27(8): 2236–2245
https://doi.org/10.1158/1078-0432.CCR-20-3929
162 UM Mahajan, B Oehrle, S Sirtl, A Alnatsha, E Goni, I Regel, G Beyer, M Vornhülz, J Vielhauer, A Chromik, M Bahra, F Klein, W Uhl, T Fahlbusch, M Distler, J Weitz, R Grützmann, C Pilarsky, FU Weiss, MG Adam, JP Neoptolemos, H Kalthoff, R Rad, N Christiansen, B Bethan, B Kamlage, MM Lerch, J Mayerle. Independent validation and assay standardization of improved metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gastroenterology 2022; 163(5): 1407–1422
https://doi.org/10.1053/j.gastro.2022.07.047
163 H Nam, SS Hong, KH Jung, S Kang, MS Park, S Kang, HS Kim, VH Mai, J Kim, H Lee, W Lee, YJ Suh, JH Lim, SY Kim, SC Kim, SH Kim, S Park. A serum marker for early pancreatic cancer with a possible link to diabetes. J Natl Cancer Inst 2022; 114(2): 228–234
https://doi.org/10.1093/jnci/djab191
164 D Wolrab, R Jirásko, E Cífková, M Höring, D Mei, M Chocholoušková, O Peterka, J Idkowiak, T Hrnčiarová, L Kuchař, R Ahrends, R Brumarová, D Friedecký, G Vivo-Truyols, P Škrha, J Škrha, R Kučera, B Melichar, G Liebisch, R Burkhardt, MR Wenk, A Cazenave-Gassiot, P Karásek, I Novotný, K Greplová, R Hrstka, M Holčapek. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022; 13(1): 124
https://doi.org/10.1038/s41467-021-27765-9
165 B Staal, Y Liu, D Barnett, P Hsueh, Z He, C Gao, K Partyka, MW Hurd, AD Singhi, RR Drake, Y Huang, A Maitra, RE Brand, BB Haab. The sTRA plasma biomarker: blinded validation of improved accuracy over CA19-9 in pancreatic cancer diagnosis. Clin Cancer Res 2019; 25(9): 2745–2754
https://doi.org/10.1158/1078-0432.CCR-18-3310
166 S Debernardi, H O’Brien, AS Algahmdi, N Malats, GD Stewart, M Plješa-Ercegovac, E Costello, W Greenhalf, A Saad, R Roberts, A Ney, SP Pereira, HM Kocher, S Duffy, O Blyuss, T Crnogorac-Jurcevic. A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: a case-control study. PLoS Med 2020; 17(12): e1003489
https://doi.org/10.1371/journal.pmed.1003489
167 K Nesteruk, IJM Levink, E de Vries, IJ Visser, MP Peppelenbosch, DL Cahen, GM Fuhler, MJ Bruno. Extracellular vesicle-derived microRNAs in pancreatic juice as biomarkers for detection of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22(5): 626–635
https://doi.org/10.1016/j.pan.2022.04.010
168 E Kartal, TSB Schmidt, E Molina-Montes, S Rodríguez-Perales, J Wirbel, OM Maistrenko, WA Akanni, Alhamwe B Alashkar, RJ Alves, A Carrato, HP Erasmus, L Estudillo, F Finkelmeier, A Fullam, AM Glazek, P Gómez-Rubio, R Hercog, F Jung, S Kandels, S Kersting, M Langheinrich, M Márquez, X Molero, A Orakov, Rossum T Van, R Torres-Ruiz, A Telzerow, K; MAGIC Study investigators; PanGenEU Study investigators; Benes V Zych, G Zeller, J Trebicka, FX Real, N Malats, P Bork. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71(7): 1359–1372
https://doi.org/10.1136/gutjnl-2021-324755
169 KN Kelly, FI Macedo, NB Merchant. Neoadjuvant therapy. Adv Surg 2020; 54: 49–68
https://doi.org/10.1016/j.yasu.2020.05.001
170 Y Du, Y Ma, Q Zhu, Y Fu, Y Li, Y Zhang, M Li, F Feng, P Yuan, X Wang. GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma. Front Med 2023; 17(1): 119–131
https://doi.org/10.1007/s11684-022-0949-7
171 M Capula, M Perán, G Xu, V Donati, D Yee, A Gregori, YG Assaraf, E Giovannetti, D Deng. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat 2022; 64: 100864
https://doi.org/10.1016/j.drup.2022.100864
172 M Erkan, J Kleeff, A Gorbachevski, C Reiser, T Mitkus, I Esposito, T Giese, MW Büchler, NA Giese, H Friess. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 2007; 132(4): 1447–1464
https://doi.org/10.1053/j.gastro.2007.01.031
173 M Yu, IF Tannock. Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer?. Cancer Cell 2012; 21(3): 327–329
https://doi.org/10.1016/j.ccr.2012.03.002
174 H Chamma, IK Vila, C Taffoni, A Turtoi, N Laguette. Activation of STING in the pancreatic tumor microenvironment: a novel therapeutic opportunity. Cancer Lett 2022; 538: 215694
https://doi.org/10.1016/j.canlet.2022.215694
175 Y Huang, M Kanada, J Ye, Y Deng, Q He, Z Lei, Y Chen, Y Li, P Qin, J Zhang, J Wei. Exosome-mediated remodeling of the tumor microenvironment: from local to distant intercellular communication. Cancer Lett 2022; 543: 215796
https://doi.org/10.1016/j.canlet.2022.215796
176 N Starling, EA Hawkes, I Chau, D Watkins, J Thomas, J Webb, G Brown, K Thomas, Y Barbachano, J Oates, D Cunningham. A dose escalation study of gemcitabine plus oxaliplatin in combination with imatinib for gemcitabine-refractory advanced pancreatic adenocarcinoma. Ann Oncol 2012; 23(4): 942–947
https://doi.org/10.1093/annonc/mdr317
177 C Hu, R Xia, X Zhang, T Li, Y Ye, G Li, R He, Z Li, Q Lin, S Zheng, R Chen. circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer 2022; 21(1): 24
https://doi.org/10.1186/s12943-022-01501-3
178 S Malik, JM Westcott, RA Brekken, FJ Burrows. CXCL12 in pancreatic cancer: its function and potential as a therapeutic drug target. Cancers (Basel) 2021; 14(1): 86
https://doi.org/10.3390/cancers14010086
179 L Wei, Q Lin, Y Lu, G Li, L Huang, Z Fu, R Chen, Q Zhou. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis 2021; 12(4): 334
https://doi.org/10.1038/s41419-021-03574-2
180 X Zhang, S Zheng, C Hu, G Li, H Lin, R Xia, Y Ye, R He, Z Li, Q Lin, R Chen, Q Zhou. Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene 2022; 41(16): 2372–2389
https://doi.org/10.1038/s41388-022-02253-6
181 Y Guo, H Wu, J Xiong, S Gou, J Cui, T Peng. miR-222-3p-containing macrophage-derived extracellular vesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway in pancreatic cancer. Cell Biol Toxicol 2023; 39(4): 1203–1214
https://doi.org/10.1007/s10565-022-09736-y
182 CJ Halbrook, C Pontious, I Kovalenko, L Lapienyte, S Dreyer, HJ Lee, G Thurston, Y Zhang, J Lazarus, P Sajjakulnukit, HS Hong, DM Kremer, BS Nelson, S Kemp, L Zhang, D Chang, A Biankin, J Shi, TL Frankel, HC Crawford, JP Morton, M Pasca di Magliano, CA Lyssiotis. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab 2019; 29(6): 1390–1399.e6
https://doi.org/10.1016/j.cmet.2019.02.001
183 W Huanwen, L Zhiyong, S Xiaohua, R Xinyu, W Kai, L Tonghua. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer 2009; 8: 125
https://doi.org/10.1186/1476-4598-8-125
184 KE Richards, AE Zeleniak, ML Fishel, J Wu, LE Littlepage, R Hill. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 2017; 36(13): 1770–1778
https://doi.org/10.1038/onc.2016.353
185 KE Richards, W Xiao, R Hill, Behalf Of The Usc Pancreas Research Team On. Cancer-associated fibroblasts confer gemcitabine resistance to pancreatic cancer cells through PTEN-targeting miRNAs in exosomes. Cancers (Basel) 2022; 14(11): 2812
https://doi.org/10.3390/cancers14112812
186 GK Patel, MA Khan, A Bhardwaj, SK Srivastava, H Zubair, MC Patton, S Singh, M Khushman, AP Singh. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 2017; 116(5): 609–619
https://doi.org/10.1038/bjc.2017.18
187 MK Chan, JY Chung, PC Tang, AS Chan, JY Ho, TP Lin, J Chen, KT Leung, KF To, HY Lan, PM Tang. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550: 215925
https://doi.org/10.1016/j.canlet.2022.215925
188 M Cioffi, SM Trabulo, Y Sanchez-Ripoll, I Miranda-Lorenzo, E Lonardo, J Dorado, Vieira C Reis, JC Ramirez, M Hidalgo, A Aicher, S Hahn, B Jr Sainz, C Heeschen. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015; 64(12): 1936–1948
https://doi.org/10.1136/gutjnl-2014-308470
189 MC Yang, HC Wang, YC Hou, HL Tung, TJ Chiu, YS Shan. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 2015; 14(1): 179
https://doi.org/10.1186/s12943-015-0449-3
190 X Zheng, JL Carstens, J Kim, M Scheible, J Kaye, H Sugimoto, CC Wu, VS LeBleu, R Kalluri. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527(7579): 525–530
https://doi.org/10.1038/nature16064
191 B Tang, Y Yang, M Kang, Y Wang, Y Wang, Y Bi, S He, F Shimamoto. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 2020; 19(1): 3
https://doi.org/10.1186/s12943-019-1128-6
192 M Akada, T Crnogorac-Jurcevic, S Lattimore, P Mahon, R Lopes, M Sunamura, S Matsuno, NR Lemoine. Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 2005; 11(8): 3094–3101
https://doi.org/10.1158/1078-0432.CCR-04-1785
193 J Gu, W Huang, X Wang, J Zhang, T Tao, Y Zheng, S Liu, J Yang, ZS Chen, CY Cai, J Li, H Wang, Y Fan. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemcitabine resistance in pancreatic cancer. Mol Cancer 2022; 21(1): 112
https://doi.org/10.1186/s12943-022-01587-9
194 C Zhou, C Yi, Y Yi, W Qin, Y Yan, X Dong, X Zhang, Y Huang, R Zhang, J Wei, DW Ali, M Michalak, XZ Chen, J Tang. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 2020; 19: 118
https://doi.org/10.1186/s12943-020-01237-y
195 G Xiong, C Liu, G Yang, M Feng, J Xu, F Zhao, L You, L Zhou, L Zheng, Y Hu, X Wang, T Zhang, Y Zhao. Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. J Hematol Oncol 2019; 12(1): 97
https://doi.org/10.1186/s13045-019-0777-7
196 ZW Chen, JF Hu, ZW Wang, CY Liao, FP Kang, CF Lin, Y Huang, L Huang, YF Tian, S Chen. Circular RNA circ-MTHFD1L induces HR repair to promote gemcitabine resistance via the miR-615-3p/RPN6 axis in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41(1): 153
https://doi.org/10.1186/s13046-022-02343-z
197 M Tu, H Li, N Lv, C Xi, Z Lu, J Wei, J Chen, F Guo, K Jiang, G Song, W Gao, Y Miao. Vasohibin 2 reduces chemosensitivity to gemcitabine in pancreatic cancer cells via Jun proto-oncogene dependent transactivation of ribonucleotide reductase regulatory subunit M2. Mol Cancer 2017; 16(1): 66
https://doi.org/10.1186/s12943-017-0619-6
198 H Jr Biliran, Y Wang, S Banerjee, H Xu, H Heng, A Thakur, A Bollig, FH Sarkar, JD Liao. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 2005; 11(16): 6075–6086
https://doi.org/10.1158/1078-0432.CCR-04-2419
199 D Melisi, Q Xia, G Paradiso, J Ling, T Moccia, C Carbone, A Budillon, JL Abbruzzese, PJ Chiao. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 2011; 103(15): 1190–1204
https://doi.org/10.1093/jnci/djr243
200 BE Kadera, PA Toste, N Wu, L Li, AH Nguyen, DW Dawson, TR Donahue. Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res 2015; 21(1): 157–165
https://doi.org/10.1158/1078-0432.CCR-14-0610
201 L Wu, Y Ge, Y Yuan, H Li, H Sun, C Xu, Y Wang, T Zhao, X Wang, J Liu, S Gao, A Chang, J Hao, C Huang. Genome-wide CRISPR screen identifies MTA3 as an inducer of gemcitabine resistance in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548: 215864
https://doi.org/10.1016/j.canlet.2022.215864
202 P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front Med 2022; 16(3): 322–338
https://doi.org/10.1007/s11684-021-0901-2
203 P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front Med 2022; 16(3): 322–338
https://doi.org/10.1007/s11684-021-0901-2
204 K Yang, J Li, L Zhao, Z Sun, C Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors. Front Med 2022; 16(5): 773–783
https://doi.org/10.1007/s11684-021-0902-1
205 R Xu, S Du, J Zhu, F Meng, B Liu. Neoantigen-targeted TCR-T cell therapy for solid tumors: how far from clinical application. Cancer Lett 2022; 546: 215840
https://doi.org/10.1016/j.canlet.2022.215840
206 B Bockorny, JE Grossman, M Hidalgo. Facts and hopes in immunotherapy of pancreatic cancer. Clin Cancer Res 2022; 28(21): 4606–4617
https://doi.org/10.1158/1078-0432.CCR-21-3452
207 YH Zhu, JH Zheng, QY Jia, ZH Duan, HF Yao, J Yang, YW Sun, SH Jiang, DJ Liu, YM Huo. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46(1): 17–48
https://doi.org/10.1007/s13402-022-00741-1
208 L Ostios-Garcia, J Villamayor, E Garcia-Lorenzo, D Vinal, J Feliu. Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer. World J Gastroenterol 2021; 27(40): 6775–6793
https://doi.org/10.3748/wjg.v27.i40.6775
209 TW Chen, WZ Hung, SF Chiang, WT Chen, TW Ke, JA Liang, CY Huang, PC Yang, KC Huang, KSC Chao. Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 2022; 543: 215795
https://doi.org/10.1016/j.canlet.2022.215795
210 K Hadlandsmyth, M Conrad, KS Steffensmeier, J Van Tiem, A Obrecht, JJ Cullen, MW Vander Weg. Enhancing the biopsychosocial approach to perioperative care: a pilot randomized trial of the perioperative pain self-management (PePS) intervention. Ann Surg 2022; 275(1): e8–e14
https://doi.org/10.1097/SLA.0000000000004671
211 H Wang, Q Shao, J Wang, L Zhao, L Wang, Z Cheng, C Yue, W Chen, H Wang, Y Zhang. Decreased CXCR2 expression on circulating monocytes of colorectal cancer impairs recruitment and induces Re-education of tumor-associated macrophages. Cancer Lett 2022; 529: 112–125
https://doi.org/10.1016/j.canlet.2022.01.004
212 QY Chen, B Gao, D Tong, C Huang. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552: 215979
https://doi.org/10.1016/j.canlet.2022.215979
213 Y Pylayeva-Gupta, KE Lee, CH Hajdu, G Miller, D Bar-Sagi. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21(6): 836–847
https://doi.org/10.1016/j.ccr.2012.04.024
214 P Monti, BE Leone, F Marchesi, G Balzano, A Zerbi, F Scaltrini, C Pasquali, G Calori, F Pessi, C Sperti, V Di Carlo, P Allavena, L Piemonti. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63(21): 7451–7461
215 J Li, KT Byrne, F Yan, T Yamazoe, Z Chen, T Baslan, LP Richman, JH Lin, YH Sun, AJ Rech, D Balli, CA Hay, Y Sela, AJ Merrell, SM Liudahl, N Gordon, RJ Norgard, S Yuan, S Yu, T Chao, S Ye, TSK Eisinger-Mathason, RB Faryabi, JW Tobias, SW Lowe, LM Coussens, EJ Wherry, RH Vonderheide, BZ Stanger. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 2018; 49(1): 178–193.e7
https://doi.org/10.1016/j.immuni.2018.06.006
216 A Zhang, Y Qian, Z Ye, H Chen, H Xie, L Zhou, Y Shen, S Zheng. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med 2017; 6(2): 463–470
https://doi.org/10.1002/cam4.993
217 X Yang, Y Lin, Y Shi, B Li, W Liu, W Yin, Y Dang, Y Chu, J Fan, R He. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res 2016; 76(14): 4124–4135
https://doi.org/10.1158/0008-5472.CAN-15-2973
218 Y Yu. Multi-target combinatory strategy to overcome tumor immune escape. Front Med 2022; 16(2): 208–215
https://doi.org/10.1007/s11684-022-0922-5
219 B Traub, KH Link, M Kornmann. Curing pancreatic cancer. Semin Cancer Biol 2021; 76: 232–246
https://doi.org/10.1016/j.semcancer.2021.05.030
220 T Hackert, M Sachsenmaier, U Hinz, L Schneider, CW Michalski, C Springfeld, O Strobel, D Jäger, A Ulrich, MW Büchler. Locally advanced pancreatic cancer: neoadjuvant therapy with folfirinox results in resectability in 60% of the patients. Ann Surg 2016; 264(3): 457–463
https://doi.org/10.1097/SLA.0000000000001850
221 JE Murphy, JY Wo, DP Ryan, JW Clark, W Jiang, BY Yeap, LC Drapek, L Ly, CV Baglini, LS Blaszkowsky, CR Ferrone, AR Parikh, CD Weekes, RD Nipp, EL Kwak, JN Allen, RB Corcoran, DT Ting, JE Faris, AX Zhu, L Goyal, DL Berger, M Qadan, KD Lillemoe, N Talele, RK Jain, TF DeLaney, DG Duda, Y Boucher, Castillo C Fernández-Del, TS Hong. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol 2019; 5(7): 1020–1027
https://doi.org/10.1001/jamaoncol.2019.0892
222 JE Murphy, JY Wo, DP Ryan, W Jiang, BY Yeap, LC Drapek, LS Blaszkowsky, EL Kwak, JN Allen, JW Clark, JE Faris, AX Zhu, L Goyal, KD Lillemoe, TF DeLaney, Castillo C Fernández-Del, CR Ferrone, TS Hong. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol 2018; 4(7): 963–969
https://doi.org/10.1001/jamaoncol.2018.0329
223 T Hackert, W Niesen, U Hinz, C Tjaden, O Strobel, A Ulrich, CW Michalski, MW Büchler. Radical surgery of oligometastatic pancreatic cancer. Eur J Surg Oncol 2017; 43(2): 358–363
https://doi.org/10.1016/j.ejso.2016.10.023
224 M Tachezy, F Gebauer, M Janot, W Uhl, A Zerbi, M Montorsi, J Perinel, M Adham, C Dervenis, C Agalianos, G Malleo, L Maggino, A Stein, JR Izbicki, M Bockhorn. Synchronous resections of hepatic oligometastatic pancreatic cancer: disputing a principle in a time of safe pancreatic operations in a retrospective multicenter analysis. Surgery 2016; 160(1): 136–144
https://doi.org/10.1016/j.surg.2016.02.019
225 O Strobel, J Neoptolemos, D Jäger, MW Büchler. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11–26
https://doi.org/10.1038/s41571-018-0112-1
226 JW Valle, D Palmer, R Jackson, T Cox, JP Neoptolemos, P Ghaneh, CL Rawcliffe, C Bassi, DD Stocken, D Cunningham, D O’Reilly, D Goldstein, BA Robinson, C Karapetis, A Scarfe, F Lacaine, J Sand, JR Izbicki, J Mayerle, C Dervenis, A Oláh, G Butturini, PA Lind, MR Middleton, A Anthoney, K Sumpter, R Carter, MW Büchler. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: ongoing lessons from the ESPAC-3 study. J Clin Oncol 2014; 32(6): 504–512
https://doi.org/10.1200/JCO.2013.50.7657
227 I Nassour, SC Wang, A Christie, MM Augustine, MR Porembka, AC Yopp, MA Choti, JC Mansour, XJ Xie, PM Polanco, RM Minter. Minimally invasive versus open pancreaticoduodenectomy: a propensity-matched study from a national cohort of patients. Ann Surg 2018; 268(1): 151–157
https://doi.org/10.1097/SLA.0000000000002259
228 M Raoof, PHG Ituarte, Y Woo, SG Warner, G Singh, Y Fong, L Melstrom. Propensity score-matched comparison of oncological outcomes between laparoscopic and open distal pancreatic resection. Br J Surg 2018; 105(5): 578–586
https://doi.org/10.1002/bjs.10747
229 Hilst J van, Rooij T de, S Klompmaker, M Rawashdeh, F Aleotti, B Al-Sarireh, A Alseidi, Z Ateeb, G Balzano, F Berrevoet, B Björnsson, U Boggi, OR Busch, G Butturini, R Casadei, Chiaro M Del, S Chikhladze, F Cipriani, Dam R van, I Damoli, Dieren S van, S Dokmak, B Edwin, Eijck C van, JM Fabre, M Falconi, O Farges, L Fernández-Cruz, A Forgione, I Frigerio, D Fuks, F Gavazzi, B Gayet, A Giardino, Koerkamp B Groot, T Hackert, M Hassenpflug, I Kabir, T Keck, I Khatkov, M Kusar, C Lombardo, G Marchegiani, R Marshall, KV Menon, M Montorsi, M Orville, Pastena M de, A Pietrabissa, I Poves, J Primrose, R Pugliese, C Ricci, K Roberts, B Røsok, MA Sahakyan, S Sánchez-Cabús, P Sandström, L Scovel, L Solaini, Z Soonawalla, FR Souche, RP Sutcliffe, GA Tiberio, A Tomazic, R Troisi, U Wellner, S White, UA Wittel, A Zerbi, C Bassi, MG Besselink, Hilal M; European Consortium on Minimally Invasive Pancreatic Surgery (E-MIPS) Abu. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (DIPLOMA): a pan-European propensity score matched study. Ann Surg 2019; 269(1): 10–17
https://doi.org/10.1097/SLA.0000000000002561
230 MA Tempero, MP Malafa, M Al-Hawary, SW Behrman, AB Benson, DB Cardin, EG Chiorean, V Chung, B Czito, M Del Chiaro, M Dillhoff, TR Donahue, E Dotan, CR Ferrone, C Fountzilas, J Hardacre, WG Hawkins, K Klute, AH Ko, JW Kunstman, N LoConte, AM Lowy, C Moravek, EK Nakakura, AK Narang, J Obando, PM Polanco, S Reddy, M Reyngold, C Scaife, J Shen, C Vollmer, RA Wolff, BM Wolpin, B Lynn, GV George. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19(4): 439–457
https://doi.org/10.6004/jnccn.2021.0017
231 Y Zhang, C Yang, H Cheng, Z Fan, Q Huang, Y Lu, K Fan, G Luo, K Jin, Z Wang, C Liu, X Yu. Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions. J Hematol Oncol 2018; 11(1): 14
https://doi.org/10.1186/s13045-017-0551-7
232 S Jones, X Zhang, DW Parsons, JC Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, H Kamiyama, A Jimeno, SM Hong, B Fu, MT Lin, ES Calhoun, M Kamiyama, K Walter, T Nikolskaya, Y Nikolsky, J Hartigan, DR Smith, M Hidalgo, SD Leach, AP Klein, EM Jaffee, M Goggins, A Maitra, C Iacobuzio-Donahue, JR Eshleman, SE Kern, RH Hruban, R Karchin, N Papadopoulos, G Parmigiani, B Vogelstein, VE Velculescu, KW Kinzler. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801–1806
https://doi.org/10.1126/science.1164368
233 J Zhong, H Bai, Z Wang, J Duan, W Zhuang, D Wang, R Wan, J Xu, K Fei, Z Ma, X Zhang, J Wang. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17(1): 18–42
https://doi.org/10.1007/s11684-022-0976-4
234 H Zhao, F Luo, J Xue, S Li, RH Xu. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828
https://doi.org/10.1007/s11684-021-0886-x
235 JQ Mi, J Xu, J Zhou, W Zhao, Z Chen, JJ Melenhorst, S Chen. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Front Med 2021; 15(6): 783–804
https://doi.org/10.1007/s11684-021-0904-z
236 S Chen, W Zhao, J Li, D; Lymphoid Disease Group Wu, Society of Hematology Chinese, Medical Association Chinese. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition). Front Med 2022; 16(5): 815–826
https://doi.org/10.1007/s11684-021-0891-0
237 AS Bear, RH Vonderheide, MH O’Hara. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 2020; 38(6): 788–802
https://doi.org/10.1016/j.ccell.2020.08.004
238 Y Li, S Wang, M Lin, C Hou, C Li, G Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Front Med 2022; 16(3): 307–321
https://doi.org/10.1007/s11684-022-0927-0
239 T Heumann, C Judkins, K Li, SJ Lim, J Hoare, R Parkinson, H Cao, T Zhang, J Gai, B Celiker, Q Zhu, T McPhaul, J Durham, K Purtell, R Klein, D Laheru, A De Jesus-Acosta, DT Le, A Narang, R Anders, R Burkhart, W Burns, K Soares, C Wolfgang, E Thompson, E Jaffee, H Wang, J He, L Zheng. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat Commun 2023; 14(1): 3650
https://doi.org/10.1038/s41467-023-39196-9
[1] Kohei Miyazono, Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
[2] Shao-Ming WANG, Jing LI, You-Lin QIAO. HPV prevalence and genotyping in the cervix of Chinese women[J]. Front Med Chin, 2010, 4(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed