|
|
Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer |
Jiahui Xu1, Qianqian Wang1, Elaine Lai Han Leung1,2,3, Ying Li1, Xingxing Fan1, Qibiao Wu1( ), Xiaojun Yao1( ), Liang Liu1( ) |
1. State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR) 519020, China 2. Respiratory Medicine Department, Taihe Hospital, Hubei University of Medicine, Shiyan 236600, China 3. Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China |
|
|
Abstract Bromodomain PHD-finger transcription factor (BPTF) is the largest subunit of the nucleosome remodeling factor and plays an important role in chromatin remodeling for gene activation through its association with histone acetylation or methylation. BPTF is also involved in oncogene transcription in diverse progressions of cancers. Despite clinical trials for inhibitors of bromodomain and extra-terminal family proteins in human cancers, no potent and selective inhibitor targeting the BPTF bromodomain has been discovered. In this study, we identified a potential inhibitor, namely, C620-0696, by computational docking modeling to target bromodomain. Results of biolayer interferometry revealed that compound C620-0696 exhibited high binding affinity to the BPTF bromodomain. Moreover, C620-0696 was cytotoxic in BPTF with a high expression of non-small-cell lung cancer (NSCLC) cells. It suppressed the expression of the BPTF target gene c-MYC, which is known as an oncogenic transcriptional regulator in various cancers. C620-0696 also partially inhibited the migration and colony formation of NSCLC cells owing to apoptosis induction and cell cycle blockage. Thus, our study presents an effective strategy to target a bromodomain factor-mediated tumorigenesis in cancers with small molecules, supporting further exploration of the use of these inhibitors in oncology.
|
Keywords
BPTF
small molecule
epigenetics
non-small-cell lung cancer
|
Corresponding Author(s):
Qibiao Wu,Xiaojun Yao,Liang Liu
|
Just Accepted Date: 18 April 2019
Online First Date: 21 May 2019
Issue Date: 02 March 2020
|
|
1 |
A Spira, B Halmos, CA Powell. Update in lung cancer 2015. Am J Respir Crit Care Med 2016; 194(6): 661–671
https://doi.org/10.1164/rccm.201604-0898UP
pmid: 27628077
|
2 |
M Alamgeer, V Ganju, DN Watkins. Novel therapeutic targets in non-small cell lung cancer. Curr Opin Pharmacol 2013; 13(3): 394–401
https://doi.org/10.1016/j.coph.2013.03.010
pmid: 23608109
|
3 |
AP Feinberg, B Tycko. The history of cancer epigenetics. Nat Rev Cancer 2004; 4(2): 143–153
https://doi.org/10.1038/nrc1279
pmid: 14732866
|
4 |
QW Chen, XY Zhu, YY Li, ZQ Meng. Epigenetic regulation and cancer (review). Oncol Rep 2014; 31(2): 523–532
https://doi.org/10.3892/or.2013.2913
pmid: 24337819
|
5 |
JS You, PA Jones. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22(1): 9–20
https://doi.org/10.1016/j.ccr.2012.06.008
pmid: 22789535
|
6 |
S Sharma, TK Kelly, PA Jones. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27–36
https://doi.org/10.1093/carcin/bgp220
pmid: 19752007
|
7 |
JW Landry, S Banerjee, B Taylor, PD Aplan, A Singer, C Wu. Chromatin remodeling complex NURF regulates thymocyte maturation. Genes Dev 2011; 25(3): 275–286
https://doi.org/10.1101/gad.2007311
pmid: 21289071
|
8 |
G Egger, G Liang, A Aparicio, PA Jones. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457–463
https://doi.org/10.1038/nature02625
pmid: 15164071
|
9 |
CC Cortez, PA Jones. Chromatin, cancer and drug therapies. Mutat Res 2008; 647(1-2): 44–51
https://doi.org/10.1016/j.mrfmmm.2008.07.006
pmid: 18691602
|
10 |
JS Carew, FJ Giles, ST Nawrocki. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008; 269(1): 7–17
https://doi.org/10.1016/j.canlet.2008.03.037
pmid: 18462867
|
11 |
J Datta, K Ghoshal, WA Denny, SA Gamage, DG Brooke, P Phiasivongsa, S Redkar, ST Jacob. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 2009; 69(10): 4277–4285
https://doi.org/10.1158/0008-5472.CAN-08-3669
pmid: 19417133
|
12 |
CH Arrowsmith, C Bountra, PV Fish, K Lee, M Schapira. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012; 11(5): 384–400
https://doi.org/10.1038/nrd3674
pmid: 22498752
|
13 |
S Gul. Epigenetic assays for chemical biology and drug discovery. Clin Epigenetics 2017; 9(1): 41
https://doi.org/10.1186/s13148-017-0342-6
pmid: 28439316
|
14 |
M Pérez-Salvia, M Esteller. Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics 2017; 12(5): 323–339
https://doi.org/10.1080/15592294.2016.1265710
pmid: 27911230
|
15 |
P Filippakopoulos, S Knapp. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13(5): 337–356
https://doi.org/10.1038/nrd4286
pmid: 24751816
|
16 |
P Filippakopoulos, S Picaud, M Mangos, T Keates, JP Lambert, D Barsyte-Lovejoy, I Felletar, R Volkmer, S Müller, T Pawson, AC Gingras, CH Arrowsmith, S Knapp. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012; 149(1): 214–231
https://doi.org/10.1016/j.cell.2012.02.013
pmid: 22464331
|
17 |
AJ Bannister, T Kouzarides. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3): 381–395
https://doi.org/10.1038/cr.2011.22
pmid: 21321607
|
18 |
E Wadhwa, T Nicolaides. Bromodomain inhibitor review: bromodomain and extra-terminal family protein inhibitors as a potential new therapy in central nervous system tumors. Cureus 2016; 8(5): e620
https://doi.org/10.7759/cureus.620
pmid: 27382528
|
19 |
CJ Ott, N Kopp, L Bird, RM Paranal, J Qi, T Bowman, SJ Rodig, AL Kung, JE Bradner, DM Weinstock. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120(14): 2843–2852
https://doi.org/10.1182/blood-2012-02-413021
pmid: 22904298
|
20 |
WW Lockwood, K Zejnullahu, JE Bradner, H Varmus. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA 2012; 109(47): 19408–19413
https://doi.org/10.1073/pnas.1216363109
pmid: 23129625
|
21 |
S Sengupta, MC Biarnes, R Clarke, VC Jordan. Inhibition of BET proteins impairs estrogen-mediated growth and transcription in breast cancers by pausing RNA polymerase advancement. Breast Cancer Res Treat 2015; 150(2): 265–278
https://doi.org/10.1007/s10549-015-3319-1
pmid: 25721606
|
22 |
L Zhang, Y Tong, X Zhang, M Pan, S Chen. Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth. Drug Des Devel Ther 2015; 9: 5851–5862
pmid: 26586936
|
23 |
K Mayes, Z Qiu, A Alhazmi, JW Landry. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2014; 121: 183–233
https://doi.org/10.1016/B978-0-12-800249-0.00005-6
pmid: 24889532
|
24 |
Y Buganim, I Goldstein, D Lipson, M Milyavsky, S Polak-Charcon, C Mardoukh, H Solomon, E Kalo, S Madar, R Brosh, M Perelman, R Navon, N Goldfinger, I Barshack, Z Yakhini, V Rotter. A novel translocation breakpoint within the BPTF gene is associated with a pre-malignant phenotype. PLoS One 2010; 5(3): e9657
https://doi.org/10.1371/journal.pone.0009657
pmid: 20300178
|
25 |
MH Jones, N Hamana, M Shimane. Identification and characterization of BPTF, a novel bromodomain transcription factor. Genomics 2000; 63(1): 35–39
https://doi.org/10.1006/geno.1999.6070
pmid: 10662542
|
26 |
S Xiao, L Liu, X Lu, J Long, X Zhou, M Fang. The prognostic significance of bromodomain PHD-finger transcription factor in colorectal carcinoma and association with vimentin and E-cadherin. J Cancer Res Clin Oncol 2015; 141(8): 1465–1474
https://doi.org/10.1007/s00432-015-1937-y
pmid: 25716692
|
27 |
AA Dar, M Nosrati, V Bezrookove, D de Semir, S Majid, S Thummala, V Sun, S Tong, SP Leong, D Minor, PR Billings, L Soroceanu, R Debs, JR Miller 3rd, RW Sagebiel, M Kashani-Sabet. The role of BPTF in melanoma progression and in response to BRAF-targeted therapy. J Natl Cancer Inst 2015; 107(5): djv034
https://doi.org/10.1093/jnci/djv034
pmid: 25713167
|
28 |
AA Dar, S Majid, V Bezrookove, B Phan, S Ursu, M Nosrati, D De Semir, RW Sagebiel, JR Miller 3rd, R Debs, JE Cleaver, M Kashani-Sabet. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci USA 2016; 113(22): 6254–6258
https://doi.org/10.1073/pnas.1606027113
pmid: 27185926
|
29 |
K Mayes, SG Alkhatib, K Peterson, A Alhazmi, C Song, V Chan, T Blevins, M Roberts, CI Dumur, XY Wang, JW Landry. BPTF depletion enhances T-cell-mediated antitumor immunity. Cancer Res 2016; 76(21): 6183–6192
https://doi.org/10.1158/0008-5472.CAN-15-3125
pmid: 27651309
|
30 |
B Xu, L Cai, JM Butler, D Chen, X Lu, DF Allison, R Lu, S Rafii, JS Parker, D Zheng, GG Wang. The chromatin remodeler BPTF activates a stemness gene-expression program essential for the maintenance of adult hematopoietic stem cells. Stem Cell Reports 2018; 10(3): 675–683
https://doi.org/10.1016/j.stemcr.2018.01.020
pmid: 29456179
|
31 |
CV Dang, A Le, P Gao. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15(21): 6479–6483
https://doi.org/10.1158/1078-0432.CCR-09-0889
pmid: 19861459
|
32 |
BE Johnson, DC Ihde, RW Makuch, AF Gazdar, DN Carney, H Oie, E Russell, MM Nau, JD Minna. myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 1987; 79(6): 1629–1634
https://doi.org/10.1172/JCI112999
pmid: 3034978
|
33 |
JE Delmore, GC Issa, ME Lemieux, PB Rahl, J Shi, HM Jacobs, E Kastritis, T Gilpatrick, RM Paranal, J Qi, M Chesi, AC Schinzel, MR McKeown, TP Heffernan, CR Vakoc, PL Bergsagel, IM Ghobrial, PG Richardson, RA Young, WC Hahn, KC Anderson, AL Kung, JE Bradner, CS Mitsiades. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146(6): 904–917
https://doi.org/10.1016/j.cell.2011.08.017
pmid: 21889194
|
34 |
SJ Gallagher, JC Tiffen, P Hersey. Histone modifications, modifiers and readers in melanoma resistance to targeted and immune therapy. Cancers (Basel) 2015; 7(4): 1959–1982
https://doi.org/10.3390/cancers7040870
pmid: 26426052
|
35 |
K Kim, V Punj, J Choi, K Heo, JM Kim, PW Laird, W An. Gene dysregulation by histone variant H2A.Z in bladder cancer. Epigenetics Chromatin 2013; 6(1): 34
https://doi.org/10.1186/1756-8935-6-34
pmid: 24279307
|
36 |
X Shi, VT Mihaylova, L Kuruvilla, F Chen, S Viviano, M Baldassarre, D Sperandio, R Martinez, P Yue, JG Bates, DG Breckenridge, J Schlessinger, BE Turk, DA Calderwood. Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-b-dependent mechanisms. Proc Natl Acad Sci USA 2016; 113(31): E4558–E4566
https://doi.org/10.1073/pnas.1608319113
pmid: 27432991
|
37 |
AJ Ruthenburg, H Li, TA Milne, S Dewell, RK McGinty, M Yuen, B Ueberheide, Y Dou, TW Muir, DJ Patel, CD Allis. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 2011; 145(5): 692–706
https://doi.org/10.1016/j.cell.2011.03.053
pmid: 21596426
|
38 |
J Wysocka, T Swigut, H Xiao, TA Milne, SY Kwon, J Landry, M Kauer, AJ Tackett, BT Chait, P Badenhorst, C Wu, CD Allis. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 2006; 442(7098): 86–90
https://doi.org/10.1038/nature04815
pmid: 16728976
|
39 |
H Li, S Ilin, W Wang, EM Duncan, J Wysocka, CD Allis, DJ Patel. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 2006; 442(7098): 91–95
https://doi.org/10.1038/nature04802
pmid: 16728978
|
40 |
L Richart, E Carrillo-de Santa Pau, A Río-Machín, MP de Andrés, JC Cigudosa, VJ Lobo, FX Real. BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis. Nat Commun 2016; 7(1): 10153
https://doi.org/10.1038/ncomms10153
pmid: 26729287
|
41 |
Y Kagoya, M Nakatsugawa, Y Yamashita, T Ochi, T Guo, M Anczurowski, K Saso, MO Butler, CH Arrowsmith, N Hirano. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest 2016; 126(9): 3479–3494
https://doi.org/10.1172/JCI86437
pmid: 27548527
|
42 |
M Dai, JJ Lu, W Guo, W Yu, Q Wang, R Tang, Z Tang, Y Xiao, Z Li, W Sun, X Sun, Y Qin, W Huang, WG Deng, T Wu. BPTF promotes tumor growth and predicts poor prognosis in lung adenocarcinomas. Oncotarget 2015; 6(32): 33878–33892
https://doi.org/10.18632/oncotarget.5302
pmid: 26418899
|
43 |
Q Wang, J Xu, Y Li, J Huang, Z Jiang, Y Wang, L Liu, ELH Leung, X Yao. Identification of a novel protein arginine methyltransferase 5 inhibitor in non-small cell lung cancer by structure-based virtual screening. Front Pharmacol 2018; 9: 173
https://doi.org/10.3389/fphar.2018.00173
pmid: 29545752
|
44 |
AK Urick, LM Hawk, MK Cassel, NK Mishra, S Liu, N Adhikari, W Zhang, CO dos Santos, JL Hall, WC Pomerantz. Dual screening of BPTF and Brd4 using protein-observed fluorine NMR uncovers new bromodomain probe molecules. ACS Chem Biol 2015; 10(10): 2246–2256
https://doi.org/10.1021/acschembio.5b00483
pmid: 26158404
|
45 |
RA Juergens, J Wrangle, FP Vendetti, SC Murphy, M Zhao, B Coleman, R Sebree, K Rodgers, CM Hooker, N Franco, B Lee, S Tsai, IE Delgado, MA Rudek, SA Belinsky, JG Herman, SB Baylin, MV Brock, CM Rudin. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 2011; 1(7): 598–607
https://doi.org/10.1158/2159-8290.CD-11-0214
pmid: 22586682
|
46 |
GG Wang, CD Allis, P Chi. Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. Trends Mol Med 2007; 13(9): 373–380
https://doi.org/10.1016/j.molmed.2007.07.004
pmid: 17822959
|
47 |
K Shiraishi, H Kunitoh, Y Daigo, A Takahashi, K Goto, H Sakamoto, S Ohnami, Y Shimada, K Ashikawa, A Saito, S Watanabe, K Tsuta, N Kamatani, T Yoshida, Y Nakamura, J Yokota, M Kubo, T Kohno. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat Genet 2012; 44(8): 900–903
https://doi.org/10.1038/ng.2353
pmid: 22797724
|
48 |
YC Gong, DC Liu, XP Li, SP Dai. BPTF biomarker correlates with poor survival in human NSCLC. Eur Rev Med Pharmacol Sci 2017; 21(1): 102–107
pmid: 28121349
|
49 |
NE Hynes, T Stoelzle. Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Res 2009; 11(5): 210
https://doi.org/10.1186/bcr2406
pmid: 19849814
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|