|
|
Fabrication and in vivo evaluation of Ti6Al4V implants with controlled porous structure and complex shape |
Xiang LI( ), Yun LUO, Chengtao WANG, Wenguang ZHANG, Yuanchao LI |
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract Electron beam melting process was used to fabricate porous Ti6Al4V implants. The porous structure and surface topography of the implants were characterized by scanning electron microscopy (SEM) and digital microscopy (DM). The results showed that the pore size was around 600 and the porosity approximated to 57%. There was about±50 μm of undulation on implants surfaces. Standard implants and a custom implant coupled with porous sections were designed and fabricated to validate the versatility of the electron beam melting (EBM) technique. After coated with bone-like apatite, samples with fully porous structures were implanted into cranial defects in rabbits to investigate the in vivo performance. The animals were sacrificed at 8 and 12 weeks after implantation. Bone ingrowth into porous structure was examined by histological analysis. The histological sections indicated that a large amount of new bone formation was observed in porous structure. The newly formed bone grew from the calvarial margins toward the center of the bone defect and was in close contact with implant surfaces. The results of the study showed that the EBM produced Ti6Al4V implants with well-controlled porous structure, rough surface topography and bone-like apatite layer are beneficial for bone ingrowth and apposition.
|
Keywords
electron beam melting process
implant
porous structure
bone ingrowth
|
Corresponding Author(s):
LI Xiang,Email:xiangliwj@sjtu.edu.cn
|
Issue Date: 05 March 2012
|
|
1 |
Pilliar R M. Porous-surfaced metallic implants for orthopedic applications. Journal of Biomedical Materials Research , 1987, 21(A1 Suppl): 1-33 pmid:3553195
|
2 |
Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. The Journal of Arthroplasty , 1999, 14(3): 355-368 doi: 10.1016/S0883-5403(99)90063-3 pmid:10220191
|
3 |
Wen C E, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. In: Processing of biocompatible porous Ti and Mg. Scripta Materialia , 2001, 45(10): 1147-1153 doi: 10.1016/S1359-6462(01)01132-0
|
4 |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials , 2005, 26(27): 5474-5491 doi: 10.1016/j.biomaterials.2005.02.002 pmid:15860204
|
5 |
Hollister S J. Porous scaffold design for tissue engineering. Nature Materials , 2005, 4(7): 518-524 doi: 10.1038/nmat1421 pmid:16003400
|
6 |
Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials , 2006, 27(35): 5892-5900 doi: 10.1016/j.biomaterials.2006.08.013 pmid:16945409
|
7 |
Jones A C, Arns C H, Hutmacher D W, Milthorpe B K, Sheppard A P, Knackstedt M A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials , 2009, 30(7): 1440-1451 doi: 10.1016/j.biomaterials.2008.10.056 pmid:19091398
|
8 |
Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology , 2004, 22(7): 354-362 doi: 10.1016/j.tibtech.2004.05.005 pmid:15245908
|
9 |
Williams J M, Adewunmi A, Schek R M, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials , 2005, 26(23): 4817-4827 doi: 10.1016/j.biomaterials.2004.11.057 pmid:15763261
|
10 |
Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, Part B, Applied Biomaterials , 2005, 74(2): 782-788 doi: 10.1002/jbm.b.30291 pmid:15981173
|
11 |
Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials , 2008, 29(27): 3625-3635 doi: 10.1016/j.biomaterials.2008.05.032 pmid:18556060
|
12 |
Li J P, de Wijn J R, van Blitterswijk C A, de Groot K. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials , 2006, 27(8): 1223-1235 doi: 10.1016/j.biomaterials.2005.08.033 pmid:16169073
|
13 |
Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia , 2007, 3(6): 997-1006 doi: 10.1016/j.actbio.2007.03.008 pmid:17532277
|
14 |
Hollander D A, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H J. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials , 2006, 27(7): 955-963 doi: 10.1016/j.biomaterials.2005.07.041 pmid:16115681
|
15 |
Heinl P, Müller L, K?rner C, Singer R F, Müller F A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia , 2008, 4(5): 1536-1544 doi: 10.1016/j.actbio.2008.03.013 pmid:18467197
|
16 |
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials , 2006, 27(15): 2907-2915 doi: 10.1016/j.biomaterials.2006.01.017 pmid:16448693
|
17 |
Kujala S, Ryh?nen J, Danilov A, Tuukkanen J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials , 2003, 24(25): 4691-4697 doi: 10.1016/S0142-9612(03)00359-4 pmid:12951012
|
18 |
Li J P, Habibovic P, van den Doel M, Wilson C E, de Wijn J R, van Blitterswijk C A, de Groot K. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials , 2007, 28(18): 2810-2820 doi: 10.1016/j.biomaterials.2007.02.020 pmid:17367852
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|