Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2012, Vol. 7 Issue (2) : 120-134    https://doi.org/10.1007/s11465-012-0321-8
RESEARCH ARTICLE
Influence of kinematic redundancy on the singularity-free workspace of parallel kinematic machines
Jens KOTLARSKI(), Bodo HEIMANN, Tobias ORTMAIER
Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 Hanover, Germany
 Download: PDF(754 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper the effect of kinematic redundancy in order to reduce the singularity loci of the direct kinematics and to increase the operational, i.e., singularity-free, workspace is demonstrated. The proposed approach consists of additional prismatic actuators allowing one or more base joints to move linearly. As a result, a selective reconfiguration can be performed in order to avoid singular configurations. Exemplarily, kinematically redundant schemes of four structures, the 3RRR, the 3RPR, the 6UPS, and the 6RUS, are considered. The relationship between the redundancy and the operational workspace is studied and several analysis examples demonstrate the effectiveness of the proposed concept. Furthermore, the additional benefit of an increasing number of redundant actuators is discussed.

Keywords parallel robots      kinematic redundancy      singularity avoidance      operational workspace     
Corresponding Author(s): KOTLARSKI Jens,Email:jens.kotlarski@imes.uni-hannover.de   
Issue Date: 05 June 2012
 Cite this article:   
Jens KOTLARSKI,Bodo HEIMANN,Tobias ORTMAIER. Influence of kinematic redundancy on the singularity-free workspace of parallel kinematic machines[J]. Front. Mech. Eng., 2012, 7(2): 120-134.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0321-8
https://academic.hep.com.cn/fme/EN/Y2012/V7/I2/120
Fig.1  Workspace reduction due to an additional kinematic chain, exemplarily demonstrated for a planar mechanism with revolute actuators. (a) Non-redundant 3RRR; (b) redundant 4RRR
Fig.2  Variation of the singularity loci within the overall workspace due to the redundant actuator configuration, i.e., the base joint position; top: redundant 3(P)RRR, bottom: redundant 3(P)RPR
Fig.3  Trajectory (bold line) going through a singular configuration, a reconfiguration (from the left to the right) allows to follow the desired path
Fig.4  Areas of equal signs of det () within the workspace
Fig.5  Kinematically redundant 3(P)RRR mechanism
i=1i=2i=3
?(0)xGi/m0.601.2
?(0)yGi/m27/500
?(E)xPi/m0-0.1250.125
?(E)yPi/m0-3/8-3/8
l1,i/m0.60.60.6
l2,i/m0.60.60.6
Tab.1  Design parameters of the analyzed 3(P)RRR mechanism
Fig.6  Overall (bold lines and circles, respectively) and operational (light lines and dots, respectively) of the redundant 3(P)RRR mechanism (red) and its non-redundant counterpart (blue). (a) =-60°; (b) =-30°; (c) =0°; (d) =30°; (e) =60°
EE orientation αE
-60°-30°30°60°
?ηi=(wi,red-wi,nred)/wi,nred/%
3(P)RRR?ηa7.56.96.06.97.5
?ηo15.621.321.27.141.3
Tab.2  Results of the performed workspace analysis of the 3RRR-based mechanism
Fig.7  Areas of equal signs of det() within the workspace; the blank part represents the area with det()<0 and the red part the area with det()>0.(a)Non-redundant 3RRR;(b)redundant 3(P)RRR
Fig.8  Kinematically redundant 3(P)RPR mechanism. (a) =-60°; (b) =-30°; (c) =0°; (d) =30°; (e) =60°
i=1i=2i=3
?(0)xGi/m0.601.2
?(0)yGi/m27/500
?(E)xPi/m0–0.1250.125
?(E)yPi/m0-3/8-3/8
ρmin?,i/m0.10.10.1
ρmax?,i/m1.21.21.2
Tab.3  Design parameters of the analyzed 3(P)RPR mechanism
Fig.9  Overall (bold lines and circles, respectively) and operational (light lines and dots, respectively) of the redundant 3(P)RPR mechanism (red) and its non-redundant counterpart (blue). (a) =-60°; (b) =-30°; (c) =0°; (d) =30°; (e) =60°
EE orientation αE
-60°-30°30°60°
Δηi=(wi,red-wi,nred)/wi,nred
3(P)RPR?ηa11.09.78.59.611.0
?ηo5.826.126.15.8
Tab.4  Results of the performed workspace analysis of the 3RPR-based mechanism
Fig.10  Kinematically redundant 6(P)UPS mechanism
i=1i=2i=3i=4i=5i=6
?(0)xGi/m-bsπbsπbsπ bsπ bsπ bsπ
?(0)yGi/mbcπbcπbcπ bcπ bcπ bcπ
?(0)zGi/m000000
?(E)xPi/m-psπ psπ psπ psπpsπpsπ
?(E)yPi/mpcπ pcπ pcπ pcπpcπpcπ
?(E)zPi/m000000
ρmin?,i/m0.390.390.390.390.390.39
ρmax?,i/m0.950.950.950.950.950.95
Tab.5  Design parameters of the analyzed 6(P)UPS mechanism, = 0.43 m and = 0.09 m
Fig.11  Overall (bold lines and circles, respectively) and operational (light lines and dots, respectively) of the redundant 6(P)UPS mechanism (red) and its non-redundant counterpart (blue); . (a) =-60°; (b) =-30°; (c) =0°; (d) =30°; (e) =60°
EE orientation aE=βE=γΕφE
-60°-30°30°60°
?ηi=(wi,red-wi,nred)/wi,nred/%
6(R)UPS?ηa12.012.59.711.412.0
?ηo434.433.79.458.338.8
Tab.6  Results of the performed workspace analysis of the 6UPS-based mechanism
Fig.12  Kinematically redundant 6(P)RUS mechanism
i=1i=2i=3i=4i=5i=6
?(0)xGim-bsπ bsπ bsπ bsπ bsπ bsπ
?(0)yGimbcπ bcπ bcπ bcπ bcπ bcπ
?(0)zGim000000
?(E)xPim-psπ psπ psπ psπpsπ psπ
?(E)yPimpcπ pcπ pcπ pcπpcπ pcπ
?(E)xPim000000
li,1 m0.240.240.240.240.240.24
li,2 m0.560.560.560.560.560.56
Tab.7  Design parameters of the analyzed 6(P)RUS mechanism, = 0.364 m and = 0.073 m
Fig.13  Overall (bold lines and circles, respectively) and operational (light lines and dots, respectively) of the redundant 6(P)RUS mechanism (red) and its non-redundant counterpart (blue);
EE orientation aE=βE=γΕφE
-60°-30°30°60°
?ηi=(wi,red-wi,nred)/wi,nred/%
6(R)RUS?ηa10.16.53.19.712.2
?ηo130.53.1197.250.2
Tab.8  Results of the performed workspace analysis of the 6RUS-based mechanism
Fig.14  Workspace sizes (lines) and (circles) with respect to the number of redundant actuators for all the considered mechanism. (a) 3(P)RRR; (b) 3(P)RPR; (c) 6(P)UPS; (d) 6(P)RUS
EE orientation aE=(βE=γEφE)
-60°-30°30°60°
?ηi=(wi,red-wi,nred)/wi,nred/%
3(P)RRR?ηa7.56.96.06.97.5
?ηo15.621.321.27.141.3
3(P) RPR?ηa11.09.78.59.611.0
?ηo5.826.126.15.8
6(P) UPS?ηa12.012.59.711.412.0
?ηo434.433.79.458.338.8
6(P) RUS?ηa10.16.53.19.712.2
?ηo130.53.1197.250.2
Tab.9  Summarized results of the performed workspace analysis
1 Gosselin C M, Angeles J. Singularity analysis of closed-loop kinematic chains. In: Proceedings of IEEE Transactions on Robotics and Automation ,1990, 6(3): 281-290
doi: 10.1109/70.56660
2 Sefrioui J, Gosselin C M. On the quadratic nature of the singularity curves of planar three-degree-of-freedom parallel manipulators. Mechanism and Machine Theory , 1995, 30(4): 533-551
doi: 10.1016/0094-114X(94)00052-M
3 Gosselin C M, Wang J G. Singularity loci of planar parallel manipulators with revolute actuators. Robotics and Autonomous Systems , 1997, 21(4): 377-398
doi: 10.1016/S0921-8890(97)00028-6
4 Merlet J P. Redundant parallel manipulators. Laboratory Robotics and Automation , 1996, 8(1): 17-24
doi: 10.1002/(SICI)1098-2728(1996)8:1&lt;17::AID-LRA3&gt;3.0.CO;2-#
5 Kock S, Schumacher W. A parallel x-y manipulator with actuation redundancy for high-speed and active-stiffness applications. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation , 1998, 3: 2295-2300
6 Zhang L J, Li Y Q, Huang Z. Analysis of the workspace and singularity of planar 2-dof parallel manipulator with actuation redundancy. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation , 2006, 171-176
7 Wang J, Gosselin C M. Kinematic analysis and design of kinematically redundant parallel mechanisms. Journal of Mechanical Design , 2004, 126(1): 109-118
doi: 10.1115/1.1641189
8 Kock S. Parallelroboter mit antriebsredundanz. Dissertation for the Doctoral Degree. Institute of Control Engineering, TU Brunswick, Germany , 2001
9 Müller A. Internal preload control of redundantly actuated parallel manipulators –its application to backlash avoiding control. In: Proceedings of IEEE Transactions on Robotics and Automation , 2005, 21(4): 668-677
10 Ebrahimi I, Carretero J A, Boudreau R. 3-PRRR redundant planar parallel manipulator: Inverse displacement, workspace and singularity analyses. Mechanism and Machine Theory , 2007, 42(8): 1007-1016
doi: 10.1016/j.mechmachtheory.2006.07.006
11 Cha S H, Lasky T A, Velinsky S A. Singularity avoidance for the 3-RRR mechanism using kinematic redundancy. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation , 2007, 1195-1200
12 Kotlarski J, Abdellatif H, Heimann B. On singularity avoidance and workspace enlargement of planar parallel manipulators using kinematic redundancy. In: Proceedings of the 13th IASTED International Conference on Robotics and Applications , 2007, 451-456
13 Kotlarski J, Abdellatif H, Heimann B. Improving the pose accuracy of a planar 3RRR parallel manipulator using kinematic redundancy and optimized switching patterns. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA , 2008, 3863-3868
14 Kotlarski J, Do Thanh T, Abdellatif H, Heimann B. Singularity avoidance of a kinematically redundant parallel robot by a constrained optimization of the actuation forces. In: Proceedings of the 17th CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, Tokyo, Japan , 2008, 435-442
15 Kotlarski J, Do Thanh T, Heimann B, Ortmaier T. Optimization strategies for additional actuators of kinematically redundant parallel kinematic machines. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, USA , 2010, 656-661
16 Corbel D, Company O, Pierrot F. From a 3-DOF parallel redundant ARCHI robot to an auto-calibrated ARCHI robot. In: Proceedings the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, USA , 2007, 847-854
17 Arakelian V, Briot S, Glazunov V. Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mechanism and Machine Theory , 2008, 43(9): 1129-1140
doi: 10.1016/j.mechmachtheory.2007.09.005
18 Jin Y, Cheng I M, Yang G. Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. In: Proceedings of IEEE Transactions on Robotics , 2006, 22(3): 545-551
doi: 10.1109/TRO.2006.870648
19 Jin Y, Chen I M, Yang G L. Kinematic design of a family of 6-DOF partially decoupled parallel manipulators. Mechanism and Machine Theory , 2009, 44(5): 912-922
doi: 10.1016/j.mechmachtheory.2008.06.004
20 Merlet J P. Singular configurations of parallel manipulators and grassmann geometry. The International Journal of Robotics Research , 1989, 8(5): 45-56
doi: 10.1177/027836498900800504
21 Bier C C. Geometrische und physikalische analyse von singularit?ten bei parallelstrukturen. Dissertation for the Doctoral Degree. Institute of Machine Tools and Production Technology, TU Brunswick, Germany , 2006
22 Daniali H R M, Zsombor-Murray P J, Angeles J. Singularity analysis of a general class of planar parallel manipulators. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation , 1995, 2: 1547-1552
23 Bonev I A, Gosselin C M. Singularity loci of planar parallel manipulators with revolute joints. 2nd Workshop on Computational Kinematics , 2002, 291-299
24 Li H, Gosselin C M, Richard M J. Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough-Stewart platform. Mechanism and Machine Theory , 2007, 42(4): 497-511
doi: 10.1016/j.mechmachtheory.2006.04.006
25 Hunt K H. Kinematic Geometry of Mechanisms. Clarendon Press , 1978
26 Yang G L, Chen W, Chen I M. A geometrical method for the singularity analysis of 3-RRR planar parallel robots with different actuation schemes. In: Proceedings of the 2002 IEEE International Conference on Intelligent Robots and Systems , 2002, 3: 2055-2060
27 Gosselin C M, Angeles J. The optimum kinematic design of a planar three-degree-of- freedom parallel manipulator. Journal of Mechanisms, Transmissions, and Automation in Design , 1988, 110(1): 35-41
doi: 10.1115/1.3258901
28 Kotlarski J, Abdellatif H, Ortmaier T, Heimann B. Enlarging the useable workspace of planar parallel robots using mechanisms of variable geometry. In: Proceedings of the ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, United Kingdom , 2009, 63-72
29 Zein M, Wenger P, Chablat D. Singular curves and cusp points in the joint space of 3-RPR parallel manipulators. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation , 2006, 777-782
30 Gough V E, Whitehall S G. Universal tyre test machine. In: Proceedings of the 9th FISITA—International Automobile Technical Congress , 1962, 117-137
31 Stewart D. A platform with six degrees of freedom. In: Proceedings of the Institution of Mechanical Engineers , 1965, 180(1): 371-386
doi: 10.1108/eb034141
32 Grendel H. A platform with six degrees of freedom. Dissertation for the Doctoral Degree. Institute of Production Engineering and Machine Tools, Leibniz Universit?t Hannover, Hanover, Germany , 2004
33 Last P, Budde C, Hesselbach J. Self-calibration of the HEXA-parallel structure. In: Proceedings of the 2005 IEEE Conference on Automation Science and Engineering, Edmonton, Canada , 2005, 393-398
34 Bonev I A, Gosselin C M. Geometric algorithms for the computation of the constant-orientation workspace and singularity surfaces of a special 6-RUS parallel manipulator. In: Proceedings of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada , 2002, 505-514
[1] DU Zhaocai, YU Yueqing, YANG Jianxin. Analysis of the dynamic stress of planar flexible-links parallel robots[J]. Front. Mech. Eng., 2007, 2(2): 152-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed