|
|
Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges |
Zhichen Jiang1,2, Xiaohao Zheng3,4, Min Li5( ), Mingyang Liu1( ) |
1. State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 2. Department of General Surgery, Division of Gastroenterology and Pancreas, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China 3. Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China 4. Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China 5. Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA |
|
|
Abstract Pancreatic cancer, notorious for its late diagnosis and aggressive progression, poses a substantial challenge owing to scarce treatment alternatives. This review endeavors to furnish a holistic insight into pancreatic cancer, encompassing its epidemiology, genomic characterization, risk factors, diagnosis, therapeutic strategies, and treatment resistance mechanisms. We delve into identifying risk factors, including genetic predisposition and environmental exposures, and explore recent research advancements in precursor lesions and molecular subtypes of pancreatic cancer. Additionally, we highlight the development and application of multi-omics approaches in pancreatic cancer research and discuss the latest combinations of pancreatic cancer biomarkers and their efficacy. We also dissect the primary mechanisms underlying treatment resistance in this malignancy, illustrating the latest therapeutic options and advancements in the field. Conclusively, we accentuate the urgent demand for more extensive research to enhance the prognosis for pancreatic cancer patients.
|
Keywords
pancreatic cancer
cancer screening
single cell
molecular alterations
precancerous lesion
therapy resistance
|
Corresponding Author(s):
Min Li,Mingyang Liu
|
Just Accepted Date: 07 December 2023
Online First Date: 22 December 2023
Issue Date: 06 February 2024
|
|
1 |
L Rahib, MR Wehner, LM Matrisian, KT Nead. Estimated projection of US cancer incidence and death to 2040. JAMA Netw Open 2021; 4(4): e214708
https://doi.org/10.1001/jamanetworkopen.2021.4708
|
2 |
RL Siegel, KD Miller, HE Fuchs, A Jemal. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7–33
https://doi.org/10.3322/caac.21654
|
3 |
JD Mizrahi, R Surana, JW Valle, RT Shroff. Pancreatic cancer. Lancet 2020; 395(10242): 2008–2020
https://doi.org/10.1016/S0140-6736(20)30974-0
|
4 |
W Park, A Chawla, EM O’Reilly. Pancreatic cancer: a review. JAMA 2021; 326(9): 851–862
https://doi.org/10.1001/jama.2021.13027
|
5 |
J Huang, V Lok, CH Ngai, L Zhang, J Yuan, XQ Lao, K Ng, C Chong, ZJ Zheng, MCS Wong. Worldwide burden of, risk factors for, and trends in pancreatic cancer. Gastroenterology 2021; 160(3): 744–754
https://doi.org/10.1053/j.gastro.2020.10.007
|
6 |
P Maisonneuve, AB Lowenfels. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol 2015; 44(1): 186–198
https://doi.org/10.1093/ije/dyu240
|
7 |
SM Lynch, A Vrieling, JH Lubin, P Kraft, JB Mendelsohn, P Hartge, F Canzian, E Steplowski, AA Arslan, M Gross, K Helzlsouer, EJ Jacobs, A LaCroix, G Petersen, W Zheng, D Albanes, L Amundadottir, SA Bingham, P Boffetta, MC Boutron-Ruault, SJ Chanock, S Clipp, RN Hoover, K Jacobs, KC Johnson, C Kooperberg, J Luo, C Messina, D Palli, AV Patel, E Riboli, XO Shu, Suarez L Rodriguez, G Thomas, A Tjønneland, GS Tobias, E Tong, D Trichopoulos, J Virtamo, W Ye, K Yu, A Zeleniuch-Jacquette, HB Bueno-de-Mesquita, RZ Stolzenberg-Solomon. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol 2009; 170(4): 403–413
https://doi.org/10.1093/aje/kwp134
|
8 |
Y Pang, C Kartsonaki, Y Guo, F Bragg, L Yang, Z Bian, Y Chen, A Iona, IY Millwood, J Lv, C Yu, J Chen, L Li, MV Holmes, Z Chen. Diabetes, plasma glucose and incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 2017; 140(8): 1781–1788
https://doi.org/10.1002/ijc.30599
|
9 |
MI Canto, JA Almario, RD Schulick, CJ Yeo, A Klein, A Blackford, EJ Shin, A Sanyal, G Yenokyan, AM Lennon, IR Kamel, EK Fishman, C Wolfgang, M Weiss, RH Hruban, M Goggins. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology 2018; 155(3): 740–751.e2
https://doi.org/10.1053/j.gastro.2018.05.035
|
10 |
JE Corral, KF Mareth, DL Riegert-Johnson, A Das, MB Wallace. Diagnostic yield from screening asymptomatic individuals at high risk for pancreatic cancer: a meta-analysis of cohort studies. Clin Gastroenterol Hepatol 2019; 17(1): 41–53
https://doi.org/10.1016/j.cgh.2018.04.065
|
11 |
C Yuan, A Babic, N Khalaf, JA Nowak, LK Brais, DA Rubinson, K Ng, AJ Aguirre, PV Pandharipande, CS Fuchs, EL Giovannucci, MJ Stampfer, MH Rosenthal, C Sander, P Kraft, BM Wolpin. Diabetes, weight change, and pancreatic cancer risk. JAMA Oncol 2020; 6(10): e202948
https://doi.org/10.1001/jamaoncol.2020.2948
|
12 |
ST Chari, CL Leibson, KG Rabe, J Ransom, M de Andrade, GM Petersen. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 2005; 129(2): 504–511
https://doi.org/10.1016/j.gastro.2005.05.007
|
13 |
S Gupta, E Vittinghoff, D Bertenthal, D Corley, H Shen, LC Walter, K McQuaid. New-onset diabetes and pancreatic cancer. Clin Gastroenterol Hepatol 2006; 4(11): 1366–1372
https://doi.org/10.1016/j.cgh.2006.06.024
|
14 |
S Munigala, A Singh, A Gelrud, B Agarwal. Predictors for pancreatic cancer diagnosis following new-onset diabetes mellitus. Clin Transl Gastroenterol 2015; 6(10): e118
https://doi.org/10.1038/ctg.2015.44
|
15 |
EJ Duell, E Lucenteforte, SH Olson, PM Bracci, D Li, HA Risch, DT Silverman, BT Ji, S Gallinger, EA Holly, EH Fontham, P Maisonneuve, HB Bueno-de-Mesquita, P Ghadirian, RC Kurtz, E Ludwig, H Yu, AB Lowenfels, D Seminara, GM Petersen, C La Vecchia, P Boffetta. Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 2012; 23(11): 2964–2970
https://doi.org/10.1093/annonc/mds140
|
16 |
J Cai, H Chen, M Lu, Y Zhang, B Lu, L You, T Zhang, M Dai, Y Zhao. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett 2021; 520: 1–11
https://doi.org/10.1016/j.canlet.2021.06.027
|
17 |
C Bosetti, E Lucenteforte, DT Silverman, G Petersen, PM Bracci, BT Ji, E Negri, D Li, HA Risch, SH Olson, S Gallinger, AB Miller, HB Bueno-de-Mesquita, R Talamini, J Polesel, P Ghadirian, PA Baghurst, W Zatonski, E Fontham, WR Bamlet, EA Holly, P Bertuccio, YT Gao, M Hassan, H Yu, RC Kurtz, M Cotterchio, J Su, P Maisonneuve, EJ Duell, P Boffetta, C La Vecchia. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol 2012; 23(7): 1880–1888
https://doi.org/10.1093/annonc/mdr541
|
18 |
S Iodice, S Gandini, P Maisonneuve, AB Lowenfels. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg 2008; 393(4): 535–545
https://doi.org/10.1007/s00423-007-0266-2
|
19 |
H Sung, RL Siegel, PS Rosenberg, A Jemal. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 2019; 4(3): e137–e147
https://doi.org/10.1016/S2468-2667(18)30267-6
|
20 |
JW Elena, E Steplowski, K Yu, P Hartge, GS Tobias, MJ Brotzman, SJ Chanock, RZ Stolzenberg-Solomon, AA Arslan, HB Bueno-de-Mesquita, K Helzlsouer, EJ Jacobs, A LaCroix, G Petersen, W Zheng, D Albanes, NE Allen, L Amundadottir, Y Bao, H Boeing, MC Boutron-Ruault, JE Buring, JM Gaziano, EL Giovannucci, EJ Duell, G Hallmans, BV Howard, DJ Hunter, A Hutchinson, KB Jacobs, C Kooperberg, P Kraft, JB Mendelsohn, DS Michaud, D Palli, LS Phillips, K Overvad, AV Patel, L Sansbury, XO Shu, MS Simon, N Slimani, D Trichopoulos, K Visvanathan, J Virtamo, BM Wolpin, A Zeleniuch-Jacquotte, CS Fuchs, RN Hoover, M Gross. Diabetes and risk of pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Cancer Causes Control 2013; 24(1): 13–25
https://doi.org/10.1007/s10552-012-0078-8
|
21 |
C Bosetti, V Rosato, D Li, D Silverman, GM Petersen, PM Bracci, RE Neale, J Muscat, K Anderson, S Gallinger, SH Olson, AB Miller, H Bas Bueno-de-Mesquita, G Scelo, V Janout, I Holcatova, P Lagiou, D Serraino, E Lucenteforte, E Fabianova, PA Baghurst, W Zatonski, L Foretova, E Fontham, WR Bamlet, EA Holly, E Negri, M Hassan, A Prizment, M Cotterchio, S Cleary, RC Kurtz, P Maisonneuve, D Trichopoulos, J Polesel, EJ Duell, P Boffetta, C La Vecchia, P Ghadirian. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol 2014; 25(10): 2065–2072
https://doi.org/10.1093/annonc/mdu276
|
22 |
JM Genkinger, D Spiegelman, KE Anderson, L Bergkvist, L Bernstein, den Brandt PA van, DR English, JL Freudenheim, CS Fuchs, GG Giles, E Giovannucci, SE Hankinson, PL Horn-Ross, M Leitzmann, S Männistö, JR Marshall, ML McCullough, AB Miller, DJ Reding, K Robien, TE Rohan, A Schatzkin, VL Stevens, RZ Stolzenberg-Solomon, BA Verhage, A Wolk, RG Ziegler, SA Smith-Warner. Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev 2009; 18(3): 765–776
https://doi.org/10.1158/1055-9965.EPI-08-0880
|
23 |
D Yadav, AB Lowenfels. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013; 144(6): 1252–1261
https://doi.org/10.1053/j.gastro.2013.01.068
|
24 |
JH Xu, JJ Fu, XL Wang, JY Zhu, XH Ye, SD Chen. Hepatitis B or C viral infection and risk of pancreatic cancer: a meta-analysis of observational studies. World J Gastroenterol 2013; 19(26): 4234–4241
https://doi.org/10.3748/wjg.v19.i26.4234
|
25 |
AB Kamiza, FH Su, WC Wang, FC Sung, SN Chang, CC Yeh. Chronic hepatitis infection is associated with extrahepatic cancer development: a nationwide population-based study in Taiwan. BMC Cancer 2016; 16(1): 861
https://doi.org/10.1186/s12885-016-2918-5
|
26 |
RD Allison, X Tong, AC Moorman, KN Ly, L Rupp, F Xu, SC Gordon, SD; Chronic Hepatitis Cohort Study (CHeCS) Investigators Holmberg. Increased incidence of cancer and cancer-related mortality among persons with chronic hepatitis C infection, 2006–2010. J Hepatol 2015; 63(4): 822–828
https://doi.org/10.1016/j.jhep.2015.04.021
|
27 |
Abe S Krull, M Inoue, N Sawada, M Iwasaki, T Shimazu, T Yamaji, S Sasazuki, E Saito, Y Tanaka, M Mizokami, S; JPHC Study Group Tsugane. Hepatitis B and C virus infection and risk of pancreatic cancer: a population-based cohort study (JPHC Study Cohort II). Cancer Epidemiol Biomarkers Prev 2016; 25(3): 555–557
https://doi.org/10.1158/1055-9965.EPI-15-1115
|
28 |
J Huang, U Zagai, G Hallmans, O Nyrén, L Engstrand, R Stolzenberg-Solomon, EJ Duell, K Overvad, VA Katzke, R Kaaks, M Jenab, JY Park, R Murillo, A Trichopoulou, P Lagiou, C Bamia, KE Bradbury, E Riboli, D Aune, KK Tsilidis, G Capellá, A Agudo, V Krogh, D Palli, S Panico, E Weiderpass, A Tjønneland, A Olsen, B Martínez, D Redondo-Sanchez, MD Chirlaque, Peeters P Hm, S Regnér, B Lindkvist, A Naccarati, E Ardanaz, N Larrañaga, MC Boutron-Ruault, V Rebours, A Barré, HB Bueno-de-Mesquita, W Ye. Helicobacter pylori infection, chronic corpus atrophic gastritis and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: a nested case-control study. Int J Cancer 2017; 140(8): 1727–1735
https://doi.org/10.1002/ijc.30590
|
29 |
2017 Pancreatic Cancer Collaborators GBD. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2019; 4(12): 934–947
https://doi.org/10.1016/S2468-1253(19)30347-4
|
30 |
M Zaitsu, Y Kim, HE Lee, T Takeuchi, Y Kobayashi, I Kawachi. Occupational class differences in pancreatic cancer survival: a population-based cancer registry-based study in Japan. Cancer Med 2019; 8(6): 3261–3268
https://doi.org/10.1002/cam4.2138
|
31 |
X Fan, AV Alekseyenko, J Wu, BA Peters, EJ Jacobs, SM Gapstur, MP Purdue, CC Abnet, R Stolzenberg-Solomon, G Miller, J Ravel, RB Hayes, J Ahn. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67(1): 120–127
https://doi.org/10.1136/gutjnl-2016-312580
|
32 |
M Cotterchio, E Lowcock, TJ Hudson, C Greenwood, S Gallinger. Association between allergies and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2014; 23(3): 469–480
https://doi.org/10.1158/1055-9965.EPI-13-0965
|
33 |
AD Singhi, H Ishida, SZ Ali, M Goggins, M Canto, C Wolfgang, Z Meriden, N Roberts, AP Klein, RH Hruban. A histomorphologic comparison of familial and sporadic pancreatic cancers. Pancreatology 2015; 15(4): 387–391
https://doi.org/10.1016/j.pan.2015.04.003
|
34 |
KA Overbeek, IJM Levink, BDM Koopmann, F Harinck, ICAW Konings, MGEM Ausems, A Wagner, P Fockens, Eijck CH van, Koerkamp B Groot, ORC Busch, MG Besselink, BAJ Bastiaansen, Driel LMJW van, NS Erler, FP Vleggaar, JW Poley, DL Cahen, Hooft JE van, MJ; Dutch Familial Pancreatic Cancer Surveillance Study Group Bruno. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022; 71(6): 1152–1160
https://doi.org/10.1136/gutjnl-2020-323611
|
35 |
C Wu, X Miao, L Huang, X Che, G Jiang, D Yu, X Yang, G Cao, Z Hu, Y Zhou, C Zuo, C Wang, X Zhang, Y Zhou, X Yu, W Dai, Z Li, H Shen, L Liu, Y Chen, S Zhang, X Wang, K Zhai, J Chang, Y Liu, M Sun, W Cao, J Gao, Y Ma, X Zheng, ST Cheung, Y Jia, J Xu, W Tan, P Zhao, T Wu, C Wang, D Lin. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 2012; 44: 62–66
https://doi.org/10.1038/ng.1020
|
36 |
S Holter, A Borgida, A Dodd, R Grant, K Semotiuk, D Hedley, N Dhani, S Narod, M Akbari, M Moore, S Gallinger. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol 2015; 33(28): 3124–3129
https://doi.org/10.1200/JCO.2014.59.7401
|
37 |
RC Grant, RE Denroche, A Borgida, C Virtanen, N Cook, AL Smith, AA Connor, JM Wilson, G Peterson, NJ Roberts, AP Klein, SM Grimmond, A Biankin, S Cleary, M Moore, M Lemire, G Zogopoulos, L Stein, S Gallinger. Exome-wide association study of pancreatic cancer risk. Gastroenterology 2018; 154(3): 719–722.e3
https://doi.org/10.1053/j.gastro.2017.10.015
|
38 |
C Hu, SN Hart, EC Polley, R Gnanaolivu, H Shimelis, KY Lee, J Lilyquist, J Na, R Moore, SO Antwi, WR Bamlet, KG Chaffee, J DiCarlo, Z Wu, R Samara, PM Kasi, RR McWilliams, GM Petersen, FJ Couch. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018; 319(23): 2401–2409
https://doi.org/10.1001/jama.2018.6228
|
39 |
AP Klein. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol 2021; 18(7): 493–502
https://doi.org/10.1038/s41575-021-00457-x
|
40 |
M Rainone, I Singh, EE Salo-Mullen, ZK Stadler, EM O’Reilly. An emerging paradigm for germline testing in pancreatic ductal adenocarcinoma and immediate implications for clinical practice: a review. JAMA Oncol 2020; 6(5): 764–771
https://doi.org/10.1001/jamaoncol.2019.5963
|
41 |
L Buscail, B Bournet, P Cordelier. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17(3): 153–168
https://doi.org/10.1038/s41575-019-0245-4
|
42 |
K Singh, M Pruski, R Bland, M Younes, S Guha, N Thosani, A Maitra, BD Cash, F McAllister, CD Logsdon, JT Chang, JM Bailey-Lundberg. Kras mutation rate precisely orchestrates ductal derived pancreatic intraepithelial neoplasia and pancreatic cancer. Lab Invest 2021; 101(2): 177–192
https://doi.org/10.1038/s41374-020-00490-5
|
43 |
Genome Atlas Research Network Cancer. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13
https://doi.org/10.1016/j.ccell.2017.07.007
|
44 |
AK Witkiewicz, EA McMillan, U Balaji, G Baek, WC Lin, J Mansour, M Mollaee, KU Wagner, P Koduru, A Yopp, MA Choti, CJ Yeo, P McCue, MA White, ES Knudsen. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 2015; 6(1): 6744
https://doi.org/10.1038/ncomms7744
|
45 |
EM O'Reilly, JF Hechtman. Tumour response to TRK inhibition in a patient with pancreatic adenocarcinoma harbouring an NTRK gene fusion. Ann Oncol 2019; 30(Suppl_8): viii36–viii40
https://doi.org/10.1093/annonc/mdz385
|
46 |
C Heining, P Horak, S Uhrig, PL Codo, B Klink, B Hutter, M Fröhlich, D Bonekamp, D Richter, K Steiger, R Penzel, V Endris, KR Ehrenberg, S Frank, K Kleinheinz, UH Toprak, M Schlesner, R Mandal, L Schulz, H Lambertz, S Fetscher, M Bitzer, NP Malek, M Horger, NA Giese, O Strobel, T Hackert, C Springfeld, L Feuerbach, F Bergmann, E Schröck, Kalle C von, W Weichert, C Scholl, CR Ball, A Stenzinger, B Brors, S Fröhling, H Glimm. NRG1 fusions in KRAS wild-type pancreatic cancer. Cancer Discov 2018; 8(9): 1087–1095
https://doi.org/10.1158/2159-8290.CD-18-0036
|
47 |
MR Jones, LM Williamson, JT Topham, MKC Lee, A Goytain, J Ho, RE Denroche, G Jang, E Pleasance, Y Shen, JM Karasinska, JP McGhie, S Gill, HJ Lim, MJ Moore, HL Wong, T Ng, S Yip, W Zhang, S Sadeghi, C Reisle, AJ Mungall, KL Mungall, RA Moore, Y Ma, JJ Knox, S Gallinger, J Laskin, MA Marra, DF Schaeffer, SJM Jones, DJ Renouf. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res 2019; 25(15): 4674–4681
https://doi.org/10.1158/1078-0432.CCR-19-0191
|
48 |
A Hayashi, J Hong, CA Iacobuzio-Donahue. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021; 18(7): 469–481
https://doi.org/10.1038/s41575-021-00463-z
|
49 |
AA Connor, RE Denroche, GH Jang, M Lemire, A Zhang, M Chan-Seng-Yue, G Wilson, RC Grant, D Merico, I Lungu, JMS Bartlett, D Chadwick, SB Liang, J Eagles, F Mbabaali, JK Miller, P Krzyzanowski, H Armstrong, X Luo, LGT Jorgensen, JM Romero, P Bavi, SE Fischer, S Serra, S Hafezi-Bakhtiari, D Caglar, MHA Roehrl, S Cleary, MA Hollingsworth, GM Petersen, S Thayer, CHL Law, S Nanji, T Golan, AL Smith, A Borgida, A Dodd, D Hedley, BG Wouters, GM O’Kane, JM Wilson, G Zogopoulos, F Notta, JJ Knox, S Gallinger. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell 2019; 35(2): 267–282.e7
https://doi.org/10.1016/j.ccell.2018.12.010
|
50 |
L Cao, C Huang, Zhou D Cui, Y Hu, TM Lih, SR Savage, K Krug, DJ Clark, M Schnaubelt, L Chen, Veiga Leprevost F da, RV Eguez, W Yang, J Pan, B Wen, Y Dou, W Jiang, Y Liao, Z Shi, NV Terekhanova, S Cao, RJ Lu, Y Li, R Liu, H Zhu, P Ronning, Y Wu, MA Wyczalkowski, H Easwaran, L Danilova, AS Mer, S Yoo, JM Wang, W Liu, B Haibe-Kains, M Thiagarajan, SD Jewell, G Hostetter, CJ Newton, QK Li, MH Roehrl, D Fenyö, P Wang, AI Nesvizhskii, DR Mani, GS Omenn, ES Boja, M Mesri, AI Robles, H Rodriguez, OF Bathe, DW Chan, RH Hruban, L Ding, B Zhang, H; Clinical Proteomic Tumor Analysis Consortium Zhang. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184(19): 5031–5052.e26
https://doi.org/10.1016/j.cell.2021.08.023
|
51 |
D Xie, Z Wang, B Sun, L Qu, M Zeng, L Feng, M Guo, G Wang, J Hao, G Zhou. High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17(5): 907–923
https://doi.org/10.1007/s11684-023-1009-7
|
52 |
M Liu. Arid1a: a gatekeeper in the development of pancreatic cancer from a rare precursor lesion. Gastroenterology 2022; 163(2): 371–373
https://doi.org/10.1053/j.gastro.2022.05.046
|
53 |
ES Christenson, E Jaffee, NS Azad. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol 2020; 21(3): e135–e145
https://doi.org/10.1016/S1470-2045(19)30795-8
|
54 |
S Ahmed, AD Bradshaw, S Gera, MZ Dewan, R Xu. The TGF-β/Smad4 signaling pathway in pancreatic carcinogenesis and its clinical significance. J Clin Med 2017; 6(1): 5
https://doi.org/10.3390/jcm6010005
|
55 |
M Chan-Seng-Yue, JC Kim, GW Wilson, K Ng, EF Figueroa, GM O’Kane, AA Connor, RE Denroche, RC Grant, J McLeod, JM Wilson, GH Jang, A Zhang, A Dodd, SB Liang, A Borgida, D Chadwick, S Kalimuthu, I Lungu, JMS Bartlett, PM Krzyzanowski, V Sandhu, H Tiriac, FEM Froeling, JM Karasinska, JT Topham, DJ Renouf, DF Schaeffer, SJM Jones, MA Marra, J Laskin, R Chetty, LD Stein, G Zogopoulos, B Haibe-Kains, PJ Campbell, DA Tuveson, JJ Knox, SE Fischer, S Gallinger, F Notta. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat Genet 2020; 52(2): 231–240
https://doi.org/10.1038/s41588-019-0566-9
|
56 |
M Brunner, Z Wu, C Krautz, C Pilarsky, R Grützmann, GF Weber. Current clinical strategies of pancreatic cancer treatment and open molecular questions. Int J Mol Sci 2019; 20(18): 4543
https://doi.org/10.3390/ijms20184543
|
57 |
J Gao, L Wang, J Xu, J Zheng, X Man, H Wu, J Jin, K Wang, H Xiao, S Li, Z Li. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression. J Exp Clin Cancer Res 2013; 32(1): 86
https://doi.org/10.1186/1756-9966-32-86
|
58 |
JJ Zhang, Y Zhu, Y Zhu, JL Wu, WB Liang, R Zhu, ZK Xu, Q Du, Y Miao. Association of increased DNA methyltransferase expression with carcinogenesis and poor prognosis in pancreatic ductal adenocarcinoma. Clin Transl Oncol 2012; 14(2): 116–124
https://doi.org/10.1007/s12094-012-0770-x
|
59 |
ID Nagtegaal, RD Odze, D Klimstra, V Paradis, M Rugge, P Schirmacher, KM Washington, F Carneiro, IA; WHO Classification of Tumours Editorial Board Cree. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76(2): 182–188
https://doi.org/10.1111/his.13975
|
60 |
L Zhang, D Chen, D Song, X Liu, Y Zhang, X Xu, X Wang. Clinical and translational values of spatial transcriptomics. Signal Transduct Target Ther 2022; 7(1): 111
https://doi.org/10.1038/s41392-022-00960-w
|
61 |
D Schäfer, S Tomiuk, LN Küster, WA Rawashdeh, J Henze, G Tischler-Höhle, DJ Agorku, J Brauner, C Linnartz, D Lock, A Kaiser, C Herbel, D Eckardt, M Lamorte, D Lenhard, J Schüler, P Ströbel, J Missbach-Guentner, D Pinkert-Leetsch, F Alves, A Bosio, O Hardt. Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic adenocarcinoma. Nat Commun 2021; 12(1): 1453
https://doi.org/10.1038/s41467-021-21774-4
|
62 |
WC Hsieh, BR Budiarto, YF Wang, CY Lin, MC Gwo, DK So, YS Tzeng, SY Chen. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci 2022; 29(1): 96
https://doi.org/10.1186/s12929-022-00879-y
|
63 |
R Moncada, D Barkley, F Wagner, M Chiodin, JC Devlin, M Baron, CH Hajdu, DM Simeone, I Yanai. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 2020; 38(3): 333–342
https://doi.org/10.1038/s41587-019-0392-8
|
64 |
WL Hwang, KA Jagadeesh, JA Guo, HI Hoffman, P Yadollahpour, JW Reeves, R Mohan, E Drokhlyansky, N Van Wittenberghe, O Ashenberg, SL Farhi, D Schapiro, P Divakar, E Miller, DR Zollinger, G Eng, JM Schenkel, J Su, C Shiau, P Yu, WA Freed-Pastor, D Abbondanza, A Mehta, J Gould, C Lambden, CBM Porter, A Tsankov, D Dionne, J Waldman, MS Cuoco, L Nguyen, T Delorey, D Phillips, JL Barth, M Kem, C Rodrigues, D Ciprani, J Roldan, P Zelga, V Jorgji, JH Chen, Z Ely, D Zhao, K Fuhrman, R Fropf, JM Beechem, JS Loeffler, DP Ryan, CD Weekes, CR Ferrone, M Qadan, MJ Aryee, RK Jain, DS Neuberg, JY Wo, TS Hong, R Xavier, AJ Aguirre, O Rozenblatt-Rosen, M Mino-Kenudson, CF Castillo, AS Liss, DT Ting, T Jacks, A Regev. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet 2022; 54(8): 1178–1191
https://doi.org/10.1038/s41588-022-01134-8
|
65 |
D Cui Zhou, RG Jayasinghe, S Chen, JM Herndon, MD Iglesia, P Navale, MC Wendl, W Caravan, K Sato, E Storrs, CK Mo, J Liu, AN Southard-Smith, Y Wu, N Naser Al Deen, JM Baer, RS Fulton, MA Wyczalkowski, R Liu, CC Fronick, LA Fulton, A Shinkle, L Thammavong, H Zhu, H Sun, LB Wang, Y Li, C Zuo, JF McMichael, SR Davies, EL Appelbaum, KJ Robbins, SE Chasnoff, X Yang, AN Reeb, C Oh, M Serasanambati, P Lal, R Varghese, JR Mashl, J Ponce, NV Terekhanova, L Yao, F Wang, L Chen, M Schnaubelt, RJ Lu, JK Schwarz, SV Puram, AH Kim, SK Song, KI Shoghi, KS Lau, T Ju, K Chen, D Chatterjee, WG Hawkins, H Zhang, S Achilefu, MG Chheda, ST Oh, WE Gillanders, F Chen, DG DeNardo, RC Fields, L Ding. Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat Genet 2022; 54(9): 1390–1405
https://doi.org/10.1038/s41588-022-01157-1
|
66 |
L Tosti, Y Hang, O Debnath, S Tiesmeyer, T Trefzer, K Steiger, FW Ten, S Lukassen, S Ballke, AA Kühl, S Spieckermann, R Bottino, N Ishaque, W Weichert, SK Kim, R Eils, C Conrad. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 2021; 160(4): 1330–1344.e11
https://doi.org/10.1053/j.gastro.2020.11.010
|
67 |
D Barkley, R Moncada, M Pour, DA Liberman, I Dryg, G Werba, W Wang, M Baron, A Rao, B Xia, GS França, A Weil, DF Delair, C Hajdu, AW Lund, I Osman, I Yanai. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet 2022; 54(8): 1192–1201
https://doi.org/10.1038/s41588-022-01141-9
|
68 |
A Hayashi, J Fan, R Chen, YJ Ho, AP Makohon-Moore, N Lecomte, Y Zhong, J Hong, J Huang, H Sakamoto, MA Attiyeh, ZA Kohutek, L Zhang, A Boumiza, R Kappagantula, P Baez, J Bai, M Lisi, K Chadalavada, JP Melchor, W Wong, GJ Nanjangud, O Basturk, EM O’Reilly, DS Klimstra, RH Hruban, LD Wood, M Overholtzer, CA Iacobuzio-Donahue. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat Cancer 2020; 1(1): 59–74
https://doi.org/10.1038/s43018-019-0010-1
|
69 |
P Bailey, DK Chang, K Nones, AL Johns, AM Patch, MC Gingras, DK Miller, AN Christ, TJ Bruxner, MC Quinn, C Nourse, LC Murtaugh, I Harliwong, S Idrisoglu, S Manning, E Nourbakhsh, S Wani, L Fink, O Holmes, V Chin, MJ Anderson, S Kazakoff, C Leonard, F Newell, N Waddell, S Wood, Q Xu, PJ Wilson, N Cloonan, KS Kassahn, D Taylor, K Quek, A Robertson, L Pantano, L Mincarelli, LN Sanchez, L Evers, J Wu, M Pinese, MJ Cowley, MD Jones, EK Colvin, AM Nagrial, ES Humphrey, LA Chantrill, A Mawson, J Humphris, A Chou, M Pajic, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Lovell, ND Merrett, CW Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, K Moran-Jones, NB Jamieson, JS Graham, F Duthie, K Oien, J Hair, R Grützmann, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, B Rusev, P Capelli, R Salvia, G Tortora, D Mukhopadhyay, GM; Australian Pancreatic Cancer Genome Initiative; Munzy DM Petersen, WE Fisher, SA Karim, JR Eshleman, RH Hruban, C Pilarsky, JP Morton, OJ Sansom, A Scarpa, EA Musgrove, UM Bailey, O Hofmann, RL Sutherland, DA Wheeler, AJ Gill, RA Gibbs, JV Pearson, N Waddell, AV Biankin, SM Grimmond. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52
https://doi.org/10.1038/nature16965
|
70 |
H Sun, D Zhang, C Huang, Y Guo, Z Yang, N Yao, X Dong, R Cheng, N Zhao, J Meng, B Sun, J Hao. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med 2021; 18(2): 616–630
https://doi.org/10.20892/j.issn.2095-3941.2021.0158
|
71 |
ATF Bell. PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration. bioRxiv 2022; 2022.07.16.500312
|
72 |
A Agostini. Transcriptomic dissection of intraepithelial papillary mucinous neoplasms progression by spatial technologies identified novel markers of pancreatic carcinogenesis. bioRxiv 2022; 2022.10.12.511894
|
73 |
M Sans, Y Makino, J Min, KI Rajapakshe, M Yip-Schneider, CM Schmidt, MW Hurd, JK Burks, JA Gomez, FI Thege, JF Fahrmann, RA Wolff, MP Kim, PA Guerrero, A Maitra. Spatial transcriptomics of intraductal papillary mucinous neoplasms of the pancreas identifies NKX6-2 as a driver of gastric differentiation and indolent biological potential. Cancer Discov 2023; 13(8): 1844–1861
https://doi.org/10.1158/2159-8290.CD-22-1200
|
74 |
J Peng, BF Sun, CY Chen, JY Zhou, YS Chen, H Chen, L Liu, D Huang, J Jiang, GS Cui, Y Yang, W Wang, D Guo, M Dai, J Guo, T Zhang, Q Liao, Y Liu, YL Zhao, DL Han, Y Zhao, YG Yang, W Wu. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725–738
https://doi.org/10.1038/s41422-019-0195-y
|
75 |
Z Ma, NK Lytle, B Chen, N Jyotsana, SW Novak, CJ Cho, L Caplan, O Ben-Levy, AC Neininger, DT Burnette, VQ Trinh, MCB Tan, EA Patterson, R Arrojo E Drigo, RR Giraddi, C Ramos, AL Means, I Matsumoto, U Manor, JC Mills, JR Goldenring, KS Lau, GM Wahl, KE DelGiorno. Single-cell transcriptomics reveals a conserved metaplasia program in pancreatic injury. Gastroenterology 2022; 162(2): 604–620.e20
https://doi.org/10.1053/j.gastro.2021.10.027
|
76 |
JJ Lee, V Bernard, A Semaan, ME Monberg, J Huang, BM Stephens, D Lin, KI Rajapakshe, BR Weston, MS Bhutani, CL Haymaker, C Bernatchez, CM Taniguchi, A Maitra, PA Guerrero. Elucidation of tumor-stromal heterogeneity and the ligand-receptor interactome by single-cell transcriptomics in real-world pancreatic cancer biopsies. Clin Cancer Res 2021; 27(21): 5912–5921
https://doi.org/10.1158/1078-0432.CCR-20-3925
|
77 |
W Lin, P Noel, EH Borazanci, J Lee, A Amini, IW Han, JS Heo, GS Jameson, C Fraser, M Steinbach, Y Woo, Y Fong, D Cridebring, DD Von Hoff, JO Park, H Han. Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med 2020; 12(1): 80
https://doi.org/10.1186/s13073-020-00776-9
|
78 |
M Ligorio, S Sil, J Malagon-Lopez, LT Nieman, S Misale, M Di Pilato, RY Ebright, MN Karabacak, AS Kulkarni, A Liu, N Vincent Jordan, JW Franses, J Philipp, J Kreuzer, N Desai, KS Arora, M Rajurkar, E Horwitz, A Neyaz, E Tai, NKC Magnus, KD Vo, CN Yashaswini, F Marangoni, M Boukhali, JP Fatherree, LJ Damon, K Xega, R Desai, M Choz, F Bersani, A Langenbucher, V Thapar, R Morris, UF Wellner, O Schilling, MS Lawrence, AS Liss, MN Rivera, V Deshpande, CH Benes, S Maheswaran, DA Haber, C Fernandez-Del-Castillo, CR Ferrone, W Haas, MJ Aryee, DT Ting. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell 2019; 178(1): 160–175.e27
https://doi.org/10.1016/j.cell.2019.05.012
|
79 |
E Elyada, M Bolisetty, P Laise, WF Flynn, ET Courtois, RA Burkhart, JA Teinor, P Belleau, G Biffi, MS Lucito, S Sivajothi, TD Armstrong, DD Engle, KH Yu, Y Hao, CL Wolfgang, Y Park, J Preall, EM Jaffee, A Califano, P Robson, DA Tuveson. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019; 9(8): 1102–1123
https://doi.org/10.1158/2159-8290.CD-19-0094
|
80 |
DS Foster, M Januszyk, D Delitto, KE Yost, M Griffin, J Guo, N Guardino, AE Delitto, M Chinta, AR Burcham, AT Nguyen, KE Bauer-Rowe, AL Titan, A Salhotra, RE Jones, O da Silva, HG Lindsay, CE Berry, K Chen, D Henn, S Mascharak, HE Talbott, A Kim, F Nosrati, D Sivaraj, RC Ransom, M Matthews, A Khan, D Wagh, J Coller, GC Gurtner, DC Wan, IL Wapnir, HY Chang, JA Norton, MT Longaker. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 2022; 40(11): 1392–1406.e7
https://doi.org/10.1016/j.ccell.2022.09.015
|
81 |
CX Dominguez, S Müller, S Keerthivasan, H Koeppen, J Hung, S Gierke, B Breart, O Foreman, TW Bainbridge, A Castiglioni, Y Senbabaoglu, Z Modrusan, Y Liang, MR Junttila, C Klijn, R Bourgon, SJ Turley. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 2020; 10(2): 232–253
https://doi.org/10.1158/2159-8290.CD-19-0644
|
82 |
C Hutton, F Heider, A Blanco-Gomez, A Banyard, A Kononov, X Zhang, S Karim, V Paulus-Hock, D Watt, N Steele, S Kemp, EKJ Hogg, J Kelly, RF Jackstadt, F Lopes, M Menotti, L Chisholm, A Lamarca, J Valle, OJ Sansom, C Springer, A Malliri, R Marais, di Magliano M Pasca, S Zelenay, JP Morton, C Jørgensen. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 2021; 39(9): 1227–1244.e20
https://doi.org/10.1016/j.ccell.2021.06.017
|
83 |
AN Hosein, H Huang, Z Wang, K Parmar, W Du, J Huang, A Maitra, E Olson, U Verma, RA Brekken. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 2019; 4(16): e129212
https://doi.org/10.1172/jci.insight.129212
|
84 |
MH Sherman, GL Beatty. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol 2023; 18(1): 123–148
https://doi.org/10.1146/annurev-pathmechdis-031621-024600
|
85 |
NG Steele, ES Carpenter, SB Kemp, VR Sirihorachai, S The, L Delrosario, J Lazarus, ED Amir, V Gunchick, C Espinoza, S Bell, L Harris, F Lima, V Irizarry-Negron, D Paglia, J Macchia, AKY Chu, H Schofield, EJ Wamsteker, R Kwon, A Schulman, A Prabhu, R Law, A Sondhi, J Yu, A Patel, K Donahue, H Nathan, C Cho, MA Anderson, V Sahai, CA Lyssiotis, W Zou, BL Allen, A Rao, HC Crawford, F Bednar, TL Frankel, M Pasca di Magliano. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat Cancer 2020; 1(11): 1097–1112
https://doi.org/10.1038/s43018-020-00121-4
|
86 |
WJ Ho, R Erbe, L Danilova, Z Phyo, E Bigelow, G Stein-O’Brien, DL 2nd Thomas, S Charmsaz, N Gross, S Woolman, K Cruz, RM Munday, N Zaidi, TD Armstrong, MB Sztein, M Yarchoan, ED Thompson, EM Jaffee, EJ Fertig. Multi-omic profiling of lung and liver tumor microenvironments of metastatic pancreatic cancer reveals site-specific immune regulatory pathways. Genome Biol 2021; 22(1): 154
https://doi.org/10.1186/s13059-021-02363-6
|
87 |
Y Du, Y Cai, Y Lv, L Zhang, H Yang, Q Liu, M Hong, Y Teng, W Tang, R Ma, J Wu, J Wu, Q Wang, H Chen, K Li, J Feng. Single-cell RNA sequencing unveils the communications between malignant T and myeloid cells contributing to tumor growth and immunosuppression in cutaneous T-cell lymphoma. Cancer Lett 2022; 551: 215972
https://doi.org/10.1016/j.canlet.2022.215972
|
88 |
C Shiau, J Su, JA Guo, TS Hong, JY Wo, KA Jagadeesh, WL Hwang. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front Oncol 2022; 12: 929950
https://doi.org/10.3389/fonc.2022.929950
|
89 |
Y Du, Z Gu, Z Li, Z Yuan, Y Zhao, X Zheng, X Bo, H Chen, C Wang. Dynamic interplay between structural variations and 3D genome organization in pancreatic cancer. Adv Sci (Weinh) 2022; 9(18): e2200818
https://doi.org/10.1002/advs.202200818
|
90 |
D Alonso-Curbelo, YJ Ho, C Burdziak, JLV Maag, JP 4th Morris, R Chandwani, HA Chen, KM Tsanov, FM Barriga, W Luan, N Tasdemir, G Livshits, E Azizi, J Chun, JE Wilkinson, L Mazutis, SD Leach, R Koche, D Pe’er, SW Lowe. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 2021; 590(7847): 642–648
https://doi.org/10.1038/s41586-020-03147-x
|
91 |
C Burdziak, D Alonso-Curbelo, T Walle, J Reyes, FM Barriga, D Haviv, Y Xie, Z Zhao, CJ Zhao, HA Chen, O Chaudhary, I Masilionis, ZN Choo, V Gao, W Luan, A Wuest, YJ Ho, Y Wei, DF Quail, R Koche, L Mazutis, R Chaligné, T Nawy, SW Lowe, D Pe’er. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380(6645): eadd5327
https://doi.org/10.1126/science.add5327
|
92 |
F Guo, L Li, J Li, X Wu, B Hu, P Zhu, L Wen, F Tang. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 2017; 27(8): 967–988
https://doi.org/10.1038/cr.2017.82
|
93 |
X Fan, P Lu, H Wang, S Bian, X Wu, Y Zhang, Y Liu, D Fu, L Wen, J Hao, F Tang. Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma. Cell Discov 2022; 8(1): 13
https://doi.org/10.1038/s41421-021-00366-y
|
94 |
N Waddell, M Pajic, AM Patch, DK Chang, KS Kassahn, P Bailey, AL Johns, D Miller, K Nones, K Quek, MC Quinn, AJ Robertson, MZ Fadlullah, TJ Bruxner, AN Christ, I Harliwong, S Idrisoglu, S Manning, C Nourse, E Nourbakhsh, S Wani, PJ Wilson, E Markham, N Cloonan, MJ Anderson, JL Fink, O Holmes, SH Kazakoff, C Leonard, F Newell, B Poudel, S Song, D Taylor, N Waddell, S Wood, Q Xu, J Wu, M Pinese, MJ Cowley, HC Lee, MD Jones, AM Nagrial, J Humphris, LA Chantrill, V Chin, AM Steinmann, A Mawson, ES Humphrey, EK Colvin, A Chou, CJ Scarlett, AV Pinho, M Giry-Laterriere, I Rooman, JS Samra, JG Kench, JA Pettitt, ND Merrett, C Toon, K Epari, NQ Nguyen, A Barbour, N Zeps, NB Jamieson, JS Graham, SP Niclou, R Bjerkvig, R Grützmann, D Aust, RH Hruban, A Maitra, CA Iacobuzio-Donahue, CL Wolfgang, RA Morgan, RT Lawlor, V Corbo, C Bassi, M Falconi, G Zamboni, G Tortora, MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ Tempero, JR Eshleman, C Pilarsky, A Scarpa, EA Musgrove, JV Pearson, AV Biankin, SM Grimmond. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501
https://doi.org/10.1038/nature14169
|
95 |
RA Moffitt, R Marayati, EL Flate, KE Volmar, SG Loeza, KA Hoadley, NU Rashid, LA Williams, SC Eaton, AH Chung, JK Smyla, JM Anderson, HJ Kim, DJ Bentrem, MS Talamonti, CA Iacobuzio-Donahue, MA Hollingsworth, JJ Yeh. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 2015; 47(10): 1168–1178
https://doi.org/10.1038/ng.3398
|
96 |
F Puleo, R Nicolle, Y Blum, J Cros, L Marisa, P Demetter, E Quertinmont, M Svrcek, N Elarouci, J Iovanna, D Franchimont, L Verset, MG Galdon, J Devière, Reyniès A de, P Laurent-Puig, Laethem JL Van, JB Bachet, R Maréchal. Stratification of pancreatic ductal adenocarcinomas based on tumor and microenvironment features. Gastroenterology 2018; 155(6): 1999–2013.e3
https://doi.org/10.1053/j.gastro.2018.08.033
|
97 |
EA Collisson, A Sadanandam, P Olson, WJ Gibb, M Truitt, S Gu, J Cooc, J Weinkle, GE Kim, L Jakkula, HS Feiler, AH Ko, AB Olshen, KL Danenberg, MA Tempero, PT Spellman, D Hanahan, JW Gray. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011; 17(4): 500–503
https://doi.org/10.1038/nm.2344
|
98 |
C Maurer, SR Holmstrom, J He, P Laise, T Su, A Ahmed, H Hibshoosh, JA Chabot, PE Oberstein, AR Sepulveda, JM Genkinger, J Zhang, AC Iuga, M Bansal, A Califano, KP Olive. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 2019; 68(6): 1034–1043
https://doi.org/10.1136/gutjnl-2018-317706
|
99 |
M Jamal-Hanjani, GA Wilson, N McGranahan, NJ Birkbak, TBK Watkins, S Veeriah, S Shafi, DH Johnson, R Mitter, R Rosenthal, M Salm, S Horswell, M Escudero, N Matthews, A Rowan, T Chambers, DA Moore, S Turajlic, H Xu, SM Lee, MD Forster, T Ahmad, CT Hiley, C Abbosh, M Falzon, E Borg, T Marafioti, D Lawrence, M Hayward, S Kolvekar, N Panagiotopoulos, SM Janes, R Thakrar, A Ahmed, F Blackhall, Y Summers, R Shah, L Joseph, AM Quinn, PA Crosbie, B Naidu, G Middleton, G Langman, S Trotter, M Nicolson, H Remmen, K Kerr, M Chetty, L Gomersall, DA Fennell, A Nakas, S Rathinam, G Anand, S Khan, P Russell, V Ezhil, B Ismail, M Irvin-Sellers, V Prakash, JF Lester, M Kornaszewska, R Attanoos, H Adams, H Davies, S Dentro, P Taniere, B O’Sullivan, HL Lowe, JA Hartley, N Iles, H Bell, Y Ngai, JA Shaw, J Herrero, Z Szallasi, RF Schwarz, A Stewart, SA Quezada, Quesne J Le, Loo P Van, C Dive, A Hackshaw, C; TRACERx Consortium Swanton. Tracking the evolution of non-small-cell lung cancer. N Engl J Med 2017; 376(22): 2109–2121
https://doi.org/10.1056/NEJMoa1616288
|
100 |
NU Rashid, XL Peng, C Jin, RA Moffitt, KE Volmar, BA Belt, RZ Panni, TM Nywening, SG Herrera, KJ Moore, SG Hennessey, AB Morrison, R Kawalerski, A Nayyar, AE Chang, B Schmidt, HJ Kim, DC Linehan, JJ Yeh. Purity independent subtyping of tumors (PurIST), a clinically robust, single-sample classifier for tumor subtyping in pancreatic cancer. Clin Cancer Res 2020; 26(1): 82–92
https://doi.org/10.1158/1078-0432.CCR-19-1467
|
101 |
NA Ullman, PR Burchard, RF Dunne, DC Linehan. Immunologic strategies in pancreatic cancer: making cold tumors hot. J Clin Oncol 2022; 40(24): 2789–2805
https://doi.org/10.1200/JCO.21.02616
|
102 |
X Li, M Gulati, AC Larson, JC Solheim, M Jain, S Kumar, SK Batra. Immune checkpoint blockade in pancreatic cancer: trudging through the immune desert. Semin Cancer Biol 2022; 86(Pt 2): 14–27
https://doi.org/10.1016/j.semcancer.2022.08.009
|
103 |
GP Nagaraju, RR Malla, R Basha, IG Motofei. Contemporary clinical trials in pancreatic cancer immunotherapy targeting PD-1 and PD-L1. Semin Cancer Biol 2022; 86(Pt 3): 616–621
https://doi.org/10.1016/j.semcancer.2021.11.003
|
104 |
R Xue, Q Zhang, Q Cao, R Kong, X Xiang, H Liu, M Feng, F Wang, J Cheng, Z Li, Q Zhan, M Deng, J Zhu, Z Zhang, N Zhang. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022; 612(7938): 141–147
https://doi.org/10.1038/s41586-022-05400-x
|
105 |
S Raghavan, PS Winter, AW Navia, HL Williams, A DenAdel, KE Lowder, J Galvez-Reyes, RL Kalekar, N Mulugeta, KS Kapner, MS Raghavan, AA Borah, N Liu, SA Väyrynen, AD Costa, RWS Ng, J Wang, EK Hill, DY Ragon, LK Brais, AM Jaeger, LF Spurr, YY Li, AD Cherniack, MA Booker, EF Cohen, MY Tolstorukov, I Wakiro, A Rotem, BE Johnson, JM McFarland, ET Sicinska, TE Jacks, RJ Sullivan, GI Shapiro, TE Clancy, K Perez, DA Rubinson, K Ng, JM Cleary, L Crawford, SR Manalis, JA Nowak, BM Wolpin, WC Hahn, AJ Aguirre, AK Shalek. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 2021; 184(25): 6119–6137.e26
https://doi.org/10.1016/j.cell.2021.11.017
|
106 |
A Grimont, SD Leach, R Chandwani. Uncertain beginnings: acinar and ductal cell plasticity in the development of pancreatic cancer. Cell Mol Gastroenterol Hepatol 2022; 13(2): 369–382
https://doi.org/10.1016/j.jcmgh.2021.07.014
|
107 |
HA Messal, S Alt, RMM Ferreira, C Gribben, VM Wang, CG Cotoi, G Salbreux, A Behrens. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 2019; 566(7742): 126–130
https://doi.org/10.1038/s41586-019-0891-2
|
108 |
S Li, K Xie. Ductal metaplasia in pancreas. Biochim Biophys Acta Rev Cancer 2022; 1877(2): 188698
https://doi.org/10.1016/j.bbcan.2022.188698
|
109 |
S Parte, RK Nimmakayala, SK Batra, MP Ponnusamy. Acinar to ductal cell trans-differentiation: a prelude to dysplasia and pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877(1): 188669
https://doi.org/10.1016/j.bbcan.2021.188669
|
110 |
E Del Poggetto, IL Ho, C Balestrieri, EY Yen, S Zhang, F Citron, R Shah, D Corti, GR Diaferia, CY Li, S Loponte, F Carbone, Y Hayakawa, G Valenti, S Jiang, L Sapio, H Jiang, P Dey, S Gao, AK Deem, S Rose-John, W Yao, H Ying, AD Rhim, G Genovese, TP Heffernan, A Maitra, TC Wang, L Wang, GF Draetta, A Carugo, G Natoli, A Viale. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 2021; 373(6561): eabj0486
https://doi.org/10.1126/science.abj0486
|
111 |
O JP De La, LL Emerson, JL Goodman, SC Froebe, BE Illum, AB Curtis, LC Murtaugh. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci USA 2008; 105(48): 18907–18912
https://doi.org/10.1073/pnas.0810111105
|
112 |
H Huang, M He, Y Zhang, B Zhang, Z Niu, Y Zheng, W Li, P Cui, X Wang, Q Sun. Identification and validation of heterotypic cell-in-cell structure as an adverse prognostic predictor for young patients of resectable pancreatic ductal adenocarcinoma. Signal Transduct Target Ther 2020; 5(1): 246
https://doi.org/10.1038/s41392-020-00346-w
|
113 |
J Song, R Ruze, Y Chen, R Xu, X Yin, C Wang, Q Xu, Y Zhao. Construction of a novel model based on cell-in-cell-related genes and validation of KRT7 as a biomarker for predicting survival and immune microenvironment in pancreatic cancer. BMC Cancer 2022; 22(1): 894
https://doi.org/10.1186/s12885-022-09983-6
|
114 |
NM Xi, JJ Li. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst 2021; 12(2): 176–194.e6
https://doi.org/10.1016/j.cels.2020.11.008
|
115 |
AS Bais, D Kostka. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics 2020; 36(4): 1150–1158
https://doi.org/10.1093/bioinformatics/btz698
|
116 |
VK Singh, D Yadav, PK Garg. Diagnosis and management of chronic pancreatitis: a review. JAMA 2019; 322(24): 2422–2434
https://doi.org/10.1001/jama.2019.19411
|
117 |
W Greenhalf, P Lévy, T Gress, V Rebours, RE Brand, S Pandol, S Chari, MT Jørgensen, J Mayerle, MM Lerch, P Hegyi, J Kleeff, CF Castillo, S Isaji, T Shimosegawa, A Sheel, CM Halloran, P Garg, K Takaori, MG Besselink, CE Forsmark, CM Wilcox, P Maisonneuve, D Yadav, D Whitcomb, J; Working group for the International (IAP – APA – JPS – EPC) Consensus Guidelines for Chronic Pancreatitis Neoptolemos. International consensus guidelines on surveillance for pancreatic cancer in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20(5): 910–918
https://doi.org/10.1016/j.pan.2020.05.011
|
118 |
P Hegyi, A Párniczky, MM Lerch, ARG Sheel, V Rebours, CE Forsmark, Chiaro M Del, J Rosendahl, E de-Madaria, Á Szücs, K Takaori, D Yadav, C Gheorghe, Z Jr Rakonczay, X Molero, K Inui, A Masamune, Castillo C Fernandez-Del, T Shimosegawa, JP Neoptolemos, DC Whitcomb, M; Working Group for the International (IAP–APA–JPS–EPC) Consensus Guidelines for Chronic Pancreatitis Sahin-Tóth. International consensus guidelines for risk factors in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20(4): 579–585
https://doi.org/10.1016/j.pan.2020.03.014
|
119 |
C Sun, M Liu, W An, X Mao, H Jiang, W Zou, H Wu, Z Liao, Z Li. Heterozygous Spink1 c.194+2T>C mutant mice spontaneously develop chronic pancreatitis. Gut 2020; 69(5): 967–968
https://doi.org/10.1136/gutjnl-2019-318790
|
120 |
A Geisz, M Sahin-Tóth. A preclinical model of chronic pancreatitis driven by trypsinogen autoactivation. Nat Commun 2018; 9(1): 5033
https://doi.org/10.1038/s41467-018-07347-y
|
121 |
E Hegyi, M Sahin-Tóth. Human CPA1 mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut 2019; 68(2): 301–312
https://doi.org/10.1136/gutjnl-2018-315994
|
122 |
A Kichler, S Jang. Chronic pancreatitis: epidemiology, diagnosis, and management updates. Drugs 2020; 80(12): 1155–1168
https://doi.org/10.1007/s40265-020-01360-6
|
123 |
P Storz. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol 2017; 14(5): 296–304
https://doi.org/10.1038/nrgastro.2017.12
|
124 |
CB Westphalen, Y Takemoto, T Tanaka, M Macchini, Z Jiang, BW Renz, X Chen, S Ormanns, K Nagar, Y Tailor, R May, Y Cho, S Asfaha, DL Worthley, Y Hayakawa, AM Urbanska, M Quante, M Reichert, J Broyde, PS Subramaniam, H Remotti, GH Su, AK Rustgi, RA Friedman, B Honig, A Califano, CW Houchen, KP Olive, TC Wang. Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell 2016; 18(4): 441–455
https://doi.org/10.1016/j.stem.2016.03.016
|
125 |
JM Bailey, J Alsina, ZA Rasheed, FM McAllister, YY Fu, R Plentz, H Zhang, PJ Pasricha, N Bardeesy, W Matsui, A Maitra, SD Leach. DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 2014; 146(1): 245–256
https://doi.org/10.1053/j.gastro.2013.09.050
|
126 |
FM Ferguson, B Nabet, S Raghavan, Y Liu, AL Leggett, M Kuljanin, RL Kalekar, A Yang, S He, J Wang, RWS Ng, R Sulahian, L Li, EJ Poulin, L Huang, J Koren, N Dieguez-Martinez, S Espinosa, Z Zeng, CR Corona, JD Vasta, R Ohi, T Sim, ND Kim, W Harshbarger, JM Lizcano, MB Robers, S Muthaswamy, CY Lin, AT Look, KM Haigis, JD Mancias, BM Wolpin, AJ Aguirre, WC Hahn, KD Westover, NS Gray. Discovery of a selective inhibitor of doublecortin like kinase 1. Nat Chem Biol 2020; 16(6): 635–643
https://doi.org/10.1038/s41589-020-0506-0
|
127 |
O Basturk, SM Hong, LD Wood, NV Adsay, J Albores-Saavedra, AV Biankin, LA Brosens, N Fukushima, M Goggins, RH Hruban, Y Kato, DS Klimstra, G Klöppel, A Krasinskas, DS Longnecker, H Matthaei, GJ Offerhaus, M Shimizu, K Takaori, B Terris, S Yachida, I Esposito, T; Baltimore Consensus Meeting Furukawa. A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol 2015; 39(12): 1730–1741
https://doi.org/10.1097/PAS.0000000000000533
|
128 |
ST Liffers, L Godfrey, L Frohn, L Haeberle, A Yavas, R Vesce, W Goering, FV Opitz, N Stoecklein, WT Knoefel, AM Schlitter, G Klöppel, E Espinet, A Trumpp, JT Siveke, I Esposito. Molecular heterogeneity and commonalities in pancreatic cancer precursors with gastric and intestinal phenotype. Gut 2023; 72(3): 522–534
https://doi.org/10.1136/gutjnl-2021-326550
|
129 |
M Felsenstein, M Noë, DL Masica, W Hosoda, P Chianchiano, CG Fischer, G Lionheart, LAA Brosens, A Pea, J Yu, G Gemenetzis, VP Groot, MA Makary, J He, MJ Weiss, JL Cameron, CL Wolfgang, RH Hruban, NJ Roberts, R Karchin, MG Goggins, LD Wood. IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut 2018; 67(9): 1652–1662
https://doi.org/10.1136/gutjnl-2017-315062
|
130 |
A Scarpa, FX Real, C Luchini. Genetic unrelatedness of co-occurring pancreatic adenocarcinomas and IPMNs challenges current views of clinical management. Gut 2018; 67(9): 1561–1563
https://doi.org/10.1136/gutjnl-2018-316151
|
131 |
A Mafficini, M Simbolo, T Shibata, SM Hong, A Pea, LA Brosens, L Cheng, D Antonello, C Sciammarella, C Cantù, P Mattiolo, SV Taormina, G Malleo, G Marchegiani, E Sereni, V Corbo, G Paolino, C Ciaparrone, N Hiraoka, D Pallaoro, C Jansen, M Milella, R Salvia, RT Lawlor, V Adsay, A Scarpa, C Luchini. Integrative characterization of intraductal tubulopapillary neoplasm (ITPN) of the pancreas and associated invasive adenocarcinoma. Mod Pathol 2022; 35(12): 1929–1943
https://doi.org/10.1038/s41379-022-01143-2
|
132 |
H Yamaguchi, M Shimizu, S Ban, I Koyama, T Hatori, I Fujita, M Yamamoto, S Kawamura, M Kobayashi, K Ishida, T Morikawa, F Motoi, M Unno, A Kanno, K Satoh, T Shimosegawa, H Orikasa, T Watanabe, K Nishimura, Y Ebihara, N Koike, T Furukawa. Intraductal tubulopapillary neoplasms of the pancreas distinct from pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 2009; 33(8): 1164–1172
https://doi.org/10.1097/PAS.0b013e3181a162e5
|
133 |
G Paolino, I Esposito, SM Hong, O Basturk, P Mattiolo, T Kaneko, N Veronese, A Scarpa, V Adsay, C Luchini. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology 2022; 81(3): 297–309
https://doi.org/10.1111/his.14698
|
134 |
Y Fukunaga, A Fukuda, M Omatsu, M Namikawa, M Sono, T Masuda, O Araki, M Nagao, T Yoshikawa, S Ogawa, Y Hiramatsu, Y Muta, M Tsuda, T Maruno, Y Nakanishi, J Ferrer, T Tsuruyama, T Masui, E Hatano, H Seno. Loss of Arid1a and Pten in pancreatic ductal cells induces intraductal tubulopapillary neoplasm via the YAP/TAZ pathway. Gastroenterology 2022; 163(2): 466–480.e6
https://doi.org/10.1053/j.gastro.2022.04.020
|
135 |
O Basturk, MF Berger, H Yamaguchi, V Adsay, G Askan, UK Bhanot, A Zehir, F Carneiro, SM Hong, G Zamboni, E Dikoglu, V Jobanputra, KO Wrzeszczynski, S Balci, P Allen, N Ikari, S Takeuchi, H Akagawa, A Kanno, T Shimosegawa, T Morikawa, F Motoi, M Unno, R Higuchi, M Yamamoto, K Shimizu, T Furukawa, DS Klimstra. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Mod Pathol 2017; 30(12): 1760–1772
https://doi.org/10.1038/modpathol.2017.60
|
136 |
K Sakihama, Y Koga, T Yamamoto, Y Shimada, Y Yamada, J Kawat, K Shindo, M Nakamura, Y Oda. RNF43 as a predictor of malignant transformation of pancreatic mucinous cystic neoplasm. Virchows Arch 2022; 480(6): 1189–1199
https://doi.org/10.1007/s00428-022-03277-9
|
137 |
JR Conner, AM Enríquez, MM Kenudso, E Garcia, MB Pitman, LM Sholl, A Srivastava, LA Doyle. Genomic characterization of low- and high-grade pancreatic mucinous cystic neoplasms reveals recurrent kras alterations in “high-risk” lesions. Pancreas 2017; 46(5): 665–671
https://doi.org/10.1097/MPA.0000000000000805
|
138 |
Y Maimaitiaili, Y Fukumura, K Hirabayashi, Y Kinowaki, Y Naito, A Saito, L Rong, J Nakahodo, T Yao. Investigation of -PRKACA/-PRKACB fusion genes in oncocytic tumors of the pancreatobiliary and other systems. Virchows Arch 2022; 481(6): 865–876
https://doi.org/10.1007/s00428-022-03415-3
|
139 |
AD Singhi, LD Wood, E Parks, MS Torbenson, M Felsenstein, RH Hruban, MN Nikiforova, AI Wald, C Kaya, YE Nikiforov, L Favazza, J He, K McGrath, KE Fasanella, RE Brand, AM Lennon, A Furlan, AK Dasyam, AH Zureikat, HJ Zeh, K Lee, DL Bartlett, A Slivka. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 2020; 158(3): 573–582.e2
https://doi.org/10.1053/j.gastro.2019.10.028
|
140 |
T Wang, G Askan, V Adsay, P Allen, WR Jarnagin, B Memis, C Sigel, IE Seven, DS Klimstra, O Basturk. Intraductal oncocytic papillary neoplasms: clinical-pathologic characterization of 24 cases, with an emphasis on associated invasive carcinomas. Am J Surg Pathol 2019; 43(5): 656–661
https://doi.org/10.1097/PAS.0000000000001226
|
141 |
RMM Ferreira, R Sancho, HA Messal, E Nye, B Spencer-Dene, RK Stone, G Stamp, I Rosewell, A Quaglia, A Behrens. Duct- and acinar-derived pancreatic ductal adenocarcinomas show distinct tumor progression and marker expression. Cell Rep 2017; 21(4): 966–978
https://doi.org/10.1016/j.celrep.2017.09.093
|
142 |
AP Makohon-Moore, K Matsukuma, M Zhang, JG Reiter, JM Gerold, Y Jiao, L Sikkema, MA Attiyeh, S Yachida, C Sandone, RH Hruban, DS Klimstra, N Papadopoulos, MA Nowak, KW Kinzler, B Vogelstein, CA Iacobuzio-Donahue. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 2018; 561(7722): 201–205
https://doi.org/10.1038/s41586-018-0481-8
|
143 |
D Hutchings, KM Waters, MJ Weiss, CL Wolfgang, MA Makary, J He, JL Cameron, LD Wood, RH Hruban. Cancerization of the pancreatic ducts: demonstration of a common and under-recognized process using immunolabeling of paired duct lesions and invasive pancreatic ductal adenocarcinoma for p53 and Smad4 expression. Am J Surg Pathol 2018; 42(11): 1556–1561
https://doi.org/10.1097/PAS.0000000000001148
|
144 |
Y Matsuda, T Furukawa, S Yachida, M Nishimura, A Seki, K Nonaka, J Aida, K Takubo, T Ishiwata, W Kimura, T Arai, M Mino-Kenudson. The prevalence and clinicopathological characteristics of high-grade pancreatic intraepithelial neoplasia: autopsy study evaluating the entire pancreatic parenchyma. Pancreas 2017; 46(5): 658–664
https://doi.org/10.1097/MPA.0000000000000786
|
145 |
M Goggins, RH Hruban, SE Kern. BRCA2 is inactivated late in the development of pancreatic intraepithelial neoplasia: evidence and implications. Am J Pathol 2000; 156(5): 1767–1771
https://doi.org/10.1016/S0002-9440(10)65047-X
|
146 |
GG Sharma, Y Okada, D Von Hoff, A Goel. Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2021; 75: 153–168
https://doi.org/10.1016/j.semcancer.2020.10.001
|
147 |
FN Al-Shaheri, MSS Alhamdani, AS Bauer, N Giese, MW Büchler, T Hackert, JD Hoheisel. Blood biomarkers for differential diagnosis and early detection of pancreatic cancer. Cancer Treat Rev 2021; 96: 102193
https://doi.org/10.1016/j.ctrv.2021.102193
|
148 |
G Luo, K Jin, S Deng, H Cheng, Z Fan, Y Gong, Y Qian, Q Huang, Q Ni, C Liu, X Yu. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188409
https://doi.org/10.1016/j.bbcan.2020.188409
|
149 |
Y Deng, Z Sun, L Wang, M Wang, J Yang, G Li. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front Med 2022; 16(2): 157–175
https://doi.org/10.1007/s11684-021-0884-z
|
150 |
AW Berger, D Schwerdel, A Reinacher-Schick, W Uhl, H Algül, H Friess, KP Janssen, A König, M Ghadimi, E Gallmeier, DK Bartsch, M Geissler, L Staib, A Tannapfel, A Kleger, A Beutel, LA Schulte, M Kornmann, TJ Ettrich, T Seufferlein. A blood-based multi marker assay supports the differential diagnosis of early-stage pancreatic cancer. Theranostics 2019; 9(5): 1280–1287
https://doi.org/10.7150/thno.29247
|
151 |
B Thibault, F Ramos-Delgado, E Pons-Tostivint, N Therville, C Cintas, S Arcucci, S Cassant-Sourdy, G Reyes-Castellanos, M Tosolini, AV Villard, C Cayron, R Baer, J Bertrand-Michel, D Pagan, Da Mota D Ferreira, H Yan, C Falcomatà, F Muscari, B Bournet, JP Delord, E Aksoy, A Carrier, P Cordelier, D Saur, C Basset, J Guillermet-Guibert. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Mol Med 2021; 13(7): e13502
https://doi.org/10.15252/emmm.202013502
|
152 |
VP Groot, S Mosier, AA Javed, JA Teinor, G Gemenetzis, D Ding, LM Haley, J Yu, RA Burkhart, A Hasanain, M Debeljak, H Kamiyama, A Narang, DA Laheru, L Zheng, MT Lin, CD Gocke, EK Fishman, RH Hruban, MG Goggins, IQ Molenaar, JL Cameron, MJ Weiss, VE Velculescu, J He, CL Wolfgang, JR Eshleman. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res 2019; 25(16): 4973–4984
https://doi.org/10.1158/1078-0432.CCR-19-0197
|
153 |
H Li, AR Warden, W Su, J He, X Zhi, K Wang, L Zhu, G Shen, X Ding. Highly sensitive and portable mRNA detection platform for early cancer detection. J Nanobiotechnology 2021; 19(1): 287
https://doi.org/10.1186/s12951-021-01039-4
|
154 |
SA Melo, LB Luecke, C Kahlert, AF Fernandez, ST Gammon, J Kaye, VS LeBleu, EA Mittendorf, J Weitz, N Rahbari, C Reissfelder, C Pilarsky, MF Fraga, D Piwnica-Worms, R Kalluri. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177–182
https://doi.org/10.1038/nature14581
|
155 |
N Nagata, S Nishijima, Y Kojima, Y Hisada, K Imbe, T Miyoshi-Akiyama, W Suda, M Kimura, R Aoki, K Sekine, M Ohsugi, K Miki, T Osawa, K Ueki, S Oka, M Mizokami, E Kartal, TSB Schmidt, E Molina-Montes, L Estudillo, N Malats, J Trebicka, S Kersting, M Langheinrich, P Bork, N Uemura, T Itoi, T Kawai. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology 2022; 163(1): 222–238
https://doi.org/10.1053/j.gastro.2022.03.054
|
156 |
Y Pang, C Wang, L Lu, C Wang, Z Sun, R Xiao. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron 2019; 130: 204–213
https://doi.org/10.1016/j.bios.2019.01.039
|
157 |
GG Sharma, Y Okada, D Von Hoff, A Goel. Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2021; 75: 153–168
https://doi.org/10.1016/j.semcancer.2020.10.001
|
158 |
F Jin, L Yang, W Wang, N Yuan, S Zhan, P Yang, X Chen, T Ma, Y Wang. A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 2021; 20(1): 95
https://doi.org/10.1186/s12943-021-01389-5
|
159 |
S Zhan, P Yang, S Zhou, Y Xu, R Xu, G Liang, C Zhang, X Chen, L Yang, F Jin, Y Wang. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16(2): 216–226
https://doi.org/10.1007/s11684-022-0920-7
|
160 |
S Majumder, WR Taylor, PH Foote, CK Berger, CW Wu, DW Mahoney, WR Bamlet, KN Burger, N Postier, J de la Fuente, KA Doering, GP Lidgard, HT Allawi, GM Petersen, ST Chari, DA Ahlquist, JB Kisiel. High detection rates of pancreatic cancer across stages by plasma assay of novel methylated DNA markers and CA19-9. Clin Cancer Res 2021; 27(9): 2523–2532
https://doi.org/10.1158/1078-0432.CCR-20-0235
|
161 |
Y Kim, I Yeo, I Huh, J Kim, D Han, JY Jang, Y Kim. Development and multiple validation of the protein multi-marker panel for diagnosis of pancreatic cancer. Clin Cancer Res 2021; 27(8): 2236–2245
https://doi.org/10.1158/1078-0432.CCR-20-3929
|
162 |
UM Mahajan, B Oehrle, S Sirtl, A Alnatsha, E Goni, I Regel, G Beyer, M Vornhülz, J Vielhauer, A Chromik, M Bahra, F Klein, W Uhl, T Fahlbusch, M Distler, J Weitz, R Grützmann, C Pilarsky, FU Weiss, MG Adam, JP Neoptolemos, H Kalthoff, R Rad, N Christiansen, B Bethan, B Kamlage, MM Lerch, J Mayerle. Independent validation and assay standardization of improved metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gastroenterology 2022; 163(5): 1407–1422
https://doi.org/10.1053/j.gastro.2022.07.047
|
163 |
H Nam, SS Hong, KH Jung, S Kang, MS Park, S Kang, HS Kim, VH Mai, J Kim, H Lee, W Lee, YJ Suh, JH Lim, SY Kim, SC Kim, SH Kim, S Park. A serum marker for early pancreatic cancer with a possible link to diabetes. J Natl Cancer Inst 2022; 114(2): 228–234
https://doi.org/10.1093/jnci/djab191
|
164 |
D Wolrab, R Jirásko, E Cífková, M Höring, D Mei, M Chocholoušková, O Peterka, J Idkowiak, T Hrnčiarová, L Kuchař, R Ahrends, R Brumarová, D Friedecký, G Vivo-Truyols, P Škrha, J Škrha, R Kučera, B Melichar, G Liebisch, R Burkhardt, MR Wenk, A Cazenave-Gassiot, P Karásek, I Novotný, K Greplová, R Hrstka, M Holčapek. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat Commun 2022; 13(1): 124
https://doi.org/10.1038/s41467-021-27765-9
|
165 |
B Staal, Y Liu, D Barnett, P Hsueh, Z He, C Gao, K Partyka, MW Hurd, AD Singhi, RR Drake, Y Huang, A Maitra, RE Brand, BB Haab. The sTRA plasma biomarker: blinded validation of improved accuracy over CA19-9 in pancreatic cancer diagnosis. Clin Cancer Res 2019; 25(9): 2745–2754
https://doi.org/10.1158/1078-0432.CCR-18-3310
|
166 |
S Debernardi, H O’Brien, AS Algahmdi, N Malats, GD Stewart, M Plješa-Ercegovac, E Costello, W Greenhalf, A Saad, R Roberts, A Ney, SP Pereira, HM Kocher, S Duffy, O Blyuss, T Crnogorac-Jurcevic. A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: a case-control study. PLoS Med 2020; 17(12): e1003489
https://doi.org/10.1371/journal.pmed.1003489
|
167 |
K Nesteruk, IJM Levink, E de Vries, IJ Visser, MP Peppelenbosch, DL Cahen, GM Fuhler, MJ Bruno. Extracellular vesicle-derived microRNAs in pancreatic juice as biomarkers for detection of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22(5): 626–635
https://doi.org/10.1016/j.pan.2022.04.010
|
168 |
E Kartal, TSB Schmidt, E Molina-Montes, S Rodríguez-Perales, J Wirbel, OM Maistrenko, WA Akanni, Alhamwe B Alashkar, RJ Alves, A Carrato, HP Erasmus, L Estudillo, F Finkelmeier, A Fullam, AM Glazek, P Gómez-Rubio, R Hercog, F Jung, S Kandels, S Kersting, M Langheinrich, M Márquez, X Molero, A Orakov, Rossum T Van, R Torres-Ruiz, A Telzerow, K; MAGIC Study investigators; PanGenEU Study investigators; Benes V Zych, G Zeller, J Trebicka, FX Real, N Malats, P Bork. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71(7): 1359–1372
https://doi.org/10.1136/gutjnl-2021-324755
|
169 |
KN Kelly, FI Macedo, NB Merchant. Neoadjuvant therapy. Adv Surg 2020; 54: 49–68
https://doi.org/10.1016/j.yasu.2020.05.001
|
170 |
Y Du, Y Ma, Q Zhu, Y Fu, Y Li, Y Zhang, M Li, F Feng, P Yuan, X Wang. GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma. Front Med 2023; 17(1): 119–131
https://doi.org/10.1007/s11684-022-0949-7
|
171 |
M Capula, M Perán, G Xu, V Donati, D Yee, A Gregori, YG Assaraf, E Giovannetti, D Deng. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat 2022; 64: 100864
https://doi.org/10.1016/j.drup.2022.100864
|
172 |
M Erkan, J Kleeff, A Gorbachevski, C Reiser, T Mitkus, I Esposito, T Giese, MW Büchler, NA Giese, H Friess. Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 2007; 132(4): 1447–1464
https://doi.org/10.1053/j.gastro.2007.01.031
|
173 |
M Yu, IF Tannock. Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer?. Cancer Cell 2012; 21(3): 327–329
https://doi.org/10.1016/j.ccr.2012.03.002
|
174 |
H Chamma, IK Vila, C Taffoni, A Turtoi, N Laguette. Activation of STING in the pancreatic tumor microenvironment: a novel therapeutic opportunity. Cancer Lett 2022; 538: 215694
https://doi.org/10.1016/j.canlet.2022.215694
|
175 |
Y Huang, M Kanada, J Ye, Y Deng, Q He, Z Lei, Y Chen, Y Li, P Qin, J Zhang, J Wei. Exosome-mediated remodeling of the tumor microenvironment: from local to distant intercellular communication. Cancer Lett 2022; 543: 215796
https://doi.org/10.1016/j.canlet.2022.215796
|
176 |
N Starling, EA Hawkes, I Chau, D Watkins, J Thomas, J Webb, G Brown, K Thomas, Y Barbachano, J Oates, D Cunningham. A dose escalation study of gemcitabine plus oxaliplatin in combination with imatinib for gemcitabine-refractory advanced pancreatic adenocarcinoma. Ann Oncol 2012; 23(4): 942–947
https://doi.org/10.1093/annonc/mdr317
|
177 |
C Hu, R Xia, X Zhang, T Li, Y Ye, G Li, R He, Z Li, Q Lin, S Zheng, R Chen. circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer 2022; 21(1): 24
https://doi.org/10.1186/s12943-022-01501-3
|
178 |
S Malik, JM Westcott, RA Brekken, FJ Burrows. CXCL12 in pancreatic cancer: its function and potential as a therapeutic drug target. Cancers (Basel) 2021; 14(1): 86
https://doi.org/10.3390/cancers14010086
|
179 |
L Wei, Q Lin, Y Lu, G Li, L Huang, Z Fu, R Chen, Q Zhou. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis 2021; 12(4): 334
https://doi.org/10.1038/s41419-021-03574-2
|
180 |
X Zhang, S Zheng, C Hu, G Li, H Lin, R Xia, Y Ye, R He, Z Li, Q Lin, R Chen, Q Zhou. Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene 2022; 41(16): 2372–2389
https://doi.org/10.1038/s41388-022-02253-6
|
181 |
Y Guo, H Wu, J Xiong, S Gou, J Cui, T Peng. miR-222-3p-containing macrophage-derived extracellular vesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway in pancreatic cancer. Cell Biol Toxicol 2023; 39(4): 1203–1214
https://doi.org/10.1007/s10565-022-09736-y
|
182 |
CJ Halbrook, C Pontious, I Kovalenko, L Lapienyte, S Dreyer, HJ Lee, G Thurston, Y Zhang, J Lazarus, P Sajjakulnukit, HS Hong, DM Kremer, BS Nelson, S Kemp, L Zhang, D Chang, A Biankin, J Shi, TL Frankel, HC Crawford, JP Morton, M Pasca di Magliano, CA Lyssiotis. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab 2019; 29(6): 1390–1399.e6
https://doi.org/10.1016/j.cmet.2019.02.001
|
183 |
W Huanwen, L Zhiyong, S Xiaohua, R Xinyu, W Kai, L Tonghua. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer 2009; 8: 125
https://doi.org/10.1186/1476-4598-8-125
|
184 |
KE Richards, AE Zeleniak, ML Fishel, J Wu, LE Littlepage, R Hill. Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 2017; 36(13): 1770–1778
https://doi.org/10.1038/onc.2016.353
|
185 |
KE Richards, W Xiao, R Hill, Behalf Of The Usc Pancreas Research Team On. Cancer-associated fibroblasts confer gemcitabine resistance to pancreatic cancer cells through PTEN-targeting miRNAs in exosomes. Cancers (Basel) 2022; 14(11): 2812
https://doi.org/10.3390/cancers14112812
|
186 |
GK Patel, MA Khan, A Bhardwaj, SK Srivastava, H Zubair, MC Patton, S Singh, M Khushman, AP Singh. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br J Cancer 2017; 116(5): 609–619
https://doi.org/10.1038/bjc.2017.18
|
187 |
MK Chan, JY Chung, PC Tang, AS Chan, JY Ho, TP Lin, J Chen, KT Leung, KF To, HY Lan, PM Tang. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550: 215925
https://doi.org/10.1016/j.canlet.2022.215925
|
188 |
M Cioffi, SM Trabulo, Y Sanchez-Ripoll, I Miranda-Lorenzo, E Lonardo, J Dorado, Vieira C Reis, JC Ramirez, M Hidalgo, A Aicher, S Hahn, B Jr Sainz, C Heeschen. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015; 64(12): 1936–1948
https://doi.org/10.1136/gutjnl-2014-308470
|
189 |
MC Yang, HC Wang, YC Hou, HL Tung, TJ Chiu, YS Shan. Blockade of autophagy reduces pancreatic cancer stem cell activity and potentiates the tumoricidal effect of gemcitabine. Mol Cancer 2015; 14(1): 179
https://doi.org/10.1186/s12943-015-0449-3
|
190 |
X Zheng, JL Carstens, J Kim, M Scheible, J Kaye, H Sugimoto, CC Wu, VS LeBleu, R Kalluri. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527(7579): 525–530
https://doi.org/10.1038/nature16064
|
191 |
B Tang, Y Yang, M Kang, Y Wang, Y Wang, Y Bi, S He, F Shimamoto. m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 2020; 19(1): 3
https://doi.org/10.1186/s12943-019-1128-6
|
192 |
M Akada, T Crnogorac-Jurcevic, S Lattimore, P Mahon, R Lopes, M Sunamura, S Matsuno, NR Lemoine. Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 2005; 11(8): 3094–3101
https://doi.org/10.1158/1078-0432.CCR-04-1785
|
193 |
J Gu, W Huang, X Wang, J Zhang, T Tao, Y Zheng, S Liu, J Yang, ZS Chen, CY Cai, J Li, H Wang, Y Fan. Hsa-miR-3178/RhoB/PI3K/Akt, a novel signaling pathway regulates ABC transporters to reverse gemcitabine resistance in pancreatic cancer. Mol Cancer 2022; 21(1): 112
https://doi.org/10.1186/s12943-022-01587-9
|
194 |
C Zhou, C Yi, Y Yi, W Qin, Y Yan, X Dong, X Zhang, Y Huang, R Zhang, J Wei, DW Ali, M Michalak, XZ Chen, J Tang. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 2020; 19: 118
https://doi.org/10.1186/s12943-020-01237-y
|
195 |
G Xiong, C Liu, G Yang, M Feng, J Xu, F Zhao, L You, L Zhou, L Zheng, Y Hu, X Wang, T Zhang, Y Zhao. Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. J Hematol Oncol 2019; 12(1): 97
https://doi.org/10.1186/s13045-019-0777-7
|
196 |
ZW Chen, JF Hu, ZW Wang, CY Liao, FP Kang, CF Lin, Y Huang, L Huang, YF Tian, S Chen. Circular RNA circ-MTHFD1L induces HR repair to promote gemcitabine resistance via the miR-615-3p/RPN6 axis in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41(1): 153
https://doi.org/10.1186/s13046-022-02343-z
|
197 |
M Tu, H Li, N Lv, C Xi, Z Lu, J Wei, J Chen, F Guo, K Jiang, G Song, W Gao, Y Miao. Vasohibin 2 reduces chemosensitivity to gemcitabine in pancreatic cancer cells via Jun proto-oncogene dependent transactivation of ribonucleotide reductase regulatory subunit M2. Mol Cancer 2017; 16(1): 66
https://doi.org/10.1186/s12943-017-0619-6
|
198 |
H Jr Biliran, Y Wang, S Banerjee, H Xu, H Heng, A Thakur, A Bollig, FH Sarkar, JD Liao. Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 2005; 11(16): 6075–6086
https://doi.org/10.1158/1078-0432.CCR-04-2419
|
199 |
D Melisi, Q Xia, G Paradiso, J Ling, T Moccia, C Carbone, A Budillon, JL Abbruzzese, PJ Chiao. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 2011; 103(15): 1190–1204
https://doi.org/10.1093/jnci/djr243
|
200 |
BE Kadera, PA Toste, N Wu, L Li, AH Nguyen, DW Dawson, TR Donahue. Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res 2015; 21(1): 157–165
https://doi.org/10.1158/1078-0432.CCR-14-0610
|
201 |
L Wu, Y Ge, Y Yuan, H Li, H Sun, C Xu, Y Wang, T Zhao, X Wang, J Liu, S Gao, A Chang, J Hao, C Huang. Genome-wide CRISPR screen identifies MTA3 as an inducer of gemcitabine resistance in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548: 215864
https://doi.org/10.1016/j.canlet.2022.215864
|
202 |
P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front Med 2022; 16(3): 322–338
https://doi.org/10.1007/s11684-021-0901-2
|
203 |
P Safarzadeh Kozani, P Safarzadeh Kozani, F Rahbarizadeh. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front Med 2022; 16(3): 322–338
https://doi.org/10.1007/s11684-021-0901-2
|
204 |
K Yang, J Li, L Zhao, Z Sun, C Bai. Estimating the number of Chinese cancer patients eligible for and benefit from immune checkpoint inhibitors. Front Med 2022; 16(5): 773–783
https://doi.org/10.1007/s11684-021-0902-1
|
205 |
R Xu, S Du, J Zhu, F Meng, B Liu. Neoantigen-targeted TCR-T cell therapy for solid tumors: how far from clinical application. Cancer Lett 2022; 546: 215840
https://doi.org/10.1016/j.canlet.2022.215840
|
206 |
B Bockorny, JE Grossman, M Hidalgo. Facts and hopes in immunotherapy of pancreatic cancer. Clin Cancer Res 2022; 28(21): 4606–4617
https://doi.org/10.1158/1078-0432.CCR-21-3452
|
207 |
YH Zhu, JH Zheng, QY Jia, ZH Duan, HF Yao, J Yang, YW Sun, SH Jiang, DJ Liu, YM Huo. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46(1): 17–48
https://doi.org/10.1007/s13402-022-00741-1
|
208 |
L Ostios-Garcia, J Villamayor, E Garcia-Lorenzo, D Vinal, J Feliu. Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer. World J Gastroenterol 2021; 27(40): 6775–6793
https://doi.org/10.3748/wjg.v27.i40.6775
|
209 |
TW Chen, WZ Hung, SF Chiang, WT Chen, TW Ke, JA Liang, CY Huang, PC Yang, KC Huang, KSC Chao. Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 2022; 543: 215795
https://doi.org/10.1016/j.canlet.2022.215795
|
210 |
K Hadlandsmyth, M Conrad, KS Steffensmeier, J Van Tiem, A Obrecht, JJ Cullen, MW Vander Weg. Enhancing the biopsychosocial approach to perioperative care: a pilot randomized trial of the perioperative pain self-management (PePS) intervention. Ann Surg 2022; 275(1): e8–e14
https://doi.org/10.1097/SLA.0000000000004671
|
211 |
H Wang, Q Shao, J Wang, L Zhao, L Wang, Z Cheng, C Yue, W Chen, H Wang, Y Zhang. Decreased CXCR2 expression on circulating monocytes of colorectal cancer impairs recruitment and induces Re-education of tumor-associated macrophages. Cancer Lett 2022; 529: 112–125
https://doi.org/10.1016/j.canlet.2022.01.004
|
212 |
QY Chen, B Gao, D Tong, C Huang. Crosstalk between extracellular vesicles and tumor-associated macrophage in the tumor microenvironment. Cancer Lett 2023; 552: 215979
https://doi.org/10.1016/j.canlet.2022.215979
|
213 |
Y Pylayeva-Gupta, KE Lee, CH Hajdu, G Miller, D Bar-Sagi. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21(6): 836–847
https://doi.org/10.1016/j.ccr.2012.04.024
|
214 |
P Monti, BE Leone, F Marchesi, G Balzano, A Zerbi, F Scaltrini, C Pasquali, G Calori, F Pessi, C Sperti, V Di Carlo, P Allavena, L Piemonti. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63(21): 7451–7461
|
215 |
J Li, KT Byrne, F Yan, T Yamazoe, Z Chen, T Baslan, LP Richman, JH Lin, YH Sun, AJ Rech, D Balli, CA Hay, Y Sela, AJ Merrell, SM Liudahl, N Gordon, RJ Norgard, S Yuan, S Yu, T Chao, S Ye, TSK Eisinger-Mathason, RB Faryabi, JW Tobias, SW Lowe, LM Coussens, EJ Wherry, RH Vonderheide, BZ Stanger. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 2018; 49(1): 178–193.e7
https://doi.org/10.1016/j.immuni.2018.06.006
|
216 |
A Zhang, Y Qian, Z Ye, H Chen, H Xie, L Zhou, Y Shen, S Zheng. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med 2017; 6(2): 463–470
https://doi.org/10.1002/cam4.993
|
217 |
X Yang, Y Lin, Y Shi, B Li, W Liu, W Yin, Y Dang, Y Chu, J Fan, R He. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res 2016; 76(14): 4124–4135
https://doi.org/10.1158/0008-5472.CAN-15-2973
|
218 |
Y Yu. Multi-target combinatory strategy to overcome tumor immune escape. Front Med 2022; 16(2): 208–215
https://doi.org/10.1007/s11684-022-0922-5
|
219 |
B Traub, KH Link, M Kornmann. Curing pancreatic cancer. Semin Cancer Biol 2021; 76: 232–246
https://doi.org/10.1016/j.semcancer.2021.05.030
|
220 |
T Hackert, M Sachsenmaier, U Hinz, L Schneider, CW Michalski, C Springfeld, O Strobel, D Jäger, A Ulrich, MW Büchler. Locally advanced pancreatic cancer: neoadjuvant therapy with folfirinox results in resectability in 60% of the patients. Ann Surg 2016; 264(3): 457–463
https://doi.org/10.1097/SLA.0000000000001850
|
221 |
JE Murphy, JY Wo, DP Ryan, JW Clark, W Jiang, BY Yeap, LC Drapek, L Ly, CV Baglini, LS Blaszkowsky, CR Ferrone, AR Parikh, CD Weekes, RD Nipp, EL Kwak, JN Allen, RB Corcoran, DT Ting, JE Faris, AX Zhu, L Goyal, DL Berger, M Qadan, KD Lillemoe, N Talele, RK Jain, TF DeLaney, DG Duda, Y Boucher, Castillo C Fernández-Del, TS Hong. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol 2019; 5(7): 1020–1027
https://doi.org/10.1001/jamaoncol.2019.0892
|
222 |
JE Murphy, JY Wo, DP Ryan, W Jiang, BY Yeap, LC Drapek, LS Blaszkowsky, EL Kwak, JN Allen, JW Clark, JE Faris, AX Zhu, L Goyal, KD Lillemoe, TF DeLaney, Castillo C Fernández-Del, CR Ferrone, TS Hong. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol 2018; 4(7): 963–969
https://doi.org/10.1001/jamaoncol.2018.0329
|
223 |
T Hackert, W Niesen, U Hinz, C Tjaden, O Strobel, A Ulrich, CW Michalski, MW Büchler. Radical surgery of oligometastatic pancreatic cancer. Eur J Surg Oncol 2017; 43(2): 358–363
https://doi.org/10.1016/j.ejso.2016.10.023
|
224 |
M Tachezy, F Gebauer, M Janot, W Uhl, A Zerbi, M Montorsi, J Perinel, M Adham, C Dervenis, C Agalianos, G Malleo, L Maggino, A Stein, JR Izbicki, M Bockhorn. Synchronous resections of hepatic oligometastatic pancreatic cancer: disputing a principle in a time of safe pancreatic operations in a retrospective multicenter analysis. Surgery 2016; 160(1): 136–144
https://doi.org/10.1016/j.surg.2016.02.019
|
225 |
O Strobel, J Neoptolemos, D Jäger, MW Büchler. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11–26
https://doi.org/10.1038/s41571-018-0112-1
|
226 |
JW Valle, D Palmer, R Jackson, T Cox, JP Neoptolemos, P Ghaneh, CL Rawcliffe, C Bassi, DD Stocken, D Cunningham, D O’Reilly, D Goldstein, BA Robinson, C Karapetis, A Scarfe, F Lacaine, J Sand, JR Izbicki, J Mayerle, C Dervenis, A Oláh, G Butturini, PA Lind, MR Middleton, A Anthoney, K Sumpter, R Carter, MW Büchler. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: ongoing lessons from the ESPAC-3 study. J Clin Oncol 2014; 32(6): 504–512
https://doi.org/10.1200/JCO.2013.50.7657
|
227 |
I Nassour, SC Wang, A Christie, MM Augustine, MR Porembka, AC Yopp, MA Choti, JC Mansour, XJ Xie, PM Polanco, RM Minter. Minimally invasive versus open pancreaticoduodenectomy: a propensity-matched study from a national cohort of patients. Ann Surg 2018; 268(1): 151–157
https://doi.org/10.1097/SLA.0000000000002259
|
228 |
M Raoof, PHG Ituarte, Y Woo, SG Warner, G Singh, Y Fong, L Melstrom. Propensity score-matched comparison of oncological outcomes between laparoscopic and open distal pancreatic resection. Br J Surg 2018; 105(5): 578–586
https://doi.org/10.1002/bjs.10747
|
229 |
Hilst J van, Rooij T de, S Klompmaker, M Rawashdeh, F Aleotti, B Al-Sarireh, A Alseidi, Z Ateeb, G Balzano, F Berrevoet, B Björnsson, U Boggi, OR Busch, G Butturini, R Casadei, Chiaro M Del, S Chikhladze, F Cipriani, Dam R van, I Damoli, Dieren S van, S Dokmak, B Edwin, Eijck C van, JM Fabre, M Falconi, O Farges, L Fernández-Cruz, A Forgione, I Frigerio, D Fuks, F Gavazzi, B Gayet, A Giardino, Koerkamp B Groot, T Hackert, M Hassenpflug, I Kabir, T Keck, I Khatkov, M Kusar, C Lombardo, G Marchegiani, R Marshall, KV Menon, M Montorsi, M Orville, Pastena M de, A Pietrabissa, I Poves, J Primrose, R Pugliese, C Ricci, K Roberts, B Røsok, MA Sahakyan, S Sánchez-Cabús, P Sandström, L Scovel, L Solaini, Z Soonawalla, FR Souche, RP Sutcliffe, GA Tiberio, A Tomazic, R Troisi, U Wellner, S White, UA Wittel, A Zerbi, C Bassi, MG Besselink, Hilal M; European Consortium on Minimally Invasive Pancreatic Surgery (E-MIPS) Abu. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (DIPLOMA): a pan-European propensity score matched study. Ann Surg 2019; 269(1): 10–17
https://doi.org/10.1097/SLA.0000000000002561
|
230 |
MA Tempero, MP Malafa, M Al-Hawary, SW Behrman, AB Benson, DB Cardin, EG Chiorean, V Chung, B Czito, M Del Chiaro, M Dillhoff, TR Donahue, E Dotan, CR Ferrone, C Fountzilas, J Hardacre, WG Hawkins, K Klute, AH Ko, JW Kunstman, N LoConte, AM Lowy, C Moravek, EK Nakakura, AK Narang, J Obando, PM Polanco, S Reddy, M Reyngold, C Scaife, J Shen, C Vollmer, RA Wolff, BM Wolpin, B Lynn, GV George. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19(4): 439–457
https://doi.org/10.6004/jnccn.2021.0017
|
231 |
Y Zhang, C Yang, H Cheng, Z Fan, Q Huang, Y Lu, K Fan, G Luo, K Jin, Z Wang, C Liu, X Yu. Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions. J Hematol Oncol 2018; 11(1): 14
https://doi.org/10.1186/s13045-017-0551-7
|
232 |
S Jones, X Zhang, DW Parsons, JC Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, H Kamiyama, A Jimeno, SM Hong, B Fu, MT Lin, ES Calhoun, M Kamiyama, K Walter, T Nikolskaya, Y Nikolsky, J Hartigan, DR Smith, M Hidalgo, SD Leach, AP Klein, EM Jaffee, M Goggins, A Maitra, C Iacobuzio-Donahue, JR Eshleman, SE Kern, RH Hruban, R Karchin, N Papadopoulos, G Parmigiani, B Vogelstein, VE Velculescu, KW Kinzler. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801–1806
https://doi.org/10.1126/science.1164368
|
233 |
J Zhong, H Bai, Z Wang, J Duan, W Zhuang, D Wang, R Wan, J Xu, K Fei, Z Ma, X Zhang, J Wang. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17(1): 18–42
https://doi.org/10.1007/s11684-022-0976-4
|
234 |
H Zhao, F Luo, J Xue, S Li, RH Xu. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828
https://doi.org/10.1007/s11684-021-0886-x
|
235 |
JQ Mi, J Xu, J Zhou, W Zhao, Z Chen, JJ Melenhorst, S Chen. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Front Med 2021; 15(6): 783–804
https://doi.org/10.1007/s11684-021-0904-z
|
236 |
S Chen, W Zhao, J Li, D; Lymphoid Disease Group Wu, Society of Hematology Chinese, Medical Association Chinese. Chinese expert consensus on oral drugs for the treatment of mature B-cell lymphomas (2020 edition). Front Med 2022; 16(5): 815–826
https://doi.org/10.1007/s11684-021-0891-0
|
237 |
AS Bear, RH Vonderheide, MH O’Hara. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 2020; 38(6): 788–802
https://doi.org/10.1016/j.ccell.2020.08.004
|
238 |
Y Li, S Wang, M Lin, C Hou, C Li, G Li. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Front Med 2022; 16(3): 307–321
https://doi.org/10.1007/s11684-022-0927-0
|
239 |
T Heumann, C Judkins, K Li, SJ Lim, J Hoare, R Parkinson, H Cao, T Zhang, J Gai, B Celiker, Q Zhu, T McPhaul, J Durham, K Purtell, R Klein, D Laheru, A De Jesus-Acosta, DT Le, A Narang, R Anders, R Burkhart, W Burns, K Soares, C Wolfgang, E Thompson, E Jaffee, H Wang, J He, L Zheng. A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma. Nat Commun 2023; 14(1): 3650
https://doi.org/10.1038/s41467-023-39196-9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|