Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    0, Vol. Issue () : 3-12    https://doi.org/10.1007/s11465-011-0209-z
FEATURE ARTICLE
Personalized biomedical devices & systems for healthcare applications
I-Ming CHEN(), Soo Jay PHEE, Zhiqiang LUO, Chee Kian LIM
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
 Download: PDF(169 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

Keywords personalized medical devices      wearable sensor      haptic device      ingestible medical capsule     
Corresponding Author(s): CHEN I-Ming,Email:michen@ntu.edu.sg   
Issue Date: 05 March 2011
 Cite this article:   
I-Ming CHEN,Soo Jay PHEE,Zhiqiang LUO, et al. Personalized biomedical devices & systems for healthcare applications[J]. Front Mech Eng, 0, (): 3-12.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0209-z
https://academic.hep.com.cn/fme/EN/Y0/V/I/3
1 Tr?ster G. The agenda of wearable healthcare. In: Haux R, Kulikowski C, eds. IMIA Yearbook of Medical Informatics 2005: Ubiquitous Health Care Systems. 2005, 125-138
2 Reid P P, Compton W D, Grossman J H, Fanjiang G, eds. Building a Better delivery System: A New Engineering/Health Care Partnership. National Academy Press , 2005
3 Habetha J. The MyHeart project – Fighting cardiovascular diseases by prevention and early diagnosis, In: Proceeding 28th Annual International IEEE EMBS Conference, 2006, 6746-6749
4 Milenkovic A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications , 2006, 29(13-14): 2521-2533
doi: 10.1016/j.comcom.2006.02.011
5 Zephyr. http://www.zephyr-technology.com/bioharness-bt.html
6 IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. In IEEE Std C95.1 , 2006
7 Ren H, Meng M Q H, Chen X. Physiological information acquisition through wireless biomedical sensor networks. In: Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, 2005
8 Yang G Z, ed. Body Sensor Networks. London, Springer-Verlag2006
9 Park S, Jayaraman S. E-health and quality of life: The role of the wearable motherboard. In: Lymberis A, DeRossi D, eds. Wearable eHealth Systems for Personalised Health Management , IOS Press, Amsterdam, 2004, 239-252
10 Lukowicz P, Kirstein T, Tr?ster G.Wearable systems for health care applications. Methods of Information in Medicine, 2004, 43(3): 232-238
11 Cottet D, Grzyb J, Kirstein T, Tr?ster G. Electrical characterization of textile transmission lines. IEEE Transactions on Advanced Packaging , 2003, 26(2): 182-190
doi: 10.1109/TADVP.2003.817329
12 Scilingo E P, Lorussi F, Mazzoldi A, De Rossi D. Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal , 2003, 3(4): 460-467
doi: 10.1109/JSEN.2003.815771
13 Dunne L E, Brady S, Smyth B, Diamond D. Initial development and testing of a novel foam-based pressure sensor for wearable sensing. Journal of Neuroengineering and Rehabilitation , 2005, 2(4): 1-7
pmid:15730560
14 Otto C, Milenkovic A, Sanders C, Jovanov E. System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia , 2006, 1(4): 307-326
15 Hill J L. System architecture for wireless sensor networks. Dissertation for the Doctoral Degree. Berkeley: University of California, 2003
16 Cho H C, Marbán E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circulation Research , 2010, 106(4): 674-685
doi: 10.1161/CIRCRESAHA.109.212936 pmid:20203316
17 GivenImage. http://www.givenimaging.com/en-us/Pages/GivenWelcomePage.aspx
18 Vicon. http://www.vicon.com
19 Gypsy 7. http://www.metamotion.com/gypsy/gypsy-motion-capture-system.htm
20 Donno M, Palange E, Di Nicola F, Bucci G, Ciancetta F. A new flexible optical fiber goniometer for dynamic angular, measurements: application to human joint movement monitoring. IEEE Transactions on Instrumentation and Measurement , 2008, 57(8): 1614-1620
doi: 10.1109/TIM.2008.925336
21 De Rossi D, Carpi F, Lorussi F, Scilingo E P, Tognetti A. Electroactive fabrics and wearable manmachine interfaces. In: Tao X, ed. Wearable Electronics and Photonics. Textiles: Woodhead Publishing, 2005, 59-80
22 Intersense. http://www.intersense.com
23 Eltaib M E H, Hewit J R. Tactile sensing technology for minimal access surgery- a review. Mechatronics , 2003, 13(10): 1163-1177
doi: 10.1016/S0957-4158(03)00048-5
24 Coles T, Meglan D, John N W. The role of haptics in medical training simulators: A survey of the state-of-the-art. IEEE Transactions on Haptics , 2010
25 Lee M H, Nicholls H R. Tactile sensing for mechatronics-a state of the art survey. Mechatronics , 1999, 9(1): 1-31
doi: 10.1016/S0957-4158(98)00045-2
26 King C H, Culjat M O, Franco M L, Lewis C E, Grundfest W S, Bisley J W. Tactile feedback induces reduced grasping force in robot-assisted surgery . IEEE Transactions on Haptics , 2009, 2(2): 103-110
doi: 10.1109/TOH.2009.4
27 Tanaka M, Lévêque J L, Tagami H, Kikuchi K, Chonan S. The “haptic finger”- a new device for monitoring skin condition. Skin Research and Technology , 2003, 9(2): 131-136
doi: 10.1034/j.1600-0846.2003.00031.x pmid:12709131
28 Yeatman E M, Mitcheson P D. Energy scavenging. In: Yang G Z, ed. Body Sensor Networks. Springer , 2006, 183-217
29 Glukhovsky A, Iddan G J, Meron G.US2005228259, 2005
30 Koplow M, Chen A, Steingart D, Wright P K, Evans J W. Thick film thermoelectric energy harvesting systems for biomedical applications. International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2008), 2008, 322-325
31 Yoo H J, Song S J, Cho N, Kim H J. Low energy on-body communication for BSN. Workshop of Body Sensor Networks , 2007, 15-28
32 Krause A, Smailagic A, Siewiorek D P. Context-aware mobile computing: Learning context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing , 2006, 5(2): 113-127
doi: 10.1109/TMC.2006.18
33 Junker H, Lukowicz P. Tr?ster G. Sampling frequency, signal resolution and the accuracy of wearable context recognition systems. In: Proceedings of 8th International Symposium on Wearable Computers (ISWC) , 2004
34 Guo T, Zhang L, Liu W, Zhou Z A. Novel solution to power problems in implanted biosensor networks. In: Proceedings of 28th Annual International Conference of IEEE Engineering in Medicine and Biology Society , 2006, 5952-5955
35 Burdea G C. Virtual rehabilitation—benefits and challenges. Methods of Information in Medicine , 2003, 42(5): 519-523
pmid:14654886
36 Sveistrup H. Motor rehabilitation using virtual reality. Journal of Neuroengineering and Rehabilitation , 2004, 1(1): 10
doi: 10.1186/1743-0003-1-10 pmid:15679945
37 Weiss P L, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. In: M E Selzer, L Cohen, F H Gage, S C larke, P W Duncan . (Editors). Textbook of Neural Repair and Rehabilitation . Cambridge: University Press, 2006, 182-197
38 Gunduz A. Human motor control through electrocorticographic brain machine interfaces, , 2008
39 Oviatt S L. Advances in robust multimodal interface design. IEEE Computer Graphics and Applications , 2003, 23(5): 62-68
doi: 10.1109/MCG.2003.1231179
40 Carlson M. Understanding the “Mother’s Touch”. Harvard Mahoney Neuroscience Institute Letter to the Brain , 1998, 7(1): 12-13
41 Filed T. Infants’ need for touch. Human Development , 2002, 45(2): 100-103
doi: 10.1159/000048156
42 Harlow H F. The nature of love.http://psychclassics.yorku.ca/Harlow/love.htm
43 Goleman D. The experience of touch: Research points to a critical role. New York Times, February 2 , 1988
44 Chouvardas V G, Miliou A N, Hatalis M K. Tactile displays: overview and recent advances. Displays , 2008, 29(3): 185-194
doi: 10.1016/j.displa.2007.07.003
45 Toney A, Dunne L, Thomas B H, Ashdown S P. A shoulder pad insert vibrotactile display. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC03), 2003, 35-44
46 Cholewiak R W, Collins A A. Vibrotactile localization on the arm: effects of place, space, and age. Perception & Psychophysics , 2003, 65(7): 1058-1077
pmid:14674633
47 Kyung K U, Ahn M, Kwon D S, Srinivasan M. Perceptual and biomechanical frequency response of human skin: implication for design of tactile displays. In: Proceeding of First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC 2005), 2005, 96-101
48 Lieberman J, Breazeal C. TIKL: Development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Transactions on Robotics , 2007, 23(5): 919-926
doi: 10.1109/TRO.2007.907481
49 Lindeman R W, Yanagida Y, Hosaka K, Abe S. The TactaPack: A wireless sensor/actuator package for physical therapy applications. In: Proceeding of 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006, 337-341
50 Markow T, Ramakrishnan N, Huang K, Starner T, Eicholtz M, Garrett S, Profita H, Scarlata A, Backus D. Mobile music touch: vibration stimulus in hand rehabilitation. In: Proceeding of 4th International Conference on Pervasive Computing Technologies for Healthcare, 2010, 1-8
51 De Rossi D, Carpi F, Lorussi F, Scilingo E P, Tognetti A. Wearable kinesthetic systems and emerging technologies in actuation for upperlimb neurorehabilitation. In: Proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 6830-6833
52 Bonanni L, Vaucelle C, Lieberman J, Zuckerman O. TapTap: A haptic wearable for asynchronous distributed touch therapy. In: Extended Abstracts on Human Factors in Computing, 2006, 580-585
53 Vaucelle C, Abbas Y. Touch: Sensitive apparel. In: Extended Abstracts on Human Factors in Computing Systems, 2007, 2723-2728
54 Koo I M, Jung K, Koo J C, Nam J D, Lee Y K, Choi H R. Development of soft-actuator-based wearable tactile display. IEEE Transactions on Robotics , 2008, 24(3): 549-558
doi: 10.1109/TRO.2008.921561
55 Bark K, Wheeler J, Shull P, Savall J, Cutkosky M. Rotational skin stretch feedback: A wearable haptic display for motion. IEEE Transactions on Haptics, 2010, 166-176
56 Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 2010, 18(1): 58-66
doi: 10.1109/TNSRE.2009.2039602 pmid:20071271
57 Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature , 2000, 405(6785): 417
doi: 10.1038/35013140 pmid:10839527
58 Pillcam. http://www.givenimaging.com
59 Endocapsule, http://www.olympusamerica.com/msg_section/index.asp
60 MicroCam. http://www.intromedic.com
61 OMOM. http://www.jinshangroup.com
62 Klauser A G, Schindlbeck N E, Müller-Lissner S A. Symptoms in gastro-oesophageal reflux disease. Lancet , 1990, 335(8683): 205-208
doi: 10.1016/0140-6736(90)90287-F pmid:1967675
63 Mackay R S, Jacobson B. Endoradiosonde. Nature , 1957, 179(4572): 1239-1240
doi: 10.1038/1791239a0 pmid:13440945
64 SmartPill. http://www.smartpillcorp.com
65 Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research , 1999, 16(2): 266-271
doi: 10.1023/A:1018884510163 pmid:10100313
66 Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today , 2000, 3(11): 385-392
doi: 10.1016/S1461-5347(00)00311-4 pmid:11091162
67 Kong K C, Cha J, Jeon D, Cho D I. A rotational micro biopsy device for the capsule endoscope. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada, 2005, 1839-1843
68 Park S, Koo K i, Bang S M, Park J Y, Song S Y, Cho D D. Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering , 2008, 18(2): 25-32
doi: 10.1088/0960-1317/18/2/025032
69 Cavallotti C, Piccigalloa M, Susiloa E, Valdastria P, Menciassia A. Paolo Dario. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical , 2009, 156(1): 72-78
doi: 10.1016/j.sna.2009.01.028
70 Rasouli M, Kencana A P, Van A H, Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceeding of IEEE Conference on Robotics Automation and Mechatronics, Singapore, 2010, 68-71
71 Kim H M, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy , 2010, 72(2): 381-387
doi: 10.1016/j.gie.2009.12.058 pmid:20497903
72 Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy , 2008, 67(7): 1153-1158
doi: 10.1016/j.gie.2007.11.052 pmid:18513557
73 Bradley P D. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. In: Proceeding of IEEE Biomedical Circuits and Systems Conference, 2006, 158-161
74 Chen X, Zhang X, Zhang L, Li X, Qi N, Jiang H, Wang Z. A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Transactions on Biomedical Circuits and Systems , 2009, 3(1): 11-22
doi: 10.1109/TBCAS.2008.2006493
75 Chi B, Yao J, Han S, Xie X, Li G, Wang Z. A 2.4 GHz low power wireless transceiver analog front-end for endoscopy capsule system. Analog Integrated Circuits and Signal Processing , 2007, 51(2): 59-71
doi: 10.1007/s10470-007-9036-x
76 Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology , 2008, 14(26): 4142-4145
doi: 10.3748/wjg.14.4142 pmid:18636658
77 Guanying M, Guozheng Y, Xiu H. Power transmission for gastrointestinal microsystems using inductive coupling. Physiological Measurement , 2007, 28(3): N9-N18
doi: 10.1088/0967-3334/28/3/N01 pmid:17322587
78 Lenaerts B, Puers R. Omnidirectional Inductive Powering for Biomedical implants. Springer Netherlands, 2009
79 Fischer D, Schreiber R, Levi D, Eliakim R. Capsule endoscopy: the localization system. Gastrointestinal Endoscopy Clinics of North America , 2004, 14(1): 25-31
doi: 10.1016/j.giec.2003.10.020 pmid:15062377
80 Hu C, Meng M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005
[1] GUO Wei-dong, GUO Xin, ZHANG Yu-ru. Reverse driving character of 2-DOF closed chain haptic device[J]. Front. Mech. Eng., 2006, 1(3): 356-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed