Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (3) : 288-299    https://doi.org/10.1007/s11465-012-0333-4
RESEARCH ARTICLE
Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method
Kamal JANGRA1(), Sandeep GROVER1, Aman AGGARWAL2
1. YMCA University of Science and Technology, Haryana 121006, India; 2. Guru Premsukh Memorial College of Engineering, New Delhi 110036, India
 Download: PDF(272 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wire electrical discharge machining (WEDM) is a well known process for generating intricate and complex geometries in hard metal alloys and metal matrix composites with high precision. In present work, intricate machining of WC-5.3%Co composite on WEDM has been reported. Taguchi’s design of experiment has been utilised to investigate the process parameters for four machining characteristics namely material removal rate, surface roughness, angular error and radial overcut. In order to optimize the four machining characteristics simultaneously, grey relational analysis (GRA) coupled with entropy measurement method has been employed. Through GRA, grey relational grade has been computed as a performance index for predicting the optimal parameters setting for multi machining characteristics. Using Analysis of Variance (ANOVA) on grey relational grade, significant parameters affecting the multi-machining characteristics has been determined. Confirmatory results prove the potential of present approach.

Keywords tungsten carbide composite      wire electrical discharge machining (WEDM)      Taguchi method      grey relational analysis (GRA)      entropy measurement method     
Corresponding Author(s): JANGRA Kamal,Email:kamaljangra84@gmail.com   
Issue Date: 05 September 2012
 Cite this article:   
Sandeep GROVER,Aman AGGARWAL,Kamal JANGRA. Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method[J]. Front Mech Eng, 2012, 7(3): 288-299.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0333-4
https://academic.hep.com.cn/fme/EN/Y2012/V7/I3/288
Fig.1  EDX test for present work material
Fig.2  Experimental setup
SymbolProcess parametersLevel 1Level 2Level 3
ATaper angle/(°)31.5-
BPeak current/A80100120
CPulse-on time/μs108115122
DPulse-off time/μs304050
EWire tension/N6810
FDielectric flow rate/L·min–14710
Tab.1  Process variables and their levels
Fig.3  Representation of RoC in WEDM
Experiment No.ABCDEFMRR/(mm·min-1)SR/μmAE/radRoC/mm
11111111.921.430.004840.0867
21122222.5752.050.005880.0979
31133332.181.910.002940.11
41211221.911.270.0043730.0984
51222332.481.8050.0041641098
61233111.8951.880.003350.11775
71312131.791.1250.0057450.1043
81323211.651.430.006050.1109
91331322.612.5650.0063940.1216
102113320.9251.1950.0077850.0564
112121131.7052.0150.0062950.05235
122132211.952.890.0070150.0759
132212311.351.5050.0080630.0568
142223121.4152.0850.0066090.06885
152231231.7952.4050.0036420.0709
162313230.991.10.0060550.0698
172321311.7952.2350.0073740.0757
182332121.992.5050.007740.0778
Tab.2  Experimental layout and observed results
SourceDOF(F-value)1(p-value)1(F-value)2(p-value)2(F-value)3(p-value)3(F-value)4(p-value)4
A181.320.000*10.250.019*38.100.001*306.020.000*
B20.550.6020.430.6708.450.018*12.070.008*
C232.290.001*53.470.000*4.140.07419.160.002*
D226.720.001*8.620.017*4.450.0651.470.301
E21.000.4230.040.9631.390.3180.990.424
F21.770.2492.260.18511.070.010*0.080.923
Tab.3  ANOVA table for MRR, SR, AE and RoC
Fig.4  Response graph for MRR
Fig.5  Response graph for SR
Fig.6  Response graph for AE
Fig.7  Response graph for RoC
Experiment No.MRRSRAERoC
15.6646-3.1203046.3030221.23957
28.1938-6.1306044.6116520.18431
36.7557-5.6236050.631819.17071
45.6117-2.0892047.1844120.14003
57.8755-5.1303747.6097819.18795
65.5369-5.4842049.499118.58044
74.9394-1.0375244.8139319.63431
84.3324-3.1120044.364619.10134
98.3297-8.1890043.8845518.30128
10-0.6958-1.5565042.1748324.9744
114.6209-6.0868044.0207725.62167
125.7427-9.2184043.0794322.39504
132.5888-3.5546041.8706124.91298
142.9681-6.3851443.5979423.2419
155.0763-7.6277048.7743922.98708
16-0.0993-0.8636044.3574823.12286
175.0731-6.9934042.6426122.41807
185.9504-7.9837742.2222822.18006
Tab.4  Sequence of S/N ratio
Experiment No.MRRSRAERoC
ReferenceSequence xo*(k)Comparability sequence xi*(k)1.00001.00001.00001.0000
10.70470.72990.50590.4014
20.98490.36960.31280.2572
30.82560.43031.00000.1187
40.69890.85330.60650.2512
50.94970.48930.65510.1211
60.69060.44700.87070.0381
70.62440.97920.33590.1821
80.55710.73090.28460.1093
91.00000.12320.22980.000
100.00000.91710.03470.9116
110.58910.37480.24521.000
120.71340.00000.13790.5592
130.36390.67790.0000.9032
140.40590.33910.19710.6749
150.63950.19040.78790.6401
160.06611.00000.28380.6586
170.63920.26630.08810.5624
180.73640.14780.04010.5298
Tab.5  The sequence after data pre-processing
Experiment No.MRRSRAERoCGradevalue
10.62870.64930.50290.45510.5590
20.97080.44230.42110.40230.5590
30.74140.46741.0000.36190.6426
40.62410.77320.55960.40040.5893
50.90860.49470.59180.36260.5893
60.61770.47480.79450.34200.5572
70.57100.96000.42950.37940.5849
80.53030.65010.41140.35950.4878
91.00000.36320.39360.33330.5224
100.33330.85770.34120.84970.5955
110.54890.44440.39851.0000.5979
120.63560.33330.36710.53150.4668
130.44010.60820.33330.83780.5548
140.45700.43070.38370.60590.4693
150.58110.38180.70210.58140.5616
160.34871.00000.41110.59430.5885
170.58080.40530.35410.53330.4683
180.65480.36980.34250.51530.4705
Tab.6  Grey relational coefficients and Grade values
SourceDFSum of squareMean squareFp-value
A10.0056190.0056196.720.041*
B20.0076740.0038374.590.062
C20.0086180.0043095.150.050*
D20.0011340.0056710.680.542
E20.0018130.0009061.080.396
F20.0201980.01009912.080.008*
Error60.0050150.000835
Total170.050072
Tab.7  ANOVA for grey relational grade
LevelABCDEF
10.56570.57010.57860.54970.53980.5156
20.53040.55360.52860.53760.54220.5344
3-0.52040.53690.55680.56220.5942
Tab.8  Response Table for grey relational grade
Machining characteristicsPredicted valueExperimental
Parameters settingA1B1C1D3E3F3A1B1C1D3E3F3
MR /(mm·min-1)1.63
SR /μm0.90
AE/rad0.00391
RoCmm0.0857
Grey relational grade0.64250.6561
Tab.9  Predicted and experimental values
1 Sarin V K. Cemented carbide cutting tools. Advances in Powder Metallurgy , 1981, 253-287
2 Kim H C, Shon I J, Munir Z A. Rapid sintering of ultra-fine WC-10% Co by high-frequency induction heating. Journal of Materials Science , 2005, 40(11): 2849-2854
doi: 10.1007/s10853-005-2422-9
3 Jahan M P, Rahman M, Wong Y S. A review on the conventional and micro-electrodischarge machining of tungsten carbide. International Journal of Machine Tools & Manufacture , 2011, 51(12): 837-858
doi: 10.1016/j.ijmachtools.2011.08.016
4 Liu K, Li X P. Ductile cutting of tungsten carbide. Journal of Materials Processing Technology , 2001, 113(1-3): 348-354
doi: 10.1016/S0924-0136(01)00582-9
5 Liu K, Li X P, Rahman M. Characteristics of high speed micro cutting of tungsten carbide. Journal of Materials Processing Technology , 2003, 140(1-3): 352-357
doi: 10.1016/S0924-0136(03)00758-1
6 Engqvist H, Ederyd S, Axen N, Hogmark S. Grooving wear of single-crystal tungsten carbide. Wear , 1999, 230(2): 165-174
doi: 10.1016/S0043-1648(99)00101-5
7 Jia K, Fischer T E. Sliding wear of conventional and nanostructured cemented carbides. Wear , 1997, 203-204: 310-318
doi: 10.1016/S0043-1648(96)07423-6
8 Jangra K, Jain A, Grover S. Optimization of multiple-machining characteristics in wire electrical discharge machining of punching die using grey relational analysis. Journal of Scientific and Industrial Research , 2010, 69: 606-612
9 Kondaya D, Krishna A G. An integrated evolutionary approach for modelling and optimization of wire electrical discharge machining. In: Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture , 2011, 225: 549-567
10 Lee S H, Li X P. Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. Journal of Materials Processing Technology , 2001, 115(3): 344-358
doi: 10.1016/S0924-0136(01)00992-X
11 Lee S H, Li X P. Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide. Journal of Materials Processing Technology , 2003, 139(1-3): 315-321
doi: 10.1016/S0924-0136(03)00547-8
12 Puertas I, Luis C J, Alvarez L. Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC-Co. Journal of Materials Processing Technology , 2004, 153,154: 1026-1032
doi: 10.1016/j.jmatprotec.2004.04.346
13 Mahdavinejad R A, Mahdavinejad A. ED machining of WC-Co. Journal of Materials Processing Technology , 2005, 162,163: 637-643
doi: 10.1016/j.jmatprotec.2005.02.211
14 Kim C H, Kruth J P. Influence of electrical conductivity of dielectrical fluid on WEDM of sintered carbide. KSME International Journal , 2001, 15(12): 1276-1282
15 Lauwers B, Liu W, Eeraerts W. Influence of the composition of WC-based cermets on manufacturability by wire-EDM. Journal of Manufacturing Processes , 2006, 8(2): 83-89
doi: 10.1016/S1526-6125(07)00007-2
16 Saha P, Singha A, Pal S K, Saha P. Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite. International Journal of Advanced Manufacturing Technology , 2008, 39(1,2): 74-84
doi: 10.1007/s00170-007-1200-z
17 Jangra K, Grover S, Chan F T S, Aggarwal A. Digraph and matrix method to evaluate the machinability of tungsten carbide composite with wire EDM. International Journal of Advanced Manufacturing Technology , 2011, 56(9-12): 959-974
doi: 10.1007/s00170-011-3234-5
18 Wang C C, Chow H M, Yang L D, Lu C T. Recast layer removal after electrical discharge machining via Taguchi analysis: A feasibility study. Journal of Materials Processing Technology , 2009, 209(8): 4134-4140
doi: 10.1016/j.jmatprotec.2008.10.012
19 Ross P J. Taguchi Techniques for Quality Engineering. New York: McGraw-Hill, 1998
20 Roy R K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. New York: Wiley-Interscience, 2001, 179-186
21 Deng J. Control problems of grey system. Systems & Control Letters , 1982, 5: 288-294
22 Lin C L. Use of the Taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics. Materials and Manufacturing Processes , 2004, 19(2): 209-220
doi: 10.1081/AMP-120029852
23 Lu H S, Chang C K, Hwang N C, Chung C T. Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. Journal of Materials Processing Technology , 2009, 209(8): 3808-3817
doi: 10.1016/j.jmatprotec.2008.08.030
24 Chiang Y M, Hsieh H H. The use of the Taguchi method with grey relational analysis to optimize the thin film sputtering process with multiple quality characteristics in color filter manufacturing. Computers & Industrial Engineering , 2009, 56(2): 648-661
doi: 10.1016/j.cie.2007.12.020
25 Vijayan S, Raju R, Rao R. Multi objective optimization of friction stir welding process parameters on Aluminium alloy AA5083 using Taguchi based grey relational analysis. Materials and Manufacturing Processes , 2010, 25(11): 1206-1212
doi: 10.1080/10426910903536782
26 Sharma A, Yadava V. Optimization of cut quality characteristics during Nd: YAG laser straight cutting of Ni-Based superalloy thin sheet using grey relational analysis with entropy measurement. Materials and Manufacturing Processes , 2011, 26(12): 1522-1529
doi: 10.1080/10426914.2011.551910
27 Palanikumar K, Latha B, Senthilkumar V S, Davim J P. Analysis on drilling of GFRP composites Using Grey relational Analysis. Materials and Manufacturing Processes , 2012, 27(3), 297-305
28 Jangra K, Grover S, Aggarwal A. Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using grey relational analysis along with Taguchi method. International Journal of Industrial Engineering Computations , 2011, 2(3): 479-490
doi: 10.5267/j.ijiec.2011.04.005
29 Panda M C, Yadava V. Intelligent modelling and multi-objective optimization of die sinking electrode chemical cpark machining process. Materials and Manufacturing Processes , 2012, 27(1), 10-25
30 Singh G K, Yadava V, Kumar R. Diamond face grinding of WC-Co composite with spark assistance: Experimental study and parameter optimization. International Journal of Precision Engineering and Manufacturing , 2010, 11(4): 509-518
doi: 10.1007/s12541-010-0059-3
31 Rao R, Yadava V. Multi-objective optimization of Nd:YAG laser cutting of thin super alloy sheet using grey relational analysis with entropy measurement. Optics & Laser Technology , 2009, 41(8): 922-930
doi: 10.1016/j.optlastec.2009.03.008
32 Garg R K, Singh K K, Sachdeva A, Sharma V S, Ojha K, Singh S. Review of research work in sinking EDM and WEDM on metal matrix composite materials. International Journal of Advanced Manufacturing Technology , 2010, 50(5-8): 611-624
doi: 10.1007/s00170-010-2534-5
33 Jangra K, Grover S, Aggarwal A. Machinability evaluation of WC-Composite with wire EDM. Journal of Manufacturing Technology Research , 2011, 3(1,2): 6
34 Boujelbene M, Bayraktar E, Tebni W, Salem S B. Influence of machining parameters on the surface integrity in electrical discharge machining. Archives of Material Science and Engineering , 2009, 37(2): 110-116
35 Han F, Jiang J, Yu D. Jiang, Jun, Yu, D. Influence of machining parameters on surface roughness in finish cut of WEDM. International Journal of Advanced Manufacturing Technology , 2007, 34(5,6): 538-546
doi: 10.1007/s00170-006-0629-9
36 Poros D, Zaborski S. Semi-empirical model of efficiency of wire electrical discharge machining of hard to machine materials. Journal of Materials Processing Technology , 2009, 209(3): 1247-1253
doi: 10.1016/j.jmatprotec.2008.03.046
37 Wen K L, Chang T C. The grey entropy and its application in weighting analysis. In: Proceedings of IEEE International Conference on System, Man and Cybernetics , 1998, 2: 1842-1844
[1] Zilin HUANG,Gang WANG,Shaopeng WEI,Changhong LI,Yiming RONG. Process improvement in laser hot wire cladding for martensitic stainless steel based on the Taguchi method[J]. Front. Mech. Eng., 2016, 11(3): 242-249.
[2] Rupesh CHALISGAONKAR, Jatinder KUMAR. Optimization of WEDM process of pure titanium with multiple performance characteristics using Taguchi’s DOE approach and utility concept[J]. Front Mech Eng, 2013, 8(2): 201-214.
[3] Meenu GUPTA, Surinder Kumar GILL. Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing[J]. Front Mech Eng, 2012, 7(4): 417-426.
[4] Christopher John NASSAU, N. Scott LITOFSKY, Yuyi LIN. Analysis of spinal lumbar interbody fusion cage subsidence using Taguchi method, finite element analysis, and artificial neural network[J]. Front Mech Eng, 2012, 7(3): 247-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed