|
|
lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α–mitochondrial complex IV axis |
Tong Yu1, Qiang Gao2, Guofang Zhang4, Tianyu Li4, Xiaoshan Liu1, Chao Li4, Lan Zheng2, Xiang Sun4, Jianbo Wu4, Huiying Cao4, Fangfang Bi4, Ruifeng Wang4, Haihai Liang4, Xuelian Li4, Yuhong Zhou4, Lifang Lv2,3( ), Hongli Shan1( ) |
1. Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China 2. Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China 3. The Center of Functional Experiment Teaching, School of Basic Medicine, Harbin Medical University, Harbin 150081, China 4. State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China |
|
|
Abstract Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II–induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator–activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α–mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.
|
Keywords
lncRNA Gm20257
cardiac hypertrophy
PGC-1α
mitochondrial complex IV
ATP
|
Corresponding Author(s):
Lifang Lv,Hongli Shan
|
Just Accepted Date: 11 June 2024
Online First Date: 26 June 2024
Issue Date: 30 August 2024
|
|
1 |
LHH Aung, JCC Jumbo, Y Wang, P Li. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: a concise review. Mol Ther Nucleic Acids 2021; 25: 416–443
https://doi.org/10.1016/j.omtn.2021.06.006
|
2 |
AK Shah, SK Bhullar, V Elimban, NS Dhalla. Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel) 2021; 10(6): 931
https://doi.org/10.3390/antiox10060931
|
3 |
VL Roger. Epidemiology of heart failure: a contemporary perspective. Circ Res 2021; 128(10): 1421–1434
https://doi.org/10.1161/CIRCRESAHA.121.318172
|
4 |
KT Nijholt, PI Sánchez-Aguilera, SN Voorrips, Boer RA de, BD Westenbrink. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure?. Eur J Heart Fail 2022; 24(2): 287–298
https://doi.org/10.1002/ejhf.2407
|
5 |
N Abbas, F Perbellini, T Thum. Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Res Cardiol 2020; 115(5): 52
https://doi.org/10.1007/s00395-020-0816-0
|
6 |
L Xie, Q Zhang, J Mao, J Zhang, L Li. The roles of lncRNA in myocardial infarction: molecular mechanisms, diagnosis biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2021; 9: 680713
https://doi.org/10.3389/fcell.2021.680713
|
7 |
Y Chen, Z Li, X Chen, S Zhang. Long non-coding RNAs: from disease code to drug role. Acta Pharm Sin B 2021; 11(2): 340–354
https://doi.org/10.1016/j.apsb.2020.10.001
|
8 |
T Sallam, J Sandhu, P Tontonoz. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 2018; 122(1): 155–166
https://doi.org/10.1161/CIRCRESAHA.117.311802
|
9 |
J Viereck, R Kumarswamy, A Foinquinos, K Xiao, P Avramopoulos, M Kunz, M Dittrich, T Maetzig, K Zimmer, J Remke, A Just, J Fendrich, K Scherf, E Bolesani, A Schambach, F Weidemann, R Zweigerdt, LJ de Windt, S Engelhardt, T Dandekar, S Batkai, T Thum. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 2016; 8(326): 326ra22
https://doi.org/10.1126/scitranslmed.aaf1475
|
10 |
L Zhang, F Li, X Su, Y Li, Y Wang, R Fang, Y Guo, T Jin, H Shan, X Zhao, R Yang, H Shan, H Liang. Melatonin prevents lung injury by regulating apelin 13 to improve mitochondrial dysfunction. Exp Mol Med 2019; 51(7): 1–12
https://doi.org/10.1038/s12276-019-0273-8
|
11 |
A Jusic, Y; EU-CardioRNA COST Action (CA17129) Devaux. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115(3): 23
https://doi.org/10.1007/s00395-020-0783-5
|
12 |
SK Bhullar, NS Dhalla. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells 2022; 11(21): 3336
https://doi.org/10.3390/cells11213336
|
13 |
J Nah, A Shirakabe, R Mukai, P Zhai, EA Sung, A Ivessa, W Mizushima, Y Nakada, T Saito, C Hu, YK Jung, J Sadoshima. Ulk1-dependent alternative mitophagy plays a protective role during pressure overload in the heart. Cardiovasc Res 2022; 118(12): 2638–2651
https://doi.org/10.1093/cvr/cvac003
|
14 |
JM Huss, DP Kelly. Nuclear receptor signaling and cardiac energetics. Circ Res 2004; 95(6): 568–578
https://doi.org/10.1161/01.RES.0000141774.29937.e3
|
15 |
P Anand, Y Akhter. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212: 474–494
https://doi.org/10.1016/j.ijbiomac.2022.05.124
|
16 |
H Bugger, M Schwarzer, D Chen, A Schrepper, PA Amorim, M Schoepe, TD Nguyen, FW Mohr, O Khalimonchuk, BC Weimer, T Doenst. Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 2010; 85(2): 376–384
https://doi.org/10.1093/cvr/cvp344
|
17 |
DF Dai, EJ Hsieh, Y Liu, T Chen, RP Beyer, MT Chin, MJ MacCoss, PS Rabinovitch. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res 2012; 93(1): 79–88
https://doi.org/10.1093/cvr/cvr274
|
18 |
B Kadenbach. Regulation of mammalian 13-subunit cytochrome c oxidase and binding of other proteins: role of NDUFA4. Trends Endocrinol Metab 2017; 28(11): 761–770
https://doi.org/10.1016/j.tem.2017.09.003
|
19 |
L Chen, Y Qin, B Liu, M Gao, A Li, X Li, G Gong. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Front Cell Dev Biol 2022; 10: 871357
https://doi.org/10.3389/fcell.2022.871357
|
20 |
LK Russell, CM Mansfield, JJ Lehman, A Kovacs, M Courtois, JE Saffitz, DM Medeiros, ML Valencik, JA McDonald, DP Kelly. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res 2004; 94(4): 525–533
https://doi.org/10.1161/01.RES.0000117088.36577.EB
|
21 |
BN Finck, DP Kelly. Peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 2007; 115(19): 2540–2548
https://doi.org/10.1161/CIRCULATIONAHA.107.670588
|
22 |
JM Huss, K Imahashi, CR Dufour, CJ Weinheimer, M Courtois, A Kovacs, V Giguère, E Murphy, DP Kelly. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 2007; 6(1): 25–37
https://doi.org/10.1016/j.cmet.2007.06.005
|
23 |
X Hu, X Xu, Y Huang, J Fassett, TP Flagg, Y Zhang, CG Nichols, RJ Bache, Y Chen. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Circ Res 2008; 103(9): 1009–1017
https://doi.org/10.1161/CIRCRESAHA.107.170795
|
24 |
S Luo, M Zhang, H Wu, X Ding, D Li, X Dong, X Hu, S Su, W Shang, J Wu, H Xiao, W Yang, Q Zhang, J Zhang, Y Lu, Z Pan. SAIL: a new conserved anti-fibrotic lncRNA in the heart. Basic Res Cardiol 2021; 116(1): 15
https://doi.org/10.1007/s00395-021-00854-y
|
25 |
R Yang, L Li, Y Hou, Y Li, J Zhang, N Yang, Y Zhang, W Ji, T Yu, L Lv, H Liang, X Li, T Li, H Shan. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023; 14(5): 344
https://doi.org/10.1038/s41419-023-05852-7
|
26 |
Y Zhang, X Zhang, B Cai, Y Li, Y Jiang, X Fu, Y Zhao, H Gao, Y Yang, J Yang, S Li, H Wu, X Jin, G Xue, J Yang, W Ma, Q Han, T Tian, Y Li, B Yang, Y Lu, Z Pan. The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia-reperfusion injury. Nat Commun 2021; 12(1): 522
https://doi.org/10.1038/s41467-020-20844-3
|
27 |
YX Luo, X Tang, XZ An, XM Xie, XF Chen, X Zhao, DL Hao, HZ Chen, DP Liu. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J 2017; 38(18): 1389–1398
|
28 |
R Gao, L Wang, Y Bei, X Wu, J Wang, Q Zhou, L Tao, S Das, X Li, J Xiao. Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 2021; 144(4): 303–317
https://doi.org/10.1161/CIRCULATIONAHA.120.050446
|
29 |
Y Zhang, Y Ye, X Tang, H Wang, T Tanaka, R Tian, X Yang, L Wang, Y Xiao, X Hu, Y Jin, H Pang, T Du, H Liu, L Sun, S Xiao, R Dong, L Ferrucci, Z Tian, S Zhang. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure. J Exp Med 2022; 219(8): e20200418
https://doi.org/10.1084/jem.20200418
|
30 |
K Yousefi, CI Irion, LM Takeuchi, W Ding, G Lambert, T Eisenberg, S Sukkar, HL Granzier, M Methawasin, DI Lee, VS Hahn, DA Kass, KE Hatzistergos, JM Hare, KA Webster, LA Shehadeh. Osteopontin promotes left ventricular diastolic dysfunction through a mitochondrial pathway. J Am Coll Cardiol 2019; 73(21): 2705–2718
https://doi.org/10.1016/j.jacc.2019.02.074
|
31 |
M Nakamura, J Sadoshima. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 2018; 15(7): 387–407
https://doi.org/10.1038/s41569-018-0007-y
|
32 |
T Doenst, TD Nguyen, ED Abel. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 2013; 113(6): 709–724
https://doi.org/10.1161/CIRCRESAHA.113.300376
|
33 |
MG Rosca, B Tandler, CL Hoppel. Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 2013; 55: 31–41
https://doi.org/10.1016/j.yjmcc.2012.09.002
|
34 |
S Geldon, E Fernandez-Vizarra, K Tokatlidis. Redox-mediated regulation of mitochondrial biogenesis, dynamics, and respiratory chain assembly in yeast and human cells. Front Cell Dev Biol 2021; 9: 720656
https://doi.org/10.3389/fcell.2021.720656
|
35 |
Y Zhang, L Sun, L Xuan, Z Pan, X Hu, H Liu, Y Bai, L Jiao, Z Li, L Cui, X Wang, S Wang, T Yu, B Feng, Y Guo, Z Liu, W Meng, H Ren, J Zhu, X Zhao, C Yang, Y Zhang, C Xu, Z Wang, Y Lu, H Shan, B Yang. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat Commun 2018; 9(1): 4176
https://doi.org/10.1038/s41467-018-06637-9
|
36 |
L Lv, T Li, X Li, C Xu, Q Liu, H Jiang, Y Li, Y Liu, H Yan, Q Huang, Y Zhou, M Zhang, H Shan, H Liang. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 2018; 10: 387–397
https://doi.org/10.1016/j.omtn.2017.12.018
|
37 |
M Zhang, Y Jiang, X Guo, B Zhang, J Wu, J Sun, H Liang, H Shan, Y Zhang, J Liu, Y Wang, L Wang, R Zhang, B Yang, C Xu. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 2019; 23(11): 7685–7698
https://doi.org/10.1111/jcmm.14641
|
38 |
E Nývltová, JV Dietz, J Seravalli, O Khalimonchuk, A Barrientos. Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 2022; 13(1): 3615
https://doi.org/10.1038/s41467-022-31413-1
|
39 |
A Buchwald, H Till, C Unterberg, R Oberschmidt, HR Figulla, V Wiegand. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J 1990; 11(6): 509–516
https://doi.org/10.1093/oxfordjournals.eurheartj.a059743
|
40 |
J Wang, H Wilhelmsson, C Graff, H Li, A Oldfors, P Rustin, JC Brüning, CR Kahn, DA Clayton, GS Barsh, P Thorén, NG Larsson. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 1999; 21(1): 133–137
https://doi.org/10.1038/5089
|
41 |
M Hayashi, K Imanaka-Yoshida, T Yoshida, M Wood, C Fearns, RJ Tatake, JD Lee. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 2006; 12(1): 128–132
https://doi.org/10.1038/nm1327
|
42 |
LL Chen. Linking long noncoding RNA localization and function. Trends Biochem Sci 2016; 41(9): 761–772
https://doi.org/10.1016/j.tibs.2016.07.003
|
43 |
L Liu, X An, Z Li, Y Song, L Li, S Zuo, N Liu, G Yang, H Wang, X Cheng, Y Zhang, X Yang, J Wang. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 2016; 111(1): 56–65
https://doi.org/10.1093/cvr/cvw078
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|