Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2013, Vol. 8 Issue (4) : 401-408    https://doi.org/10.1007/s11465-013-0272-8
RESEARCH ARTICLE
Boundary conditions for axisymmetric piezoelectric cylinder
Baosheng ZHAO(), Di WU, Xi CHEN
School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China
 Download: PDF(138 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For axisymmetric piezoelectric cylinder, the reciprocal theorem and the axisymmetric general solution of piezoelasticity are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all orders for the cylinder of general edge geometry and loadings. A decay analysis technique developed by Gregory and Wan is converted into necessary conditions on the end-data of axisymmetric piezoelectric circular cylinder, and the rapidly decaying solution is established. The prescribed end-data of the circle cylinder must satisfy these conditions in order that they could generate a decaying state within the cylinder. When stress and mixed conditions are imposed on the end of cylinder, these decaying state conditions for the case of axisymmetric deformation of piezoelectric cylinder are derived explicitly. They are then used for the correct formulation of boundary conditions for the theory solution (or the interior solution) of axisymmetric piezoelectric cylinder. The results of the present paper enable us to establish a set of correct boundary conditions, most of which are obtained for the first time.

Keywords solid and structures      the axisymmetric deformation      the piezoelectric circular cylinder      the refined theory      Bessel’s Function     
Corresponding Author(s): ZHAO Baosheng,Email:zhaobaos@pku.org.cn   
Issue Date: 05 December 2013
 Cite this article:   
Baosheng ZHAO,Di WU,Xi CHEN. Boundary conditions for axisymmetric piezoelectric cylinder[J]. Front Mech Eng, 2013, 8(4): 401-408.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-013-0272-8
https://academic.hep.com.cn/fme/EN/Y2013/V8/I4/401
Fig.1  Axisymmetric piezoelectric circular cylinder
Fig.2  Region of the cylinder, to which the recipriprocal theorem is applied
1 Wang Z K, Zheng B L. The general solution of three-dimensional problems in piezoelectric media. International Journal of Solids and Structures , 1995, 32(1): 105–115
doi: 10.1016/0020-7683(94)00101-2
2 Xu S P, Wang W. On the general solution of anisotropic piezoelectricity. Acta Scientiarum Naturalium Universitatis Pekinensis , 2006, 42(3): 302–304
3 Xu S P, Gao Y, Wang W. Completeness of general solutions for three-dimensional transversely isotropic piezoelectricity. International Journal of Solids and Structures , 2008, 45(18–19): 5118–5126
doi: 10.1016/j.ijsolstr.2008.05.011
4 Gregory R D, Wan F Y M. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. Journal of Elasticity , 1984, 14(1): 27–64
doi: 10.1007/BF00041081
5 Gregory R D, Wan F Y M. On plate theories and Saint-Venant’s principle. International Journal of Solids and Structures , 1985, 21(10): 1005–1024
doi: 10.1016/0020-7683(85)90052-6
6 Wan F Y M. Stress boundary conditions for plate bending. International Journal of Solids and Structures , 2003, 40(16): 4107–4123
doi: 10.1016/S0020-7683(03)00220-8
7 Gao Y, Xu S P, Zhao B S. Boundary conditions for elastic beam bending. Comptes Rendus Mécanique , 2007, 335(1): 1–6
doi: 10.1016/j.crme.2006.11.001
8 Gao Y. Decay conditions for 1D quasicrystal beams. IMA Journal of Applied Mathematics , 2011, 76(4): 599–609
doi: 10.1093/imamat/hxq046
9 Zhao B S, Gao Y, Zhao Y T, Zhou X X. Boundary conditions for an axisymmetric circular cylinder. Comptes Rendus Mécanique , 2010, 338(5): 255–259
doi: 10.1016/j.crme.2010.04.006
10 Gao Y, Xu S P, Zhao B S. Mixed boundary conditions for piezoelectric plates. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52(5): 755–761
doi: 10.1007/s11433-009-0107-0
[1] Baosheng ZHAO, Yang GAO, Yingtao ZHAO, Dechen ZHANG. Refined analysis of axi-symmetric circular cylinder in the axial magnetic field without ad hoc assumption[J]. Front Mech Eng, 2011, 6(3): 318-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed