Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (1) : 66-71    https://doi.org/10.1007/s11465-012-0302-y
RESEARCH ARTICLE
Fabrication and in vivo evaluation of Ti6Al4V implants with controlled porous structure and complex shape
Xiang LI(), Yun LUO, Chengtao WANG, Wenguang ZHANG, Yuanchao LI
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(600 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electron beam melting process was used to fabricate porous Ti6Al4V implants. The porous structure and surface topography of the implants were characterized by scanning electron microscopy (SEM) and digital microscopy (DM). The results showed that the pore size was around 600 and the porosity approximated to 57%. There was about±50 μm of undulation on implants surfaces. Standard implants and a custom implant coupled with porous sections were designed and fabricated to validate the versatility of the electron beam melting (EBM) technique. After coated with bone-like apatite, samples with fully porous structures were implanted into cranial defects in rabbits to investigate the in vivo performance. The animals were sacrificed at 8 and 12 weeks after implantation. Bone ingrowth into porous structure was examined by histological analysis. The histological sections indicated that a large amount of new bone formation was observed in porous structure. The newly formed bone grew from the calvarial margins toward the center of the bone defect and was in close contact with implant surfaces. The results of the study showed that the EBM produced Ti6Al4V implants with well-controlled porous structure, rough surface topography and bone-like apatite layer are beneficial for bone ingrowth and apposition.

Keywords electron beam melting process      implant      porous structure      bone ingrowth     
Corresponding Author(s): LI Xiang,Email:xiangliwj@sjtu.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Xiang LI,Yun LUO,Chengtao WANG, et al. Fabrication and in vivo evaluation of Ti6Al4V implants with controlled porous structure and complex shape[J]. Front Mech Eng, 2012, 7(1): 66-71.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0302-y
https://academic.hep.com.cn/fme/EN/Y2012/V7/I1/66
Fig.1  Porous samples were implanted into rabbit cranial defects
Fig.2  Resulting Ti6Al4V implants with fully porous structure
Fig.3  SEM image of the Ti6Al4V implants with fully porous structure
Fig.4  Surface topography of the resulting implants
Fig.5  The acetabular cup with surface porous structure
Fig.6  (a) CAD model of local porous structure; (b) CAD model of local porous structure on joint prosthesis; (c) the fabricated Ti6Al4V local porous structure
Fig.7  Produced cranial implant with porous structure and anatomic shape
Fig.8  Digital photographs of stained (methylene blue/basic fuchsine) histological sections of porous Ti6Al4V implants after implantation in rabbit cranium for 8 weeks. Bone is stained red and Ti6Al4V black. (a) 1.6 ×; (b) 10 ×
Fig.9  Digital photographs of stained (methylene blue/basic fuchsine) histological sections of porous Ti6Al4V implants after implantation in rabbit cranium for 12 weeks. Bone is stained red and Ti6Al4V black. (a) 1.6 ×; (b) 10 ×
1 Pilliar R M. Porous-surfaced metallic implants for orthopedic applications. Journal of Biomedical Materials Research , 1987, 21(A1 Suppl): 1-33
pmid:3553195
2 Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. The Journal of Arthroplasty , 1999, 14(3): 355-368
doi: 10.1016/S0883-5403(99)90063-3 pmid:10220191
3 Wen C E, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. In: Processing of biocompatible porous Ti and Mg. Scripta Materialia , 2001, 45(10): 1147-1153
doi: 10.1016/S1359-6462(01)01132-0
4 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials , 2005, 26(27): 5474-5491
doi: 10.1016/j.biomaterials.2005.02.002 pmid:15860204
5 Hollister S J. Porous scaffold design for tissue engineering. Nature Materials , 2005, 4(7): 518-524
doi: 10.1038/nmat1421 pmid:16003400
6 Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials , 2006, 27(35): 5892-5900
doi: 10.1016/j.biomaterials.2006.08.013 pmid:16945409
7 Jones A C, Arns C H, Hutmacher D W, Milthorpe B K, Sheppard A P, Knackstedt M A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials , 2009, 30(7): 1440-1451
doi: 10.1016/j.biomaterials.2008.10.056 pmid:19091398
8 Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends in Biotechnology , 2004, 22(7): 354-362
doi: 10.1016/j.tibtech.2004.05.005 pmid:15245908
9 Williams J M, Adewunmi A, Schek R M, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials , 2005, 26(23): 4817-4827
doi: 10.1016/j.biomaterials.2004.11.057 pmid:15763261
10 Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, Part B, Applied Biomaterials , 2005, 74(2): 782-788
doi: 10.1002/jbm.b.30291 pmid:15981173
11 Ryan G E, Pandit A S, Apatsidis D P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials , 2008, 29(27): 3625-3635
doi: 10.1016/j.biomaterials.2008.05.032 pmid:18556060
12 Li J P, de Wijn J R, van Blitterswijk C A, de Groot K. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials , 2006, 27(8): 1223-1235
doi: 10.1016/j.biomaterials.2005.08.033 pmid:16169073
13 Krishna B V, Bose S, Bandyopadhyay A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomaterialia , 2007, 3(6): 997-1006
doi: 10.1016/j.actbio.2007.03.008 pmid:17532277
14 Hollander D A, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, Erli H J. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials , 2006, 27(7): 955-963
doi: 10.1016/j.biomaterials.2005.07.041 pmid:16115681
15 Heinl P, Müller L, K?rner C, Singer R F, Müller F A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia , 2008, 4(5): 1536-1544
doi: 10.1016/j.actbio.2008.03.013 pmid:18467197
16 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials , 2006, 27(15): 2907-2915
doi: 10.1016/j.biomaterials.2006.01.017 pmid:16448693
17 Kujala S, Ryh?nen J, Danilov A, Tuukkanen J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials , 2003, 24(25): 4691-4697
doi: 10.1016/S0142-9612(03)00359-4 pmid:12951012
18 Li J P, Habibovic P, van den Doel M, Wilson C E, de Wijn J R, van Blitterswijk C A, de Groot K. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials , 2007, 28(18): 2810-2820
doi: 10.1016/j.biomaterials.2007.02.020 pmid:17367852
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed