Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (4) : 735-743    https://doi.org/10.1007/s11684-024-1060-z
Evaluation of molecular residual disease in operable non-small cell lung cancer with gene fusions, MET exon skipping or de novo MET amplification
Rui Fu1,2, Yuanyuan Xiong3, Miao Cai3, Fang Li3, Rongrong Chen3, Yilong Wu1,2, Wenzhao Zhong1,2()
1. School of Medicine, South China University of Technology, Guangzhou 510006, China
2. Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
3. Geneplus-Beijing, Beijing 102206, China
 Download: PDF(972 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gene fusions and MET alterations are rare and difficult to detect in plasma samples. The clinical detection efficacy of molecular residual disease (MRD) based on circulating tumor DNA (ctDNA) in patients with non-small cell lung cancer (NSCLC) with these mutations remains unknown. This prospective, non-intervention study recruited 49 patients with operable NSCLC with actionable gene fusions (ALK, ROS1, RET, and FGFR1), MET exon 14 skipping or de novo MET amplification. We analyzed 43 tumor tissues and 111 serial perioperative plasma samples using 1021- and 338-gene panels, respectively. Detectable MRD correlated with a significantly higher recurrence rate (P < 0.001), yielding positive predictive values of 100% and 90.9%, and negative predictive values of 82.4% and 86.4% at landmark and longitudinal time points, respectively. Patients with detectable MRD showed reduced disease-free survival (DFS) compared to those with undetectable MRD (P < 0.001). Patients who harbored tissue-derived fusion/MET alterations in their MRD had reduced DFS compared to those who did not (P = 0.05). To our knowledge, this is the first comprehensive study on ctDNA-MRD clinical detection efficacy in operable NSCLC patients with gene fusions and MET alterations. Patients with detectable tissue-derived fusion/MET alterations in postoperative MRD had worse clinical outcomes.

Keywords ctDNA      molecular residual disease      operable NSCLC      gene fusion      MET exon skipping      MET amplification     
Corresponding Author(s): Wenzhao Zhong   
Just Accepted Date: 24 April 2024   Online First Date: 24 May 2024    Issue Date: 30 August 2024
 Cite this article:   
Rui Fu,Yuanyuan Xiong,Miao Cai, et al. Evaluation of molecular residual disease in operable non-small cell lung cancer with gene fusions, MET exon skipping or de novo MET amplification[J]. Front. Med., 2024, 18(4): 735-743.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1060-z
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I4/735
Fig.1  Baseline characteristics of our cohort. Heat map plot based on each patient’s baseline clinical and molecular characteristics. Amp, amplification.
Fig.2  Disease-free survival stratified by postoperative MRD status. (A) Event chart showing clinical characteristics, preoperative and postoperative longitudinal ctDNA status and recurrence status in the overall cohort. Patients were separated by their radiographic outcome. Patients included in the analysis of landmark time points were marked with bold italics, and the landmark time window was marked with cyan. Chemo, chemotherapy; TKI, tyrosine kinase inhibitor; ICI, immune checkpoint inhibitor. (B, C) Kaplan–Meier estimates of disease-free survival in patients stratified by ctDNA status at landmark (B) and longitudinal (C) time points. P value was calculated by the log-rank test and the hazard ratio by the Cox exp(β) method.
Fig.3  MRD is superior to CEA in predicting disease recurrence. (A) Analysis of recurrence time measured by the first ctDNA detection and CT. P value was calculated by the log-rank test and the hazard ratio by the Cox exp(β) method. (B) Example of patient P009 with positive ctDNA and negative CEA before recurrence.
Fig.4  Association of postoperative ctDNA mutation types with patient outcome. (A) Mutational landscape of longitudinal detectable ctDNA in 14 patients with operable NSCLC. (B) Kaplan–Meier estimates of disease-free survival in patients with and without fusion/MET mutations of longitudinal ctDNA. (C) Kaplan–Meier estimates of disease-free survival in patients stratified by whether the longitudinal ctDNA mutations are tissue-derived and fusion/MET mutations. The detectable fusion/MET group comprised patients with at least one fusion/MET mutation detected in at least one postoperative plasma sample. The detectable tissue-derived and undetectable fusion/MET group comprised patients with at least one tissue-derived mutation detected in at least one postoperative plasma sample and no fusion/MET mutation detected in any postoperative samples. P value was calculated by the log-rank test and the hazard ratio by the Cox exp(β) method.
1 JP Pignon, H Tribodet, GV Scagliotti, JY Douillard, FA Shepherd, RJ Stephens, A Dunant, V Torri, R Rosell, L Seymour, SG Spiro, E Rolland, R Fossati, D Aubert, K Ding, D Waller, Chevalier T; LACE Collaborative Group Le. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol 2008; 26(21): 3552–3559
https://doi.org/10.1200/JCO.2007.13.9030
2 Meta-analysis Collaborative Group NSCLC. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet 2014; 383(9928): 1561–1571
https://doi.org/10.1016/S0140-6736(13)62159-5
3 JT Zhang, SY Liu, W Gao, SM Liu, HH Yan, L Ji, Y Chen, Y Gong, HL Lu, JT Lin, K Yin, BY Jiang, Q Nie, RQ Liao, S Dong, Y Guan, P Dai, XC Zhang, JJ Yang, HY Tu, X Xia, X Yi, Q Zhou, WZ Zhong, XN Yang, YL Wu. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov 2022; 12(7): 1690–1701
https://doi.org/10.1158/2159-8290.CD-21-1486
4 R Fu, J Huang, X Tian, C Liang, Y Xiong, JT Zhang, B Jiang, S Dong, Y Gong, W Gao, F Li, Y Shi, Z Liu, X Gao, R Chen, W Zhong, Y Zhang. Postoperative circulating tumor DNA can refine risk stratification in resectable lung cancer: results from a multicenter study. Mol Oncol 2023; 17(5): 825–838
https://doi.org/10.1002/1878-0261.13387
5 C Abbosh, NJ Birkbak, GA Wilson, M Jamal-Hanjani, T Constantin, R Salari, Quesne J Le, DA Moore, S Veeriah, R Rosenthal, T Marafioti, E Kirkizlar, TBK Watkins, N McGranahan, S Ward, L Martinson, J Riley, F Fraioli, Bakir M Al, E Grönroos, F Zambrana, R Endozo, WL Bi, FM Fennessy, N Sponer, D Johnson, J Laycock, S Shafi, J Czyzewska-Khan, A Rowan, T Chambers, N Matthews, S Turajlic, C Hiley, SM Lee, MD Forster, T Ahmad, M Falzon, E Borg, D Lawrence, M Hayward, S Kolvekar, N Panagiotopoulos, SM Janes, R Thakrar, A Ahmed, F Blackhall, Y Summers, D Hafez, A Naik, A Ganguly, S Kareht, R Shah, L Joseph, Quinn A Marie, PA Crosbie, B Naidu, G Middleton, G Langman, S Trotter, M Nicolson, H Remmen, K Kerr, M Chetty, L Gomersall, DA Fennell, A Nakas, S Rathinam, G Anand, S Khan, P Russell, V Ezhil, B Ismail, M Irvin-Sellers, V Prakash, JF Lester, M Kornaszewska, R Attanoos, H Adams, H Davies, D Oukrif, AU Akarca, JA Hartley, HL Lowe, S Lock, N Iles, H Bell, Y Ngai, G Elgar, Z Szallasi, RF Schwarz, J Herrero, A Stewart, SA Quezada, KS Peggs, Loo P Van, C Dive, CJ Lin, M Rabinowitz, HJWL Aerts, A Hackshaw, JA Shaw, BG; TRACERx consortium; PEACE consortium; Swanton C Zimmermann. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017; 545(7655): 446–451
https://doi.org/10.1038/nature22364
6 L Xia, J Mei, R Kang, S Deng, Y Chen, Y Yang, G Feng, Y Deng, F Gan, Y Lin, Q Pu, L Ma, F Lin, Y Yuan, Y Hu, C Guo, H Liao, C Liu, Y Zhu, W Wang, Z Liu, Y Xu, K Li, C Li, Q Li, J He, W Chen, X Zhang, Y Kou, Y Wang, Z Wu, G Che, L Chen, L Liu. Perioperative ctDNA-based molecular residual disease detection for non-small cell lung cancer: A prospective multicenter cohort study (LUNGCA-1). Clin Cancer Res 2022; 28(15): 3308–3317
https://doi.org/10.1158/1078-0432.CCR-21-3044
7 J Tie, JD Cohen, K Lahouel, SN Lo, Y Wang, S Kosmider, R Wong, J Shapiro, M Lee, S Harris, A Khattak, M Burge, M Harris, J Lynam, L Nott, F Day, T Hayes, SA McLachlan, B Lee, J Ptak, N Silliman, L Dobbyn, M Popoli, R Hruban, AM Lennon, N Papadopoulos, KW Kinzler, B Vogelstein, C Tomasetti, P; DYNAMIC Investigators Gibbs. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022; 386(24): 2261–2272
https://doi.org/10.1056/NEJMoa2200075
8 J Pascual, G Attard, FC Bidard, G Curigliano, L De Mattos-Arruda, M Diehn, A Italiano, J Lindberg, JD Merker, C Montagut, N Normanno, K Pantel, G Pentheroudakis, S Popat, JS Reis-Filho, J Tie, J Seoane, N Tarazona, T Yoshino, NC Turner. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2022; 33(8): 750–768
https://doi.org/10.1016/j.annonc.2022.05.520
9 AR Gawroński, YY Lin, B McConeghy, S LeBihan, H Asghari, C Koçkan, B Orabi, N Adra, R Pili, CC Collins, SC Sahinalp, F Hach. Structural variation and fusion detection using targeted sequencing data from circulating cell free DNA. Nucleic Acids Res 2019; 47(7): e38
https://doi.org/10.1093/nar/gkz067
10 C Abbosh, AM Frankell, T Harrison, J Kisistok, A Garnett, L Johnson, S Veeriah, M Moreau, A Chesh, TL Chaunzwa, J Weiss, MR Schroeder, S Ward, K Grigoriadis, A Shahpurwalla, K Litchfield, C Puttick, D Biswas, T Karasaki, JRM Black, C Martínez-Ruiz, MA Bakir, O Pich, TBK Watkins, EL Lim, A Huebner, DA Moore, N Godin-Heymann, A L’Hernault, H Bye, A Odell, P Roberts, F Gomes, AJ Patel, E Manzano, CT Hiley, N Carey, J Riley, DE Cook, D Hodgson, D Stetson, JC Barrett, RM Kortlever, GI Evan, A Hackshaw, RD Daber, JA Shaw, HJWL Aerts, A Licon, J Stahl, M; TRACERx Consortium; Birkbak NJ Jamal-Hanjani, N McGranahan, C Swanton. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023; 616(7957): 553–562
https://doi.org/10.1038/s41586-023-05776-4
11 S Chen, Y Zhou, Y Chen, J Gu. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34(17): i884–i890
https://doi.org/10.1093/bioinformatics/bty560
12 J Li, R Lupat, KC Amarasinghe, ER Thompson, MA Doyle, GL Ryland, RW Tothill, SK Halgamuge, IG Campbell, KL Gorringe. CONTRA: copy number analysis for targeted resequencing. Bioinformatics 2012; 28(10): 1307–1313
https://doi.org/10.1093/bioinformatics/bts146
13 X Ai, J Cui, J Zhang, R Chen, W Lin, C Xie, A Liu, J Zhang, W Yang, X Hu, X Hu, Q Zhao, C Rao, YS Zang, R Ning, P Li, L Chang, X Yi, S Lu. Clonal architecture of EGFR mutation predicts the efficacy of EGFR-tyrosine kinase inhibitors in advanced NSCLC: a prospective multicenter study (NCT03059641). Clin Cancer Res 2021; 27(3): 704–712
https://doi.org/10.1158/1078-0432.CCR-20-3063
14 Y Zhang, Y Yao, Y Xu, L Li, Y Gong, K Zhang, M Zhang, Y Guan, L Chang, X Xia, L Li, S Jia, Q Zeng. Pan-cancer circulating tumor DNA detection in over 10 000 Chinese patients. Nat Commun 2021; 12(1): 11
https://doi.org/10.1038/s41467-020-20162-8
15 T Reinert, TV Henriksen, E Christensen, S Sharma, R Salari, H Sethi, M Knudsen, I Nordentoft, HT Wu, AS Tin, Rasmussen M Heilskov, S Vang, S Shchegrova, Boll Johansen A Frydendahl, R Srinivasan, Z Assaf, M Balcioglu, A Olson, S Dashner, D Hafez, S Navarro, S Goel, M Rabinowitz, P Billings, S Sigurjonsson, L Dyrskjøt, R Swenerton, A Aleshin, S Laurberg, Madsen A Husted, AS Kannerup, K Stribolt, Krag S Palmelund, LH Iversen, Sunesen K Gotschalck, CJ Lin, BG Zimmermann, Andersen C Lindbjerg. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol 2019; 5(8): 1124–1131
https://doi.org/10.1001/jamaoncol.2019.0528
16 J Tie, JD Cohen, Y Wang, M Christie, K Simons, M Lee, R Wong, S Kosmider, S Ananda, J McKendrick, B Lee, JH Cho, I Faragher, IT Jones, J Ptak, MJ Schaeffer, N Silliman, L Dobbyn, L Li, C Tomasetti, N Papadopoulos, KW Kinzler, B Vogelstein, P Gibbs. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol 2019; 5(12): 1710–1717
https://doi.org/10.1001/jamaoncol.2019.3616
17 LY Gou, YL Wu. Prevalence of driver mutations in non-small-cell lung cancers in the People’s Republic of China. Lung Cancer (Auckl) 2014; 5: 1–9
18 HG Vuong, ATN Ho, AMA Altibi, T Nakazawa, R Katoh, T Kondo. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—a systematic review and meta-analysis. Lung Cancer 2018; 123: 76–82
https://doi.org/10.1016/j.lungcan.2018.07.006
19 A Drilon, F Cappuzzo, SI Ou, DR Camidge. Targeting MET in lung cancer: will expectations finally be MET?. J Thorac Oncol 2017; 12(1): 15–26
https://doi.org/10.1016/j.jtho.2016.10.014
20 C Rolfo, P Mack, GV Scagliotti, C Aggarwal, ME Arcila, F Barlesi, T Bivona, M Diehn, C Dive, R Dziadziuszko, N Leighl, U Malapelle, T Mok, N Peled, LE Raez, L Sequist, L Sholl, C Swanton, C Abbosh, D Tan, H Wakelee, I Wistuba, R Bunn, J Freeman-Daily, M Wynes, C Belani, T Mitsudomi, D Gandara. Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. J Thorac Oncol 2021; 16(10): 1647–1662
https://doi.org/10.1016/j.jtho.2021.06.017
21 D Gale, K Heider, A Ruiz-Valdepenas, S Hackinger, M Perry, G Marsico, V Rundell, J Wulff, G Sharma, H Knock, J Castedo, W Cooper, H Zhao, CG Smith, S Garg, S Anand, K Howarth, D Gilligan, SV Harden, DM Rassl, RC Rintoul, N Rosenfeld. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol 2022; 33(5): 500–510
https://doi.org/10.1016/j.annonc.2022.02.007
22 K Chen, F Yang, H Shen, C Wang, X Li, O Chervova, S Wu, F Qiu, D Peng, X Zhu, S Chuai, S Beck, N Kanu, D Carbone, Z Zhang, J Wang. Individualized tumor-informed circulating tumor DNA analysis for postoperative monitoring of non-small cell lung cancer. Cancer Cell 2023; 41(10): 1749–1762.e6
https://doi.org/10.1016/j.ccell.2023.08.010
23 B Qiu, W Guo, F Zhang, F Lv, Y Ji, Y Peng, X Chen, H Bao, Y Xu, Y Shao, F Tan, Q Xue, S Gao, J He. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun 2021; 12(1): 6770
https://doi.org/10.1038/s41467-021-27022-z
24 MD Hellmann, BY Nabet, H Rizvi, AA Chaudhuri, DK Wells, MPS Dunphy, JJ Chabon, CL Liu, AB Hui, KC Arbour, J Luo, IR Preeshagul, EJ Moding, D Almanza, RF Bonilla, JL Sauter, H Choi, M Tenet, M Abu-Akeel, AJ Plodkowski, R Perez Johnston, CH Yoo, RB Ko, H Stehr, L Gojenola, HA Wakelee, SK Padda, JW Neal, JE Chaft, MG Kris, CM Rudin, T Merghoub, BT Li, AA Alizadeh, M Diehn. Circulating tumor DNA analysis to assess risk of progression after long-term response to PD-(L)1 blockade in NSCLC. Clin Cancer Res 2020; 26(12): 2849–2858
https://doi.org/10.1158/1078-0432.CCR-19-3418
25 W Tang, Y Lei, J Su, C Zhang, R Fu, J Kang, H Yan, X Yang, H Tu, Y Wu, W Zhong. TNM stages inversely correlate with the age at diagnosis in ALK-positive lung cancer. Transl Lung Cancer Res 2019; 8(2): 144–154
https://doi.org/10.21037/tlcr.2019.03.07
[1] FMD-24002-OF-ZWZ_suppl_1 Download
[2] FMD-24002-OF-ZWZ_suppl_2 Download
[1] Yarui Ma, Jingbo Gan, Yinlei Bai, Dandan Cao, Yuchen Jiao. Minimal residual disease in solid tumors: an overview[J]. Front. Med., 2023, 17(4): 649-674.
[2] Junyun Wang, Shuang Chang, Guochao Li, Yingli Sun. Application of liquid biopsy in precision medicine: opportunities and challenges[J]. Front. Med., 2017, 11(4): 522-527.
[3] Lu Wang. Identification of cancer gene fusions based on advanced analysis of the human genome or transcriptome[J]. Front Med, 2013, 7(3): 280-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed