Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    0, Vol. Issue () : 215-243    https://doi.org/10.1007/s11465-013-0248-8
REVIEW ARTICLE
Additive manufacturing: technology, applications and research needs
Nannan GUO, Ming C. LEU()
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
 Download: PDF(1779 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

Keywords additive manufacturing (AM)      AM processes      AM materials      AM applications     
Corresponding Author(s): LEU Ming C.,Email:mleu@mst.edu   
Issue Date: 05 September 2013
 Cite this article:   
Ming C. LEU,Nannan GUO. Additive manufacturing: technology, applications and research needs[J]. Front Mech Eng, 0, (): 215-243.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0248-8
https://academic.hep.com.cn/fme/EN/Y0/V/I/215
State of starting materialProcessMaterial preparationLayer creation techniquePhase changeTypical materialsApplications
LiquidSLALiquid resin in a vatLaser scanning/light projectionPhotopoly-merizationUV curable resin, ceramic suspensionPrototypes, casting patterns, soft tooling
MJMLiquid polymer in jetInk-jet printingCooling & photopoly-merizationUV curable acrylic plastic, waxPrototypes, casting patterns
RFPLiquid droplet in nozzleOn-demand droplet depositionSolidification by freezingWaterPrototypes, casting patterns
Filament/PasteFDMFilament melted in nozzleContinuous extrusion and depositionSolidification by coolingThermoplastics, waxesPrototypes, casting patterns
RobocastingPaste in nozzleContinuous extrusion-Ceramic pasteFunctional parts
FEFPaste in nozzleContinuous extrusionSolidification by freezingCeramic pasteFunctional parts
PowderSLSPowder in bedLaser scanningPartial meltingThermoplastics, waxes, metal powder, ceramic powderPrototypes, casting patterns, metal and ceramic preforms (to be sintered and infiltrated)
SLMPowder in bedLaser scanningFull meltingMetalTooling, functional parts
EBMPowder in bedElectron beam scanningFull meltingMetalTooling, functional parts
LMDPowder injection through nozzleOn-demand powder injection and melted by laserFull meltingMetalTooling, metal part repair, functional parts
3DPPowder in bedDrop-on-demand binder printing-Polymer, Metal, ceramic, other powdersPrototypes, casting shells, tooling
Solid sheetLOMLaser cuttingFeeding and binding of sheets with adhesives-Paper, plastic, metalPrototypes, casting models
Tab.1  Working principles of AM processes
Fig.1  Example ice parts built by the RFP process
Material typeAM process(es)Manufacturer/research institute(s)Material(s)
Polymersa)Thermo-settingSLA, MJM3D SystemsPhoto-curable polymers
Thermo-plasticMJM3D SystemsWax
SLSEOSPolyamide 12, GF polyamide, polystyrene
FDMStratasysABS, PC-ABS, PC, ULTEM
3DP3D SystemsAcrylic plastics, wax
Metalsa)SLMEOSStainless steel GP1, PH1 and 17-4, cobalt chrome MP1, titanium Ti6Al4V, Ti6Al4V ELI and TiCP, IN718, maraging steel MS1, AlSi20Mg
LDM/LENSOptomecSteel H13, 17-4 PH, PH 13-8 Mo, 304, 316 and 420, aluminum 4047, titanium TiCP, Ti-6-4, Ti-6-2-4-2 and Ti6-2-4-6, IN625, IN617, Cu-Ni alloy, Cobalt satellite 21
EBMArcamTi6Al4V, Ti6Al4V ELI, cobalt chrome
Ceramicsb)SLA[107-109]Suspension of Zirconia, silica, alumina, or other ceramic particles in liquid resin
FDM[99-101]Alumina, PZT, Si3N4, zirconia, Silica, bioceramic
SLS[103-106]Alumina, silica, zirconia, ZrB2, bioceramic, graphite, bioglass, and various sands
3DP[64,102]Zirconia, silica, alumina, Ti3SiC2, bioceramic, and various sands
Compositesb)Uniform compositesFDM[121-123]Polymer-metal, polymer-ceramic, short fiber-reinforced composites
3DP[119,120]Polymer-matrix, metal-ceramic, ceramic-ceramic short fiber-reinforced composites
LOM[113,124,125]Polymer-matrix, ceramic-matrix, fiber and particulate-reinforced composites
SLS, SLM[112,114-118]Metal-metal, metal-ceramic, ceramic-ceramic, polymer-matrix, short fiber-reinforced composites
FGMLMD/LENS[57,127-131]CoCrMo/Ti6Al4V, TiC/Ti, Ti/TiO2, Ti6Al4V/IN718
FDM[30]PZT
FEF[132]Al2O3/ZrO2
Tab.2  Materials and corresponding AM processes
Fig.2  Classification of metal AM processes
MaterialProcessUltimate tensile strength/MPaYield tensile strength/MPaElongation/%Elastic modulus/GPaSource
Ti6Al4VReference (wrought)95188314110-
EBM102095014120Arcam
LENS107797311-Optomec
LMD116010606115[199]
SLM~1100~1000~8~120EOS
SLS+HIP1116.9-5-[40]
316SSReference (wrought)57929050--
LENS65527866.5-Optomec
LMD57929641-[58]
IN718Reference (rolled sheet)1407117221--
LENS1393111715.8-Optomec
EBM1238±221154±467-[93]
IN625LENS93858438-Optomec
LMD745-800480-52031-48-[199]
17-4SSSLM1050±50540±5025±5170±20EOS
Co-Cr alloyEBM96056020-Arcam
Co-Cr-Mo alloySLM1400±50960±509-13210±10EOS
Tab.3  Mechanical properties of materials processed by laser or electron beam based full-melting processes
Fig.3  (a) Example metal parts fabricated using LENS (Source: Optomec []); (b) fine grid structure for use in the medical field (material: Cobalt chrome alloy) fabricated using SLM (Source: Concept Laser [])
Fig.4  Titanium 3D-micro-framework-structure based on a diamond lattice fabricated using EBM (Source: [])
Fig.5  A cast metal part and the corresponding shells and core made by Z Corporation using 3DP (Source: [])
Fig.6  Alumina and silica ceramic cores produced using SLS for investment casting of turbine blades and other ceramic parts (Source: Phenix Systems [])
Fig.7  Typical microstructure and Co distribution of LENS processed Co-Cr-Mo graded coating on porous Ti6Al4V alloy (Source: [])
Fig.8  (a) Triple-extruder FEF system; (b) FGM part with a gradient from 100% AlO to 50% AlO and 50% ZrO fabricated using the triple-extruder FEF process (Source: [])
Fig.9  (a) Mixing nozzle for gas turbine exhaust produced by LENS (Source: Optomec []); (b) compressor support case for gas turbine engine produced by EBM (Source: Arcam []); (c) turbine blade with internal cooling channels produced by SLM (Source: Concept Laser []); (d) turbine blades fabricated by SLM (Source: Morris Technologies []); (e) hollow static turbine blade cast using the mold and cores fabricated by 3DP (Source: Prometal []); (f) engine housing produced by SLM (Source: Concept Laser [])
Fig.10  Damaged blisk repaired using LENS (Source: Optomec [])
Fig.11  (a) Airfoil (material: IN 738) produced by LMD on cast IN 738 substrate; (b) airfoil with embedded cooling channels (material: Ti6Al4V) produced by LMD (Source: [])
Fig.12  A die core repaired using an LDM based hybrid rapid manufacturing system: (a) before the repair, showing the top of the core damaged and the surrounding surface worn; (b) after deposition, showing the portion requiring repair covered with new material; (c) after surfacing machining, showing the repaired core. (Source: [])
Fig.13  Example of an enlarged Ti6Al4V open cellular foam prototype fabricated using EBM (Source: [])
Fig.14  Wing-body-tail launch vehicle configuration model for wind tunnel testing produced by SLS using glass-reinforced Nylon (Source: [])
Fig.15  (a) FEF system developed at Missouri S&T. Sintered ceramic parts fabricated using the FEF process: (b) AlO nose cones; (c) ZrB nose cones (Source: [,])
Fig.16  (a) F1 upright (right) cast via rapid casting process using polystyrene patterns produced by SLS (left) (Source: CRP Technology []); (b) suspension mounting bracket for Red Bull Racing produced by LENS (Source: Optomec []); (c) race car gear box produced by EBM (Source: Arcam []); (d) exhaust manifold produced by SLM (Source: Concept Laser []); (e) oil pump housing produced by SLM (Source: Concept Laser []); (f) engine block cast using the mold and cores fabricated by 3DP (Source: Prometal [])
Fig.17  (a) Water pump for a motorsports car produced by SLM (Source: []); (b) automotive part produced by investment casting with 3D-printed starch patterns and molds (Source: [])
Fig.18  Engine part with lattice structure fabricated by EBM using Ti6A14V to reduce engine weight while enhance stiffness (Source: Arcam [])
Fig.19  (a) Final assembly of an intake manifold fabricated by FDM; (b) completed intake system after a composite layup process and final assembly of sensors and mounts (Source: [])
Fig.20  (a) Acetabular cups with designed porosity (material: Ti6Al4V) produced using EBM (Source: Arcam []); (b) dental prosthesis (material: Ti6Al4V) produced using SLM (Source: Concept Laser []); (c) 3-unit dental bridge (material: CL111 CoCr) produced using SLM (Source: Concept Laser [])
Fig.21  (a) Hip stems with mesh, hole and solid configurations fabricated using EBM (Source: []); (b) functional hip stems with designed porosity (no porosity,<2 vol% porosity, and 20 vol% porosity) fabricated using LENS (Source: [])
Fig.22  (a) Bone scaffolds fabricated using SLS; (b) bone scaffolds with 600 μm pores fabricated using FEF (Source: [])
Fig.23  SEM images of MLO-A5 cells on control BD CaP (a, c) and SLS-1 scaffolds (b, d) after 2 days of incubation (Source: [])
Fig.24  MTT labeling of MLO-A5 cells on porous 13-93 SLS scaffolds after culture intervals of 2, 4, and 6 days (Source: [])
Fig.25  A bioprinter and images of printed cells and tissue constructs. (a) Schematic representation of the bioprinter model; (b) bovine aortic endothelial cells printed in 50 μm drops in a line; (c) cross-section of the p(NIPA-co-DMAEA) gel showing the thickness of each sequentially placed layer; (d) actual bioprinter; (e) print head with nine nozzles; Endothelial cell aggregates ‘printed’ on collagen (f) before and (g) after their fusion (Source: [-])
Fig.26  Graphite composite bipolar plates for PEM fuel cell fabricated by SLS process. Active area is 50 mm × 50, channel width is 1.5 mm and depth is 1.5 mm. (a) Serpentine design; (b) parallel in series design; (b) serpentine in series design; and (b) bio-inspired “leaf” design (Source: [])
1 ASTM. ASTM F2792-10 standard terminology for additive manufacturing technologies
2 Jacobs P F. Rapid Prototyping &amp; Manufacturing: Fundamentals of Stereolithography. Dearborn: SME publication, 1992
3 Comb J W, Priedeman W R, Turley P W. FDM technology process improvements. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX , 1994, 42–49
4 Beaman J J, Barlow J W, Bourell D L, Barlow J W, Crawford R H, McAlea K P. Solid Freeform Fabrication: A New Direction in Manufacturing. Norwell: Kluwer Academic Publishers, 1997, 25–49
5 Feygin M, Hsieh B. Laminated object manufacturing (LOM): a simpler process. In: Proceedings of Solid Freeform Fabrication Symposium . Austin, TX, 1991, 123–130
6 Sachs M E, Haggerty J S, Cima M J, Williams P A. Three dimensional printing techniques. United States Patent, 5,204,055 , 1993
7 Mazumder J, Schifferer A, Choi J. Direct materials deposition: designed macro and microstructure. Materials Research Innovations , 1999, 3(3): 118–131
doi: 10.1007/s100190050137
8 Waterman N A, Dickens P. Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture , 1994, 1(3): 27–36
doi: 10.1108/09642369210056629
9 Thomas C L, Gaffney T M, Kaza S, Lee C H. Rapid prototyping of large scale aerospace structures. In: Proceedings of Aerospace Applications Conference IEEE . Aspen, CO, 1996, 4: 219–230
10 Song Y, Yan Y, Zhang R, Xu D, Wang F. Manufacturing of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. Journal of Materials Processing Technology , 2002, 120(1-3): 237–242
doi: 10.1016/S0924-0136(01)01165-7
11 Giannatsis J, Dedoussis V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. International Journal of Advanced Manufacturing Technology , 2009, 40(1-2): 116–127
doi: 10.1007/s00170-007-1308-1
12 Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells &amp; Materials , 2003, 5: 29-39, discussion 39-40
pmid:14562270
13 Pham D T, Dimov S S. Rapid prototyping and rapid tooling – the key enablers for rapid manufacturing. Proceedings of the Institution of Mechanical Engineers , Part C: Journal of Mechanical Engineering Science , 2003, 217(1): 1–23
14 Onuh S O, Yusuf Y Y. Rapid prototyping technology: applications and benefits for rapid product development. Journal of Intelligent Manufacturing , 1999, 10(3/4): 301–311
doi: 10.1023/A:1008956126775
15 Goldsberry C. Rapid change in additive manufacturing landscape. http://www.plasticstoday.com/articles/rapid-change-additive-manufacturing-landscape. 2009
16 Kruth J P. Material increase manufacturing by rapid prototyping techniques. CIRP Annals- Manufacturing Technology , 1991, 40(2): 603–614
doi: 10.1016/S0007-8506(07)61136-6
17 Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals- Manufacturing Technology , 1998, 47(2): 525–540
doi: 10.1016/S0007-8506(07)63240-5
18 Brady A G, Halloran J W. Stereolithography of ceramic suspensions. Rapid Prototyping Journal , 1997, 3(2): 61–65
doi: 10.1108/13552549710176680
19 Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Advanced Engineering Materials , 2000, 2(8): 493–496
doi: 10.1002/1527-2648(200008)2:8&lt;493::AID-ADEM493&gt;3.0.CO;2-C
20 Chartier T, Chaput C, Doreau F, Loiseau M. Stereolithography of structural complex ceramic parts. Journal of Materials Science , 2002, 37(15): 3141–3147
doi: 10.1023/A:1016102210277
21 Monneret S, Loubere V, Corbel S. Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proceedings of the Society for Photo-Instrumentation Engineers , 1999, 3680: 553–561
doi: 10.1117/12.341246
22 Sun C, Fang N, Wu D M, Zhang X. Projection micro-stereolighography using digital micro-mirror dynamic mask. Sensors and Actuators. A, Physical , 2005, 121(1): 113–120
doi: 10.1016/j.sna.2004.12.011
23 Chua C K, Leong K F, Lim C S. Rapid Prototyping: Principles and Applications. 3rd ed. Singapore: World Scientific Publishing Company, 2010, 165–171
24 Zhang W, Leu M C, Ji Z, Yan Y. Rapid freezing prototyping with water. Materials &amp; Design , 1999, 20(2-3): 139–145
doi: 10.1016/S0261-3069(99)00020-5
25 Leu M C, Zhang W, Sui G. An experimental and analytical study of ice part fabrication with rapid freeze prototyping. CIRP Annals- Manufacturing Technology , 2000, 49(1): 147–150
doi: 10.1016/S0007-8506(07)62916-3
26 Leu M C. Rapid freeze prototyping. Materials World Journal , 2000: 9–11
27 Liu Q, Sui G, Leu M C. Experimental study on the ice pattern fabrication for the investment casting by rapid freeze prototyping. Computers in Industry , 2002, 48(3): 181–197
doi: 10.1016/S0166-3615(02)00042-8
28 Bryant F D, Sui G, Leu M C. A study on effects of process parameters in rapid freeze prototyping. Rapid Prototyping Journal , 2003, 9(1): 19–23
doi: 10.1108/13552540310455610
29 Crump S S. Fused deposition modeling (FDM): putting rapid back into prototyping. In: The 2nd International Conference on Rapid Prototyping. Dayton , Ohio, 1991: 354–357
30 Jafari M A, Han W, Mohammadi F, Safari A, Danforth S C, Langrana N. A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal , 2000, 6(3): 161–175
doi: 10.1108/13552540010337047
31 Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping Journal , 2005, 11(1): 9–17
doi: 10.1108/13552540510573347
32 Bellini A, Shor L, Guceri S I. New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal , 2005, 11(4): 214–220
doi: 10.1108/13552540510612901
33 Robocasting Enterprises L L C. http://www.robocasting.net/
34 Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla R K, Tomsia A P. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. Journal of Biomedical Materials Research. Part A , 2007, 83(2): 434–445
doi: 10.1002/jbm.a.31237 pmid:17465019
35 Mason M S, Huang T, Landers R G, Leu M C, Hilmas G E. Aqueous based extrusion of high solids loading ceramic pastes: process modeling and control. Journal of Materials Processing Technology , 2009, 209(6): 2946–2957
doi: 10.1016/j.jmatprotec.2008.07.004
36 Huang T, Mason M S, Hilmas G E, Leu M C. Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping Journal , 2009, 15(2): 88–95
doi: 10.1108/13552540910943388
37 Liu H J, Leu M C. Liquid phase migration in extrusion of aqueous alumina paste for freeze-form extrusion fabrication. International Journal of Modern Physics B , 2009, 23(06n07): 1861–1866
doi: 10.1142/S0217979209061743
38 Liu H J, Leu M C. Research on extrusion velocity in freeform extrusion fabrication of aqueous alumina paste. Key Engineering Materials , 2009, 419-420: 125–128
doi: 10.4028/www.scientific.net/KEM.419-420.125
39 Pham D T, Dimov S, Lacan F.Selective laser sintering: applications and technological capabilities. Proceedings of the Institution of Mechanical Engineers , Part B: Journal of Engineering Manufacture, 1999, 213(5): 435–449
40 Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hot isostatic pressing. Journal of Materials , 1998, 50(12): 17–20
41 Kruth J P, Levy G, Klocke F, Childs T H C. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals- Manufacturing Technology , 2007, 56(2): 730–759
doi: 10.1016/j.cirp.2007.10.004
42 Kruth J P, Vandenbroucke B, Vaerenbergh J V, Mercelis P. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: Proceedings of International Conference Polymers &amp; Moulds Innovations (PMI) . Gent, Belgium, 2005
43 Kruth J P, Mercelis P, Vaerenbergh J V, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal , 2005, 11(1): 26–36
doi: 10.1108/13552540510573365
44 Kumar S. Selective laser sintering: a qualitative and objective approach. JOM , 2003, 55(10): 43–47
doi: 10.1007/s11837-003-0175-y
45 Levy G N, Schindel R, Kruth J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals- Manufacturing Technology , 2003, 52(2): 589–609
doi: 10.1016/S0007-8506(07)60206-6
46 Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. Journal of Materials Processing Technology , 2004, 149(1-3): 616–622
doi: 10.1016/j.jmatprotec.2003.11.051
47 Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology , 2001, 111(1-3): 210–213
doi: 10.1016/S0924-0136(01)00522-2
48 Lu L, Fuh J, Chen Z, Leong C C, Wong Y S. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin , 2000, 35(9): 1555–1561
doi: 10.1016/S0025-5408(00)00339-1
49 Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools &amp; Manufacture , 2006, 46(11): 1188–1193
doi: 10.1016/j.ijmachtools.2006.01.024
50 Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting. Rapid Prototyping Journal , 2004, 10(1): 35–41
doi: 10.1108/13552540410512516
51 Heinl P, Rottmair A, Korner C, Singer R F. Cellular titanium by selective electron beam melting. Advanced Engineering Materials , 2007, 9(5): 360–364
doi: 10.1002/adem.200700025
52 R?nnar L E, Glad A, Gustafson C G. Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyping Journal , 2007, 13(3): 128–135
doi: 10.1108/13552540710750870
53 Harrysson O, Cansizoglu O, Marcellin-Little D J, Cormier D R, West H A II. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering C , 2008, 28(3): 366–373
doi: 10.1016/j.msec.2007.04.022
54 Cormier D, West H, Harrysson O, Knowlson K. Characterization of thin walled Ti-6Al-4V components produced via electron beam melting. In: Proceeding of Solid Freeform Fabrication Symposium . Austin, TX, 2004
55 Heinl P, Müller L, K?rner C, Singer R F, Müller F A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia , 2008, 4(5): 1536–1544
doi: 10.1016/j.actbio.2008.03.013 pmid:18467197
56 Gasser A, Backes G, Kelbassa I, Weisheit A, Wissenbach K. Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Material Processing , 2010, 2: 58–63
57 Balla V K, DeVasConCellos P D, Xue W, Bose S, Bandyopadhyay A. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomaterialia , 2009, 5(5): 1831–1837
doi: 10.1016/j.actbio.2009.01.011 pmid:19233752
58 Lewis G K, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Materials &amp; Design , 2000, 21(4): 417–423
doi: 10.1016/S0261-3069(99)00078-3
59 Zhang K, Liu W, Shang X. Research on the processing experiments of laser metal deposition shaping. Optics &amp; Laser Technology , 2007, 39(3): 549–557
doi: 10.1016/j.optlastec.2005.10.009
60 Lewis G K. Direct laser metal deposition process fabricates near-net-shape components rapidly. Materials Technology , 1995, 10(3): 51–54
61 Hofmeister W, Griffith M, Ensz M, Smugeresky J. Solidification in direct metal deposition by LENS processing. JOM , 2001, 53(9): 30–34
doi: 10.1007/s11837-001-0066-z
62 Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Fan T, Khanuja S, Lauder A, Lee J, Michaels S. Three-dimensional printing: the physics and implications of additive manufacturing. CIRP Annals- Manufacturing Technology , 1993, 42(1): 257–260
doi: 10.1016/S0007-8506(07)62438-X
63 Melican M C, Zimmerman M C, Dhillon M S, Ponnambalam A R, Curodeau A, Parsons J R. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. Journal of Biomedical Materials Research , 2001, 55(2): 194–202
doi: 10.1002/1097-4636(200105)55:2&lt;194::AID-JBM1006&gt;3.0.CO;2-K pmid:11255171
64 Dimitrov D, Schreve K, Beer N. Advances in three dimensional printing – state of the art and future perspectives. Rapid Prototyping Journal , 2006, 12(3): 136–147
doi: 10.1108/13552540610670717
65 Lee M, Dunn J C, Wu B M. Scaffold fabrication by indirect three-dimensional printing. Biomaterials , 2005, 26(20): 4281–4289
doi: 10.1016/j.biomaterials.2004.10.040 pmid:15683652
66 Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, von Rohr P R, Müller R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomaterialia , 2012, 8(1): 373–385
pmid:21925623
67 Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials , 2005, 74(2): 782–788
doi: 10.1002/jbm.b.30291 pmid:15981173
68 Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly form a CAD model. CIRP Annals- Manufacturing Technology , 1990, 39(1): 201–204
doi: 10.1016/S0007-8506(07)61035-X
69 Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation , 2003, 23(4): 340–345
doi: 10.1108/01445150310501190
70 Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry , 1999, 39(1): 47–53
doi: 10.1016/S0166-3615(98)00127-4
71 Prechtl M, Otto A, Geiger M. Rapid tooling by laminated object manufacturing of metal foil. Advanced Materials Research , 2005, 6-8: 303–312
doi: 10.4028/www.scientific.net/AMR.6-8.303
72 Park J, Tari M J, Hahn H T. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal , 2000, 6(1): 36–50
doi: 10.1108/13552540010309868
73 Weisensel L, Travitzky N, Sieber H, Greil P. Laminated object manufacturing (LOM) of SiSiC composites. Advanced Engineering Materials , 2004, 6(11): 899–903
doi: 10.1002/adem.200400112
74 Liao Y S, Li H C, Chiu Y Y. Study of laminated object manufacturing with separately applied heating and pressing. International Journal of Advanced Manufacturing Technology , 2006, 27(7-8): 703–707
doi: 10.1007/s00170-004-2201-9
75 Pham D T, Gault R S. A comparison of rapid prototyping technologies. International Journal of Machine Tools &amp; Manufacture , 1998, 38(10-11): 1257–1287
doi: 10.1016/S0890-6955(97)00137-5
76 Caulfield B, McHugh P E, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. Journal of Materials Processing Technology , 2007, 182(1-3): 477–488
doi: 10.1016/j.jmatprotec.2006.09.007
77 Zarringhalam H, Majewski C, Hopkinson N. Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyping Journal , 2009, 15(2): 126–132
doi: 10.1108/13552540910943423
78 Ahn S H, Montero M, Odell D, Roundy S, Wright P K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal , 2002, 8(4): 248–257
doi: 10.1108/13552540210441166
79 Lam C X F, Mo X M, Teoh S H, Hutmacher D W. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C , 2002, 20(1-2): 49–56
doi: 10.1016/S0928-4931(02)00012-7
80 Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. Annals- Manufacturing Technology , 2007, 56(1): 205–208
doi: 10.1016/j.cirp.2007.05.097
81 Leong K F, Wiria F E, Chua C K, Li S H. Characterization of a poly-?-caprolactone polymeric drug delivery device built by selective laser sintering. Bio-Medical Materials and Engineering , 2007, 17(3): 147–157
pmid:17502691
82 Ramanath H S, Chua C K, Leong K F, Shah K D. Melt flow behaviour of poly-?-caprolactone in fused deposition modelling. Journal of Materials Science. Materials in Medicine , 2008, 19(7): 2541–2550
doi: 10.1007/s10856-007-3203-6 pmid:17619957
83 Ramanath H S, Chandrasekaran M, Chua C K, Leong K F, Shah K D. Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling. Key Engineering Materials , 2007, 334-335: 1241–1244
doi: 10.4028/www.scientific.net/KEM.334-335.1241
84 Cheah C M, Chua C K, Lee C W, Feng C, Totong K. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology , 2005, 25(3-4): 308–320
doi: 10.1007/s00170-003-1840-6
85 Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal , 1995, 1(1): 26–36
doi: 10.1108/13552549510078113
86 Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Post-processing of selective laser sintered metal parts. Rapid Prototyping Journal , 1995, 1(2): 36–44
doi: 10.1108/13552549510086853
87 Allen S M, Sachs E M. Three-dimensional printing of metal parts for tooling and other applications. Metals and Materials , 2000, 6(6): 589–594
doi: 10.1007/BF03028104
88 Clarinval A M, Carrus R, Dormal T, Soyeur Q. Fabrication of stainless steel and ceramic parts with the Optoform process. Advanced Research inVirtual and Rapid Manufacturing . London: Taylor &amp; Francis Group, 2007: 415–418
89 Richard G. Additive manufacturing of titanium. Optomec Inc . 2009
90 Mudge R P, Wald N R. Laser engineered net shaping advances additive manufacturing and repair. Welding Journal-New York , 2007, 86(1): 44–48
91 MTT Technologies Group. MTT selective laser melting . 2009
92 Arcam A B. http://www.arcam.com
93 Strondl A, Palm M, Gnauk J, Frommeyer G. Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology , 2011, 27(5): 876–883
94 Otubo J, Antunes A S. Characterization of 150 mm in diameter NiTi SMA ingot produced by electron beam melting. Materials Science Forum , 2010, 643: 55–59
doi: 10.4028/www.scientific.net/MSF.643.55
95 Sachs E, Cima M, Bredt J. CAD-casting: direct fabrication of ceramic shells and cores by three-dimensional printing. Manufacturing Review (USA) , 1992, 5(2): 117–126
96 Rudraraju A, Deptowicz D, Das S. Strategies for fabricating next-generation multifunctional airfoil designs through LAMP. In: Proceedings of the International Solid Freeform Fabrication Symposium . Austin, TX, 2011
97 Yuan D, Kambly K, Shao P, Rudraraju A, Cilio P, Tomeckoa V, Torres C, Halloran J W, Das S. Experimental investigations on a photocurable ceramic material system for large area maskless photolymerization. In: Proceedings of the International Solid Freeform Fabrication Symposium . Austin, TX, 2009
98 Corporation Z. 3DP Consumables Catalog. 2010
99 Allahverdi M, Danforth S C, Jafari M, Safari A. Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society , 2001, 21(10-11): 1485–1490
doi: 10.1016/S0955-2219(01)00047-4
100 Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth S C. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. Journal of the American Ceramic Society , 2000, 83(7): 1663–1669
doi: 10.1111/j.1151-2916.2000.tb01446.x
101 Agarwala M K, Weeren R, Bandyopadhyay A, Whalen P J, Safari A, Danforth S C. Fused deposition of ceramics and metals: an overview. In: Proceeding of Solid Freeform Fabrication Symposium . Austin, TX, 1996
102 Sun W, Dcosta D J, Lin F, El-Raghy T. Freeform fabrication of Ti3SiC2 powder-based structures, part I – integrated fabrication process. Journal of Materials Processing Technology , 2002, 127(3): 343–351
doi: 10.1016/S0924-0136(02)00284-4
103 Leu M C, Pattnaik S, Hilmas G E. Optimization of selective laser sintering process for fabrication of zirconium diboride parts. In: Proceeding of International Solid Freeform Fabrication Symposium . Austin, TX, 2010
104 Phenix Systems. http://www.phenix-systems.com/home_en.php
105 Guo N, Leu M C. Effect of different graphite materials on electrical conductivity and flexural strength of bipolar plates fabricated by selective laser sintering. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 2010
106 Goodridge R D, Dalgarno K W, Wood D J. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine , 2006, 220(1): 57–68
doi: 10.1243/095441105X69051 pmid:16459446
107 Griffith M L, Halloran J W. Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society , 1996, 79(10): 2601–2608
doi: 10.1111/j.1151-2916.1996.tb09022.x
108 Dufaud O, Corbel S. Stereolithography of PZT ceramic suspensions. Rapid Prototyping Journal , 2002, 8(2): 83–90
doi: 10.1108/13552540210420952
109 Hinczewski C, Corbel S, Chartier T. Ceramic suspensions suitable for stereolithography. Journal of the European Ceramic Society , 1998, 18(6): 583–590
doi: 10.1016/S0955-2219(97)00186-6
110 Wilkes J, Hagedorn Y C, Meiners W, Wissenbach K. Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal , 2013, 19(1): 51–57
doi: 10.1108/13552541311292736
111 Balla V K, Bose S, Bandyopadhyay A. Processing of bulk alumina ceramics using laser engineered net shaping. International Journal of Applied Ceramic Technology, 2008, 5(3): 234–242
doi: 10.1111/j.1744-7402.2008.02202.x
112 Kumar S, Kruth J P. Composites by rapid prototyping technology. Materials &amp; Design , 2010, 31(2): 850–856
doi: 10.1016/j.matdes.2009.07.045
113 Klosterman D, Chartoff R, Graves G, Osborne N, Priore B. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos Part A , 1998, 29(9-10): 1165–1174
doi: 10.1016/S1359-835X(98)00088-8
114 Wiria F E, Leong K F, Chua C K, Liu Y. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia , 2007, 3(1): 1–12
doi: 10.1016/j.actbio.2006.07.008 pmid:17055789
115 Eosoly S, Lohfeld S, Brabazon D. Effect of hydroxyapatite on biodegradable scaffolds fabricated by SLS. Key Engineering Materials , 2009, 396-398: 659–662
doi: 10.4028/www.scientific.net/KEM.396-398.659
116 Leong C C, Lu L, Fuh J Y H, Wong Y S. In-situ formation of copper matrix composites by laser sintering. Materials Science and Engineering A , 2002, 338(1-2): 81–88
doi: 10.1016/S0921-5093(02)00050-3
117 Evans R S, Bourell D L, Beaman J J, Campbell M I. Rapid manufacturing of silicon carbide composites. In: Proceedings of Solid Freeform Fabrication Symposium . Austin, TX, 2004
118 Stevinson B Y, Bourell D L, Beaman J J. Over-infiltration mechanisms in selective laser sintered Si/SiC preforms. Rapid Prototyping Journal , 2008, 14(3): 149–154
doi: 10.1108/13552540810878003
119 Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. Journal of Materials Science. Materials in Medicine , 2009, 20(6): 1281–1289
doi: 10.1007/s10856-009-3697-1 pmid:19225870
120 Rambo C R, Travitzky N, Zimmermann K, Greil P. Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon performs fabricated by 3D-printing. Materials Letters , 2005, 59(8-9): 1028–1031
doi: 10.1016/j.matlet.2004.11.051
121 Nikzad M, Masood S H, Sbarski I, Groth A. Rheological properties of a particulate-filled polymeric composite through fused deposition process. Materials Science Forum , 2010, 654-656: 2471–2474
doi: 10.4028/www.scientific.net/MSF.654-656.2471
122 Zhong W, Li F, Zhang Z, Song L, Li Z. Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering , 2001, A301: 125–130
123 Shofner M L, Lozano K, Rodriguez-Macias F J, Barrera E V. Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science , 2003, 89: 3081–3090
doi: 10.1002/app.12496
124 Klosterman D, Chartoff R, Agarwala M, Fiscus I, Murphy J, Cullen S, Yeazell M. Direct fabrication of polymer composite structures with curved LOM. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 1999: 401–409
125 Klosterman D A, Chartoff R P, Osborne N R, Graves G A, Lightman A, Han G, Bezeredi A, Rodrigues S. Curved layer LOM of ceramics and composites. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 1998: 671–680
126 Jackson T R, Liu H, Patrikalakis N M, Sachs E M, Cima M J. Modelling and designing functionally graded material components for fabrication with local composition control. Materials &amp; Design , 1999, 20(2-3): 63–75
doi: 10.1016/S0261-3069(99)00011-4
127 Bandyopadhyay A, Krishna B V, Xue W, Bose S. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. Journal of Materials Science. Materials in Medicine , 2009, 20(S1 Suppl 1): 29–34
doi: 10.1007/s10856-008-3478-2 pmid:18521725
128 Vamsi Krishna B, Xue W, Bose S, Bandyopadhyay A. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. Acta Biomaterialia , 2008, 4(3): 697–706
doi: 10.1016/j.actbio.2007.10.005 pmid:18054298
129 Liu W, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Materialia , 2003, 48(9): 1337–1342
doi: 10.1016/S1359-6462(03)00020-4
130 Domack M S, Baughman J M. Development of nickel-titanium graded composition components. Rapid Prototyping Journal , 2005, 11(1): 41–51
doi: 10.1108/13552540510573383
131 Wang F, Mei J, Wu X. Compositionally graded Ti6Al4V+ TiC made by direct laser fabrication using powder and wire. Materials &amp; Design , 2007, 28(7): 2040–2046
doi: 10.1016/j.matdes.2006.06.010
132 Leu M C, Tang L, Deuser B, Landers R G, Hilmas G E, Zhang S, Watts J. Freeze-form extrusion fabrication of composite structures. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 2011, 111–124
133 Optomec. http://www.optomec.com/
134 Concept Laser Gmb H. http://www.concept-laser.de/
135 Morris Technologies. http://www.morristech.com/
136 Prometal R C T. http://www.prometal-rct.com/
137 Hedges M, Calder N. Near net shape rapid manufacture &amp; repair by LENS. In: Cost Effective Manufacture via Net-shape Processing . Neuilly-sur-Seine, France, 2006, 13–1-4
138 Kelbassa I, Gasser A, Wissenbach K. Laser cladding as a repair technique for blisks out of titanium and nickel based alloys used in aero engines. In: Proceedings of the 1st Pacific International Conference on Application of Lasers and Optics . Melbourne, 2004
139 Xue L, Islam M U. Laser consolidation–a novel one-step manufacturing process for making net-shape functional components. In: Cost Effective Manufacturing via Net-Shape Processing . Neuilly-sur-Seine, France, 2006, 15–1-4
140 Richter K H, Orban S, Nowotny S. Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics . 2004
141 Qi H, Azer M, Singh P. Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. International Journal of Advanced Manufacturing Technology , 2010, 48(1-4): 121–131
doi: 10.1007/s00170-009-2265-7
142 Liou F, Slattery K, Kinsella M, Newkirk J, Chou H N, Landers R. Applications of a hybrid manufacturing process for fabrication of metallic structures. Rapid Prototyping Journal , 2007, 13(4): 236–244
doi: 10.1108/13552540710776188
143 Liou F W, Choi J, Landers R G, Janardhan V, Balakrishnan S N, Agarwal S. Research and development of a hybrid rapid manufacturing process. In: Proceedings of Solid Freeform Fabrication Symposium . Austin, TX, 2001
144 Ren L, Padathu A P, Ruan J, Sparks T, Liou F W. Three dimensional die repair using a hybrid manufacturing system. In: Proceedings of Solid Freeform Fabrication Symposium . Austin, TX, 2006
145 Bae C J. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography. Dissertation for Doctor Degree . University of Michigan , 2008
146 Wu H, Li D, Guo N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography. Rapid Prototyping Journal , 2009, 15(4): 232–237
doi: 10.1108/13552540910979749
147 Wu H, Li D, Tang Y, Guo N, Sun B, Xu D. Rapid casting of hollow turbine blade using integral ceramic moulds . Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(6): 695–702
148 Murr L E, Gaytan S M, Medina F, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Wicker R B. Characterization of Ti6Al4V open cellular foams fabricated by additive manufacturing using electron beam melting. Materials Science and Engineering A , 2010, 527(7-8): 1861–1868
doi: 10.1016/j.msea.2009.11.015
149 Gaytan S, Murr L, Medina F, Martinez E, Martinez L, Wicker R. Fabrication and characterization of reticulated, porous mesh arrays and foams for aerospace applications by additive manufacturing using electron beam melting. In: Proceedings of Minerals, Metals and Materials Society/AIME . Warrendale PA, 2010
150 Daneshmand S, Adelnia R, Aghanajafi S. Design and production of wind tunnel testing models with selective laser sintering technology using glass-reinforced Nylon. Materials Science Forum , 2006, 532-533: 653–656
151 Technology CRP. http://www.crptechnology.com
152 Vilaro T, Abed S, Knapp W.Direct manufacturing of technical parts using selective laser melting: example of automotive application. In: Proceedings of 12th European Forum on Rapid Prototyping . 2008
153 Rosochowski A, Matuszak A. Rapid tooling: the state of the art. Journal of Materials Processing Technology , 2000, 106(1-3): 191–198
doi: 10.1016/S0924-0136(00)00613-0
154 Bassoli E, Gatto A, Iuliano L, Violante M G. 3D printing technique applied to rapid casting. Rapid Prototyping Journal , 2007, 13(3): 148–155
doi: 10.1108/13552540710750898
155 Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Medina F, Collins S. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia , 2010, 58(5): 1887–1894
doi: 10.1016/j.actamat.2009.11.032
156 Ilardo R, Williams C B. Design and manufacture of a formula SAE intake system using fused deposition modeling and fiber-reinforced composite materials. Rapid Prototyping Journal , 2010, 16(3): 174–179
doi: 10.1108/13552541011034834
157 Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication , 2010, 2(4): 045004
doi: 10.1088/1758-5082/2/4/045004 pmid:21079286
158 Adler Ortho Group. http://www.alaortho.com/indBigEng.htm. Accessed in 2010
159 Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. International Journal of Advanced Manufacturing Technology , 2006, 29(3-4): 317–335
doi: 10.1007/s00170-005-2523-2
160 Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metal for rapid manufacturing of medical parts. Rapid Prototyping Journal , 2007, 13(4): 196–203
doi: 10.1108/13552540710776142
161 Peltola S M, Melchels F P, Grijpma D W, Kellom?ki M. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine , 2008, 40(4): 268–280
doi: 10.1080/07853890701881788 pmid:18428020
162 Cooke M N, Fisher J P, Dean D, Rimnac C, Mikos A G. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of biomedical materials research. Part B, Applied biomaterials , 2003, 64(2): 65–69
doi: 10.1002/jbm.b.10485 pmid:12516080
163 Kolan K C, Leu M C, Hilmas G E, Velez M. Selective laser sintering of 13-93 bioactive glass. In: Proceeding of the Solid Freeform Fabrication Symposium . Austin, TX, 2010
164 Liu Y F, Dong X T, Zhu F D. Overview of rapid prototyping for fabrication of bone tissue engineering scaffold. Advanced Materials Research , 2010, 102-104: 550–554
doi: 10.4028/www.scientific.net/AMR.102-104.550
165 Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials , 2006, 27(18): 3413–3431
doi: 10.1016/j.biomaterials.2006.01.039 pmid:16504284
166 Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials , 2010, 31(24): 6121–6130
doi: 10.1016/j.biomaterials.2010.04.050 pmid:20478613
167 Chim H, Hutmacher D W, Chou A M, Oliveira A L, Reis R L, Lim T C, Schantz J T. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. International Journal of Oral and Maxillofacial Surgery , 2006, 35(10): 928–934
doi: 10.1016/j.ijom.2006.03.024 pmid:16762529
168 Zein I, Hutmacher D W, Tan K C, Teoh S H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials , 2002, 23(4): 1169–1185
doi: 10.1016/S0142-9612(01)00232-0 pmid:11791921
169 Lorrison J C, Goodridge R D, Dalgarno K W, Wood D J. Selective laser sintering of bioactive glass-ceramics. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 2002
170 Weinand C, Pomerantseva I, Neville C M, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis M J, Vacanti J P. Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone , 2006, 38(4): 555–563
doi: 10.1016/j.bone.2005.10.016 pmid:16376162
171 Williams J M, Adewunmi A, Schek R M, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials , 2005, 26(23): 4817–4827
doi: 10.1016/j.biomaterials.2004.11.057 pmid:15763261
172 Tan K H, Chua C K, Leong K F, Cheah C M, Cheang P, Abu Bakar M S, Cha S W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials , 2003, 24(18): 3115–3123
doi: 10.1016/S0142-9612(03)00131-5 pmid:12895584
173 Arcaute K, Mann B K, Wicker R B. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering , 2006, 34(9): 1429–1441
doi: 10.1007/s10439-006-9156-y pmid:16897421
174 Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering , 2004, 10(9-10): 1316–1322
doi: 10.1089/ten.2004.10.1316 pmid:15588392
175 Dellinger J G, Eurell J A C, Stewart M, Jamison R D. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. Journal of Biomedical Materials Research. Part A, 2 006, 76(2): 366–376
doi: 10.1002/jbm.a.30523 pmid:16270335
176 Shor L, Gü?eri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication , 2009, 1(1): 015003
doi: 10.1088/1758-5082/1/1/015003 pmid:20811098
177 Kolan K C, Doiphode N D, Leu M C. Selective laser sintering and freeze extrusion fabrication of scaffolds for bone repair using 13-93 bioactive glass: a comparison. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, Texas, 2010
178 Kolan K C, Leu M C, Hilmas G E, Brown R F, Velez M. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication , 2011, 3(2): 025004
doi: 10.1088/1758-5082/3/2/025004 pmid:21636879
179 Lin L, Ju S, Cen L, Zhang H, Hu Q. Fabrication of porous β-TCP scaffolds by combination of rapid prototyping and freeze drying technology. IFMBE Proceedings , 2008, 19(4): 88–91
doi: 10.1007/978-3-540-79039-6_24
180 Chen Z, Li D, Lu B, Tang Y, Sun M, Wang Z. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyping Journal , 2004, 10(5): 327–333
doi: 10.1108/13552540410562368
181 Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication , 2009, 1(2): 022001
doi: 10.1088/1758-5082/1/2/022001 pmid:20811099
182 Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials , 2009, 30(31): 6221–6227
doi: 10.1016/j.biomaterials.2009.07.056 pmid:19695697
183 Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnology Journal , 2006, 1(9): 910–917
doi: 10.1002/biot.200600081 pmid:16941443
184 Wilson W C Jr, Boland T. Cell and organ printing 1: protein and cell printers. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 491–496
doi: 10.1002/ar.a.10057 pmid:12740942
185 Boland T, Mironov V, Gutowska A, Roth E A, Markwald R R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 497–502
doi: 10.1002/ar.a.10059 pmid:12740943
186 Mironov V, Boland T, Trusk T, Forgacs G, Markwald R R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology , 2003, 21(4): 157–161
doi: 10.1016/S0167-7799(03)00033-7 pmid:12679063
187 U.S. Department of Energy. Future fuel cells R&D. http://www.fossil.energy.gov/programs/powersystems/fuelcells/. Accessed in 2010
188 Chen S, Bourell D L, Wood K L. Fabrication of PEM fuel cell bipolar plates by indirect SLS. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 2004, 244–256
189 Chen S, Murphy J, Herlehy J, Bourell D L, Wood K L. Development of SLS fuel cell current collectors. Rapid Prototyping Journal , 2006, 12(5): 275–282
doi: 10.1108/13552540610707031
190 Alayavalli K, Bourell D L. Fabrication of electrically conductive, fluid impermeable direct methanol fuel cell (DMFC) graphite bipolar plates by indirect selective laser sintering (SLS). In: Proceedings of the International Solid Freeform Fabrication Symposium . Austin, TX, 2008, 186–193
191 Alayavalli K, Bourell D L. Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells. Rapid Prototyping Journal , 2010, 16(4): 268–274
doi: 10.1108/13552541011049289
192 Guo N, Leu M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. International Journal of Hydrogen Energy , 2012, 37(4): 3558–3566
doi: 10.1016/j.ijhydene.2011.11.058
193 Bourell D L, Leu M C, Chakravarthy K, Guo N, Alayavalli K. Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Annals-Manufacturing Technology, 2011, 60(1): 275–278
doi: 10.1016/j.cirp.2011.03.105
194 Guo N, Leu M C. Experimental study of polymer electrolyte membrane fuel cells using a graphite composite bipolar plate fabricated by selective laser sintering. In: Proceeding of the Solid Freeform Fabrication Symposium . Austin, TX, 2012
195 Guo N, Leu M C, Wu M. Bio-inspired design of bipolar plate flow fields for polymer electrolyte membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 2011
196 Wu M, Leu M C, Guo N. Simulation and testing of polymer electrolyte membrane fuel cell bipolar plates fabricated by selective laser sintering. In: Proceedings of ASME 2012 International Symposium on Flexible Automation . St. Louis, MO, 2012
197 Taghipour E, Leu M C, Guo N. Comparison of compression molding and selective laser sintering processes in the development of composite bipolar plates for proton exchange membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium . Austin, TX, 2012
198 Bourell D L, Leu M C, Rosen D W. Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas at Austin, Laboratory for Freeform Fabrication . Austin, TX, 2009, 7–10
199 Xue L, Purcell C. Laser consolidation of net-shape shells for flextensional sonar projectors. In: Proceedings of ICALEO . Scottsdale, AZ, 2006
[1] Jinghua XU, Hongsheng SHENG, Shuyou ZHANG, Jianrong TAN, Jinlian DENG. Surface accuracy optimization of mechanical parts with multiple circular holes for additive manufacturing based on triangular fuzzy number[J]. Front. Mech. Eng., 2021, 16(1): 133-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed