Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 335-356    https://doi.org/10.1007/s11465-012-0351-2
RESEARCH ARTICLE
XFEM schemes for level set based structural optimization
Li LI1,2, Michael Yu WANG1(), Peng WEI3
1. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China; 2. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China; 3. State Key Laboratory of Subtropical Building Science, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
 Download: PDF(1969 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, some elegant extended finite element method (XFEM) schemes for level set method structural optimization are proposed. Firstly, two- dimension (2D) and three-dimension (3D) XFEM schemes with partition integral method are developed and numerical examples are employed to evaluate their accuracy, which indicate that an accurate analysis result can be obtained on the structural boundary. Furthermore, the methods for improving the computational accuracy and efficiency of XFEM are studied, which include the XFEM integral scheme without quadrature sub-cells and higher order element XFEM scheme. Numerical examples show that the XFEM scheme without quadrature sub-cells can yield similar accuracy of structural analysis while prominently reducing the time cost and that higher order XFEM elements can improve the computational accuracy of structural analysis in the boundary elements, but the time cost is increasing. Therefore, the balance of time cost between FE system scale and the order of element needs to be discussed. Finally, the reliability and advantages of the proposed XFEM schemes are illustrated with several 2D and 3D mean compliance minimization examples that are widely used in the recent literature of structural topology optimization. All numerical results demonstrate that the proposed XFEM is a promising structural analysis approach for structural optimization with the level set method.

Keywords structural optimization      level set method      extended finite element method (XFEM)      computational accuracy and efficiency     
Corresponding Author(s): WANG Michael Yu,Email:yuwang@mae.cuhk.edu.hk   
Issue Date: 05 December 2012
 Cite this article:   
Li LI,Michael Yu WANG,Peng WEI. XFEM schemes for level set based structural optimization[J]. Front Mech Eng, 2012, 7(4): 335-356.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0351-2
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/335
Fig.1  Level set representation of a 2D design structure. (a) The level set model; (b) design domain
Fig.2  The basic idea of the 2D XFEM scheme
Fig.3  Partition cases of the solid parts in a four-node quadrilateral element
Fig.4  The basic idea of the 3D XFEM scheme
Fig.5  Decomposition methods of a hexahedral element into multiple tetrahedra. (a) Decomposition into 6 tetrahedra; (b) decomposition into 5 tetrahedra
Fig.6  Partition cases of the solid parts in a tetrahedral element
Fig.7  Different decomposition methods for a hexahedral element
Fig.8  Model of circular hole in a plate loaded in tension
Fig.9  Mesh models of different methods for one quadrant of the plate with a hole. (a) XFEM mesh; (b) ANSYS mesh
Fig.10  Maximum stress of the four methods with different mesh scale
Fig.11  Mesh models of different methods for a 3D cantilever beam. (a) XFEM mesh; (b) ANSYS mesh
Fig.12  The comparison of the four methods with different mesh scale. (a) Maximum displacement; (b) maximum stress
Fig.13  Integral cases of a four-node quadrilateral element without quadrature sub-cells
Case 1Case 2Case 3Case 4Case 5
Error5.0299e-170.06062.1539e-161.6008e-169.0132e-17
Δ10%14%13%14%11%
Tab.1  Comparison of five integral cases of the solid parts in a quadrilateral element crossed by structural boundary with and without quadrature sub-cells
Fig.14  The third order Gauss integration of XFEM without quadrature sub-cells
Fig.15  Model of a 2D filet in tension. (a) The whole 2D filet model; (b) a quarter part of the 2D filet model
Fig.16  Mesh models of XFEM scheme and ANSYS for evaluating the higher order elements. (a) XFEM mesh and the local zoom figure; (b) ANSYS mesh and the local zoom figure
Fig.17  The strain energy density distribution along the boundary of different methods. (a) ANSYS; (b) XFEM ; (c) XFEM ; (d) XFEM
Fig.18  Comparison of strain energy density along the boundary of different methods. (a) Strain energy density; (b) local zoom figure
Fig.19  The performance of XFEM using different element types with different mesh scale. (a) Relative error of strain energy density; (b) time cost
Fig.20  Model of a 2D short cantilever beam
Fig.21  The optimization results at different stagesof the 2D cantilever beam with XFEM. (a) Initial design; (b) step 5; (c) step 10; (d) step 20; (e) step 30; (f) step 100
Fig.22  The iteration history of strain energy and volume ratio of the 2D cantilever beam
Fig.23  The final results with the cut element mesh of XFEM integral schemes. (a) With quadrature sub-cells and the local zoom figure; (b) without quadrature sub-cells and the local zoom figure
Analysis modelJ(Ω)(objective)Untilstep 25Untilstep 50Untilstep 75Untilstep 100
XFEM withquadrature sub-cells39.962785 s171 s258 s346 s
XFEM withoutquadrature sub-cells39.970174 s149 s225 s302 s
Tab.2  Time cost of XFEM schemes with and without quadrature sub-cells
Analysis modelJ(Ω)(objective)Untilstep 25Untilstep 50Untilstep 75Untilstep 100
XFEM Q439.962785 s171 s258 s346 s
XFEM T639.960164 s131 s198 s264 s
Tab.3  Time cost until different iteration steps of XFEM with and type of element
Fig.24  Model of a 3D short cantilever beam
Fig.25  The optimization results at different stages of the 3D cantilever beam with XFEM. (a) Initial design; (b) step 50; (c) step 100; (d) step 200; (e) step 300; (f) step 500
Fig.26  The iteration history of strain energy and volume ratio of the 3D cantilever beam
Fig.27  Model of a 3D Michell-type structure
Fig.28  The optimization results at different stages of the 3D Michell-type structure with XFEM. (a) Initial design; (b) step 70; (c) step 100; (d) step 150; (e) step 200; (f) step 400
Fig.29  The iteration history of strain energy and volume ratio of the 3D Michell-type structure
1 Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering , 1988, 71(2): 197–224
doi: 10.1016/0045-7825(88)90086-2
2 Bendsoe M P. Optimal shape design as a material distribution problem. Structural Optimization , 1989, 1(4): 193–202
doi: 10.1007/BF01650949
3 Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures , 1993, 49(5): 885–896
doi: 10.1016/0045-7949(93)90035-C
4 Xie Y M, Steven G P. Evolutionary Structural Optimization. London: Springer-Verlag, 1997
5 Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods. Journal of Computational Physics , 2000, 163(2): 489–528
doi: 10.1006/jcph.2000.6581
6 Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering , 2003, 192(1-2): 227–246
doi: 10.1016/S0045-7825(02)00559-5
7 Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics , 2004, 194(1): 363–393
doi: 10.1016/j.jcp.2003.09.032
8 Liu Z, Korvink J G, Huang R. Structure topology optimization: fully coupled level set method via FEMLAB. Structural Multidisciplinary Optimization , 2005, 29(6): 407–417
doi: 10.1007/s00158-004-0503-z
9 Jang G W, Kim Y Y. Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation. International Journal of Solids and Structures , 2005, 42(11,12): 3591–3609
doi: 10.1016/j.ijsolstr.2004.10.029
10 Fish J. The S-version of finite element method. Computers & Structures , 1992, 43(3): 539–5 47
doi: 10.1016/0045-7949(92)90287-A
11 Belytschko T, Fish J, Bayliss A. The spectral overlay on finite elements for problems with high gradients. Computer Methods in Applied Mechanics and Engineering , 1990, 81(1): 71–89
doi: 10.1016/0045-7825(90)90142-9
12 Wang S Y, Wang M Y. A moving superimposed finite element method for structural topology optimization. International Journal for Numerical Methods in Engineering , 2006, 65(11): 1892–1922
doi: 10.1002/nme.1527
13 Belytschko T, Xiao S P, Parimi C. Topology optimization with implicit functions and regularization. International Journal for Numerical Methods in Engineering , 2003, 57(8): 1177–1196
doi: 10.1002/nme.824
14 Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering , 1999, 45(5): 601–620
doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
15 Mo?s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering , 1999, 46: 131–150
doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
16 Duysinx P, Van Miegroet L, Jacobs T, Fleury C. Generalized shape optimization using XFEM and level set methods. In: Proceedings of IUTAM Symposium on Topological Design, Optimization of Structures, Machines and Materials . Berlin: Springer, 2006, 23–32
17 Van Miegroet L, Jacobs T, Duysinx P. Recent developments in fixed mesh optimization with X-FEM and level set description. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization. Seoul, Korea , 2007, 1947–1956
18 Van Miegroet L, Duysinx P. 3D shape optimization with X-FEM and a level set constructive geometry approach. In: Proceedings of 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal , 2009, 1453–1463
19 Van Miegroet L, DuysinxP. Stress concentration minimization of 2DFilets using X-FEM and level set description. Structural and Multidisciplinary Optimization , 2007, 33(4–5): 425–438
doi: 10.1007/s00158-006-0091-1
20 Edwards C S, Kim H A, Budd C J. Smooth boundary based optimization using fixed grid. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea , 2007, 1789–1798
21 Lee D K, Lipka A, Ramm E. Nodal-based topology optimization using X-FEM and level sets. In: Proceedings of 7th World Congress on Structural and Multidisciplinary Optimization, Seoul, Korea , 2007, 1987–1996
22 Wei P, Wang M Y, Xing X H. A study on X-FEM in continuum structural optimization using level set model. Computer Aided Design , 2010, 42(8): 708–719
doi: 10.1016/j.cad.2009.12.001
23 Ventura G. On the elimination of quadrature sub-cells for discontinuous functions in the eXtended Finite Element Method. International Journal for Numerical Methods in Engineering , 2006, 66(5): 761–795
doi: 10.1002/nme.1570
24 Natarajan S, Mahapatra D R, Bordas S P. Integrating strong and weak discontinuities without integration sub-cells and example applications in an XFEM/GFEM framework. International Journal for Numerical Methods in Engineering , 2010, 83: 269–294
25 Daux C, Mo?s N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering , 2000, 48: 1741–1760
doi: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
26 Sukumar N, Chopp D L, Mo?s N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering , 2001, 190(46–47): 6183–6200
doi: 10.1016/S0045-7825(01)00215-8
27 Wells G N, Sluys L J, de Borst R. Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. International Journal for Numerical Methods in Engineering , 2002, 53(5): 1235–1256
doi: 10.1002/nme.375
28 Stazi F L, Budyn E, Chessa J, Belytschko T. An extended finite element method with higher order elements for curved cracks. Computational Mechanics , 2003, 31(1–2): 38–48
doi: 10.1007/s00466-002-0391-2
29 Legay A, Wang H W, Belytschko T. Strong and weak arbitrary discontinuities in spectral finite elements. International Journal for Numerical Methods in Engineering , 2005, 64(8): 991–1008
doi: 10.1002/nme.1388
30 Cheng K W, Fries T P. Higher order XFEM for curved strong and weak discontinuities. International Journal for Numerical Methods in Engineering , 2010, 82: 564–590
31 Sethian J A. Level Set Methods and Fast Marching Methods. London: Cambridge University Press, 1999
32 Osher S, Fedkiw R P. Level Set, Methods and Dynamic Implicit Surface. New York: Springer-Verlag, 2002
33 Fries T P, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering , 2010, 84: 253–304
34 Chessa J, Smolinski P, Belytschko T. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering , 2002, 53(8): 1959–1977
doi: 10.1002/nme.386
35 Fries T P. The intrinsic XFEM for two-fluid flows. International Journal for Numerical Methods in Fluids , 2009, 60(4): 437–471
doi: 10.1002/fld.1901
36 Mo?s N, Cloirec M, Cartraud P, Remacle J F. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering , 2003, 192(28–30): 3163–3177
doi: 10.1016/S0045-7825(03)00346-3
37 Duddu R, Bordas S, Chopp D, Moran B. A combined extended finite element and level set method for biofilm growth. International Journal for Numerical Methods in Engineering , 2008, 74(5): 848–870
doi: 10.1002/nme.2200
38 Legay A, Chessa J, Belytschko T. An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Computer Methods in Applied Mechanics and Engineering , 2006, 195(17–18): 2070–2087
doi: 10.1016/j.cma.2005.02.025
39 Young W C, Budynas R G. Roark’s Formulas for Stress and Strain. 7th ed. New York: McGraw-Hill, 2002
40 Peterson R E. Stress Concentration Design Factors. New York: Wiley, 1953
41 Nocedal J, Wright S J. Numerical Optimization. New York: Springer, 1999
42 Belegundu A D, Chandrupatla T R. Optimization Concepts and Applications in Engineering. New Jersey: Prentice Hall, 1999
[1] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[2] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[3] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
[4] Yingjun WANG,David J. BENSON. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements[J]. Front. Mech. Eng., 2016, 11(4): 328-343.
[5] Shi-kui CHEN, Michael Yu WANG. Conceptual design of compliant mechanisms using level set method[J]. Front. Mech. Eng., 2006, 1(2): 131-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed