|
|
|
Targeting deubiquitinase OTUB1 protects vascular smooth muscle cells in atherosclerosis by modulating PDGFRβ |
Fei Xu1,2,3,4, Han Chen2,3,4, Changyi Zhou2,3,4, Tongtong Zang2,3,4, Rui Wang2,3,4, Shutong Shen2,3,4, Chaofu Li2,3,4, Yue Yu2,3,4, Zhiqiang Pei2,3,4, Li Shen2,3,4( ), Juying Qian2,3,4( ), Junbo Ge2,3,4( ) |
1. Department of Cardiology and Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, China 2. Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai 200032, China 3. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China 4. National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine (19MC1910300), Shanghai 200032, China |
|
|
|
|
Abstract Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe−/− mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβ with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRβ. Inhibiting OTUB1 in VSMCs could promote PDGFRβ degradation via the ubiquitin–proteasome pathway, so it was beneficial in preventing VSMCs’ phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs’ phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.
|
| Keywords
atherosclerosis
vascular smooth muscle cell
ubiquitylation
deubiquitinase
OTUB1
PDGFRβ
|
|
Corresponding Author(s):
Li Shen,Juying Qian,Junbo Ge
|
|
Just Accepted Date: 12 March 2024
Online First Date: 22 April 2024
Issue Date: 17 June 2024
|
|
| 1 |
P Libby. The changing landscape of atherosclerosis. Nature 2021; 592(7855): 524–533
https://doi.org/10.1038/s41586-021-03392-8
|
| 2 |
JLM Björkegren, AJ Lusis. Atherosclerosis: recent developments. Cell 2022; 185(10): 1630–1645
https://doi.org/10.1016/j.cell.2022.04.004
|
| 3 |
I Hetherington, H Totary-Jain. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations. Mol Ther 2022; 30(10): 3106–3117
https://doi.org/10.1016/j.ymthe.2022.08.024
|
| 4 |
GL Basatemur, HF Jørgensen, MCH Clarke, MR Bennett, Z Mallat. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16(12): 727–744
https://doi.org/10.1038/s41569-019-0227-9
|
| 5 |
JM Miano, EA Fisher, MW Majesky. Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation 2021; 143(21): 2110–2116
https://doi.org/10.1161/CIRCULATIONAHA.120.049922
|
| 6 |
P Golforoush, DM Yellon, SM Davidson. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 2020; 115(6): 73
https://doi.org/10.1007/s00395-020-00829-5
|
| 7 |
P Swiatlowska, B Sit, Z Feng, E Marhuenda, I Xanthis, S Zingaro, M Ward, X Zhou, Q Xiao, C Shanahan, GE Jones, CH Yu, T Iskratsch. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci Adv 2022; 8(15): eabm3471
https://doi.org/10.1126/sciadv.abm3471
|
| 8 |
C Borgo, C D’Amore, S Sarno, M Salvi, M Ruzzene. Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6(1): 183
https://doi.org/10.1038/s41392-021-00567-7
|
| 9 |
J Herrmann, SM Soares, LO Lerman, A Lerman. Potential role of the ubiquitin-proteasome system in atherosclerosis: aspects of a protein quality disease. J Am Coll Cardiol 2008; 51(21): 2003–2010
https://doi.org/10.1016/j.jacc.2008.02.047
|
| 10 |
M Demasi, FR Laurindo. Physiological and pathological role of the ubiquitin-proteasome system in the vascular smooth muscle cell. Cardiovasc Res 2012; 95(2): 183–193
https://doi.org/10.1093/cvr/cvs128
|
| 11 |
MOJ Grootaert, A Finigan, NL Figg, AK Uryga, MR Bennett. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ Res 2021; 128(4): 474–491
https://doi.org/10.1161/CIRCRESAHA.120.318353
|
| 12 |
M Ye, X Guo, H Wang, Y Wang, X Qian, H Deng, W Wang, S Yang, Q Ni, J Chen, L Lv, Y Zhao, G Xue, Y Li, L Zhang. Mutual regulation between β-TRCP mediated REST protein degradation and Kv1.3 expression controls vascular smooth muscle cell phenotype switch. Atherosclerosis 2020; 313: 102–110
https://doi.org/10.1016/j.atherosclerosis.2020.08.018
|
| 13 |
SM Lange, LA Armstrong, Y Kulathu. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell 2022; 82(1): 15–29
https://doi.org/10.1016/j.molcel.2021.10.027
|
| 14 |
TE Mevissen, MK Hospenthal, PP Geurink, PR Elliott, M Akutsu, N Arnaudo, R Ekkebus, Y Kulathu, T Wauer, F El Oualid, SM Freund, H Ovaa, D Komander. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 2013; 154(1): 169–184
https://doi.org/10.1016/j.cell.2013.05.046
|
| 15 |
MJ Clague, S Urbé, D Komander. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20(6): 338–352
https://doi.org/10.1038/s41580-019-0099-1
|
| 16 |
Y Liao, M Yang, K Wang, Y Wang, B Zhong, N Jiang. Deubiquitinating enzyme OTUB1 in immunity and cancer: good player or bad actor?. Cancer Lett 2022; 526: 248–258
https://doi.org/10.1016/j.canlet.2021.12.002
|
| 17 |
F Mulas, X Wang, S Song, G Nishanth, W Yi, A Brunn, PK Larsen, B Isermann, U Kalinke, A Barragan, M Naumann, M Deckert, D Schlüter. The deubiquitinase OTUB1 augments NF-κB-dependent immune responses in dendritic cells in infection and inflammation by stabilizing UBC13. Cell Mol Immunol 2021; 18(6): 1512–1527
https://doi.org/10.1038/s41423-020-0362-6
|
| 18 |
J Koschel, G Nishanth, S Just, K Harit, A Kröger, M Deckert, M Naumann, D Schlüter. OTUB1 prevents lethal hepatocyte necroptosis through stabilization of c-IAP1 during murine liver inflammation. Cell Death Differ 2021; 28(7): 2257–2275
https://doi.org/10.1038/s41418-021-00752-9
|
| 19 |
T Bonacci, A Suzuki, GD Grant, N Stanley, JG Cook, NG Brown, MJ Emanuele. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J 2018; 37(16): e98701
https://doi.org/10.15252/embj.201798701
|
| 20 |
Q Luo, X Wu, P Zhao, Y Nan, W Chang, X Zhu, D Su, Z Liu. OTUD1 Activates caspase-independent and caspase-dependent apoptosis by promoting AIF nuclear translocation and MCL1 degradation. Adv Sci (Weinh) 2021; 8(8): 2002874
https://doi.org/10.1002/advs.202002874
|
| 21 |
GS Yang, B Zheng, Y Qin, J Zhou, Z Yang, XH Zhang, HY Zhao, HJ Yang, JK Wen. Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics 2020; 10(17): 7787–7811
https://doi.org/10.7150/thno.46911
|
| 22 |
U Karunarathna, M Kongsema, S Zona, C Gong, E Cabrera, AR Gomes, EP Man, P Khongkow, JW Tsang, US Khoo, RH Medema, R Freire, EW Lam. OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene 2016; 35(11): 1433–1444
https://doi.org/10.1038/onc.2015.208
|
| 23 |
D Zhu, R Xu, X Huang, Z Tang, Y Tian, J Zhang, X Zheng. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ 2021; 28(6): 1773–1789
https://doi.org/10.1038/s41418-020-00700-z
|
| 24 |
AS Jahan, E Biquand, R Muñoz-Moreno, Quang A Le, CK Mok, HH Wong, QW Teo, SA Valkenburg, AWH Chin, Poon LL Man, Velthuis A Te, A García-Sastre, C Demeret, S Sanyal. OTUB1 is a key regulator of RIG-I-dependent immune signaling and is targeted for proteasomal degradation by influenza A NS1. Cell Rep 2020; 30(5): 1570–1584.e6
https://doi.org/10.1016/j.celrep.2020.01.015
|
| 25 |
S Liu, X Jiang, X Cui, J Wang, S Liu, H Li, J Yang, C Zhang, W Zhang. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis. Cell Death Dis 2021; 12(4): 385
https://doi.org/10.1038/s41419-021-03671-2
|
| 26 |
JR Wiśniewski, A Zougman, N Nagaraj, M Mann. Universal sample preparation method for proteome analysis. Nat Methods 2009; 6(5): 359–362
https://doi.org/10.1038/nmeth.1322
|
| 27 |
D Shin, A Bhattacharya, YL Cheng, MC Alonso, AR Mehdipour, GJ van der Heden van Noort, H Ovaa, G Hummer, I Dikic. Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. Elife 2020; 9: e58277
https://doi.org/10.7554/eLife.58277
|
| 28 |
AF Schubert, JV Nguyen, TG Franklin, PP Geurink, CG Roberts, DJ Sanderson, LN Miller, H Ovaa, K Hofmann, JN Pruneda, D Komander. Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J 2020; 39(15): e105127
https://doi.org/10.15252/embj.2020105127
|
| 29 |
E Biros, G Gäbel, CS Moran, C Schreurs, JH Lindeman, PJ Walker, M Nataatmadja, M West, LM Holdt, I Hinterseher, C Pilarsky, J Golledge. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease. Oncotarget 2015; 6(15): 12984–12996
https://doi.org/10.18632/oncotarget.3848
|
| 30 |
L Herhaus, M Al-Salihi, T Macartney, S Weidlich, GP Sapkota. OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun 2013; 4(1): 2519
https://doi.org/10.1038/ncomms3519
|
| 31 |
Y Li, JY Yang, X Xie, Z Jie, L Zhang, J Shi, D Lin, M Gu, X Zhou, HS Li, SS Watowich, A Jain, S Yun Jung, J Qin, X Cheng, SC Sun. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29(6): 474–485
https://doi.org/10.1038/s41422-019-0174-3
|
| 32 |
Q Zhu, Y Fu, L Li, CH Liu, L Zhang. The functions and regulation of Otubains in protein homeostasis and diseases. Ageing Res Rev 2021; 67: 101303
https://doi.org/10.1016/j.arr.2021.101303
|
| 33 |
A Ruiz-Serrano, Rodríguez JM Monné, J Günter, SPM Sherman, AE Jucht, P Fluechter, YL Volkova, S Pfundstein, G Pellegrini, CA Wagner, C Schneider, RH Wenger, CC Scholz. OTUB1 regulates lung development, adult lung tissue homeostasis, and respiratory control. FASEB J 2021; 35(12): e22039
https://doi.org/10.1096/fj.202100346R
|
| 34 |
A Cheng, CE Grant, WS Noble, TL Bailey. MoMo: discovery of statistically significant post-translational modification motifs. Bioinformatics 2019; 35(16): 2774–2782
https://doi.org/10.1093/bioinformatics/bty1058
|
| 35 |
Y Baumer, S McCurdy, M Alcala, N Mehta, BH Lee, MH Ginsberg, WA Boisvert. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis 2017; 256: 105–114
https://doi.org/10.1016/j.atherosclerosis.2016.11.017
|
| 36 |
EJ Goetzl, JB Schwartz, M Mustapic, IV Lobach, R Daneman, EL Abner, GA Jicha. Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB J 2017; 31(8): 3689–3694
https://doi.org/10.1096/fj.201700149
|
| 37 |
C He, SC Medley, T Hu, ME Hinsdale, F Lupu, R Virmani, LE Olson. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun 2015; 6(1): 7770
https://doi.org/10.1038/ncomms8770
|
| 38 |
N Papadopoulos, J Lennartsson. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62: 75–88
https://doi.org/10.1016/j.mam.2017.11.007
|
| 39 |
D Iglesias-Gato, YC Chuan, N Jiang, C Svensson, J Bao, I Paul, L Egevad, BM Kessler, P Wikström, Y Niu, A Flores-Morales. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer 2015; 14(1): 8
https://doi.org/10.1186/s12943-014-0280-2
|
| 40 |
X Han, C Ren, C Lu, P Qiao, T Yang, Z Yu. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ 2022; 29(9): 1864–1873
https://doi.org/10.1038/s41418-022-00971-8
|
| 41 |
T Goncharov, K Niessen, MC de Almagro, A Izrael-Tomasevic, AV Fedorova, E Varfolomeev, D Arnott, K Deshayes, DS Kirkpatrick, D Vucic. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 2013; 32(8): 1103–1114
https://doi.org/10.1038/emboj.2013.62
|
| 42 |
A Martínez-Férriz, A Ferrando, A Fathinajafabadi, R Farràs. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol 2022; 132: 146–154
https://doi.org/10.1016/j.semcdb.2021.12.009
|
| 43 |
Y Takayama, P May, RG Anderson, J Herz. Low density lipoprotein receptor-related protein 1 (LRP1) controls endocytosis and c-CBL-mediated ubiquitination of the platelet-derived growth factor receptor β (PDGFR β). J Biol Chem 2005; 280(18): 18504–18510
https://doi.org/10.1074/jbc.M410265200
|
| 44 |
X Wang, Y Li, M He, X Kong, P Jiang, X Liu, L Diao, X Zhang, H Li, X Ling, S Xia, Z Liu, Y Liu, CP Cui, Y Wang, L Tang, L Zhang, F He, D Li. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res 2022; 50(D1): D719–D728
https://doi.org/10.1093/nar/gkab962
|
| 45 |
Z Li, S Chen, JH Jhong, Y Pang, KY Huang, S Li, TY Lee. UbiNet 2.0: a verified, classified, annotated and updated database of E3 ubiquitin ligase-substrate interactions. Database (Oxford) 2021; 2021: baab010
https://doi.org/10.1093/database/baab010
|
| 46 |
H Xu, J Zhou, S Lin, W Deng, Y Zhang, Y Xue. PLMD: an updated data resource of protein lysine modifications. J Genet Genomics 2017; 44(5): 243–250
https://doi.org/10.1016/j.jgg.2017.03.007
|
| 47 |
R Wiener, X Zhang, T Wang, C Wolberger. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 2012; 483(7391): 618–622
https://doi.org/10.1038/nature10911
|
| 48 |
Y Zhang, Y Wang, L Zhang, L Xia, M Zheng, Z Zeng, Y Liu, T Yarovinsky, AC Ostriker, X Fan, K Weng, M Su, P Huang, KA Martin, J Hwa, WH Tang. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRβ vascular smooth muscle cell axis. Circ Res 2020; 127(7): 855–873
https://doi.org/10.1161/CIRCRESAHA.120.316951
|
| 49 |
AL Reddi, G Ying, L Duan, G Chen, M Dimri, P Douillard, BJ Druker, M Naramura, V Band, H Band. Binding of Cbl to a phospholipase Cgamma1-docking site on platelet-derived growth factor receptor beta provides a dual mechanism of negative regulation. J Biol Chem 2007; 282(40): 29336–29347
https://doi.org/10.1074/jbc.M701797200
|
| 50 |
T Hamid, Y Xu, MA Ismahil, G Rokosh, M Jinno, G Zhou, Q Wang, SD Prabhu. Cardiac mesenchymal stem cells promote fibrosis and remodeling in heart failure: role of PDGF signaling. JACC Basic Transl Sci 2022; 7(5): 465–483
https://doi.org/10.1016/j.jacbts.2022.01.004
|
| 51 |
AC Doran, N Meller, CA McNamara. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28(5): 812–819
https://doi.org/10.1161/ATVBAHA.107.159327
|
| 52 |
M Saldana, K VanderVorst, AL Berg, H Lee, KL Carraway. Otubain 1: a non-canonical deubiquitinase with an emerging role in cancer. Endocr Relat Cancer 2019; 26(1): R1–R14
https://doi.org/10.1530/ERC-18-0264
|
| 53 |
C Yap, A Mieremet, CJM de Vries, D Micha, V de Waard. Six shades of vascular smooth muscle cells illuminated by KLF4 (Krüppel-like factor 4). Arterioscler Thromb Vasc Biol 2021; 41(11): 2693–2707
https://doi.org/10.1161/ATVBAHA.121.316600
|
| 54 |
AL Durham, MY Speer, M Scatena, CM Giachelli, CM Shanahan. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2018; 114(4): 590–600
https://doi.org/10.1093/cvr/cvy010
|
| 55 |
XX Sun, KB Challagundla, MS Dai. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J 2012; 31(3): 576–592
https://doi.org/10.1038/emboj.2011.434
|
| 56 |
PY Jean-Charles, JH Wu, L Zhang, S Kaur, I Nepliouev, JA Stiber, L Brian, R Qi, V Wertman, SK Shenoy, NJ Freedman. USP20 (ubiquitin-specific protease 20) inhibits TNF (tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38(10): 2295–2305
https://doi.org/10.1161/ATVBAHA.118.311071
|
| 57 |
HP Moll, A Lee, DC Minussi, CG da Silva, E Csizmadia, M Bhasin, C Ferran. A20 regulates atherogenic interferon (IFN)-γ signaling in vascular cells by modulating basal IFNβ levels. J Biol Chem 2014; 289(45): 30912–30924
https://doi.org/10.1074/jbc.M114.591966
|
| 58 |
H Karvinen, J Rutanen, O Leppänen, R Lach, AL Levonen, U Eriksson, S Ylä-Herttuala. PDGF-C and -D and their receptors PDGFR-α and PDGFR-β in atherosclerotic human arteries. Eur J Clin Invest 2009; 39(4): 320–327
https://doi.org/10.1111/j.1365-2362.2009.02095.x
|
| 59 |
C Rorsman, M Tsioumpekou, CH Heldin, J Lennartsson. The ubiquitin ligases c-Cbl and Cbl-b negatively regulate platelet-derived growth factor (PDGF) BB-induced chemotaxis by affecting PDGF receptor β (PDGFRβ) internalization and signaling. J Biol Chem 2016; 291(22): 11608–11618
https://doi.org/10.1074/jbc.M115.705814
|
| 60 |
N Sarri, K Wang, M Tsioumpekou, C Castillejo-López, J Lennartsson, CH Heldin, N Papadopoulos. Deubiquitinating enzymes USP4 and USP17 finetune the trafficking of PDGFRβ and affect PDGF-BB-induced STAT3 signalling. Cell Mol Life Sci 2022; 79(2): 85
https://doi.org/10.1007/s00018-022-04128-1
|
| 61 |
AAC Newman, V Serbulea, RA Baylis, LS Shankman, X Bradley, GF Alencar, K Owsiany, RA Deaton, S Karnewar, S Shamsuzzaman, A Salamon, MS Reddy, L Guo, A Finn, R Virmani, OA Cherepanova, GK Owens. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab 2021; 3(2): 166–181
https://doi.org/10.1038/s42255-020-00338-8
|
| 62 |
X Guo, L Nie, L Esmailzadeh, J Zhang, JR Bender, MM Sadeghi. Endothelial and smooth muscle-derived neuropilin-like protein regulates platelet-derived growth factor signaling in human vascular smooth muscle cells by modulating receptor ubiquitination. J Biol Chem 2009; 284(43): 29376–29382
https://doi.org/10.1074/jbc.M109.049684
|
| 63 |
BG Childs, DJ Baker, T Wijshake, CA Conover, J Campisi, JM van Deursen. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354(6311): 472–477
https://doi.org/10.1126/science.aaf6659
|
| 64 |
D Gomez, RA Baylis, BG Durgin, AAC Newman, GF Alencar, S Mahan, Hilaire C St, W Müller, A Waisman, SE Francis, E Pinteaux, GJ Randolph, H Gram, GK Owens. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat Med 2018; 24(9): 1418–1429
https://doi.org/10.1038/s41591-018-0124-5
|
| 65 |
G Fredman, N Kamaly, S Spolitu, J Milton, D Ghorpade, R Chiasson, G Kuriakose, M Perretti, O Farokzhad, I Tabas. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med 2015; 7(275): 275ra20
https://doi.org/10.1126/scitranslmed.aaa1065
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|