Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2014, Vol. 9 Issue (1) : 81-94    https://doi.org/10.1007/s11465-014-0287-9
RESEARCH ARTICLE
Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II
Sunil Dhingra1,*(),Gian Bhushan2,Kashyap Kumar Dubey3
1. Department of Mechanical Engineering, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra
2. Department of Mechanical Engineering, National Institute of Technolo- gy, Kurukshetra
3. Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak
 Download: PDF(825 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi-objective optimization problem is formulated. Non-dominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

Keywords jatropha biodiesel      fuel properties      response surface methodology      multi-objective optimization      non-dominated sorting genetic algorithm-II     
Corresponding Author(s): Sunil Dhingra   
Issue Date: 16 May 2014
 Cite this article:   
Sunil Dhingra,Gian Bhushan,Kashyap Kumar Dubey. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II[J]. Front. Mech. Eng., 2014, 9(1): 81-94.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-014-0287-9
https://academic.hep.com.cn/fme/EN/Y2014/V9/I1/81
Fig.1  Schematic diagram of the engine setup
Fuel propertyJatrophaDieselB11.25B15.81B22.5B29.18B33.75B100Biodieselstandards
OilASTM D6751-02EN 14214
Density at 15°C /(kg∙m-3)865866867868869871872873-860-900
Viscosity at 40°C /(mm2∙s-1)543.43.63.844.34.354.231.9 - 6.03.5 - 5.0
Calorific value /(kJ∙kg-1)4227543500423054233042450425004252542673--
Acid value/ (mg KOH∙g-1)2.50.070.080.170.190.210.2250.25<0.8<0.50
Flash point/°C2207195125146156153148<130>120
Pour point/°C3.11-30122.54.2--
Water content/%0.070.060.040.020.020.030.0250.02<0.03<0.05
Ash content/%0.750.010.0120.0140.0140.0140.0130.015<0.02<0.02
Carbon residue3.540.170.190.200.210.200.190.15-<0.3
Sulphur content/%0.030.0250.020.0150.010.050.02NIL15 ppm max-
Tab.1  Fuel properties of Jatropha oil, its biodiesel blends, diesel fuel and standard values of biodiesel
ComponentSpecification
Make typeKirloskar
Engine typeSingle Cylinder 4-Stroke, Water Cooled
Compression ratioVariable ranging from 12 to 18
Rated power3.5 kW@1500 R.P.M
Stroke110 mm
Bore87.5 mm
Connecting rod length234 mm
Loading deviceEddy current dynamometer
Load indicatorDigital, Range 0-50 Kg, Supply 230V AC
Load sensorLoad cell, type strain gauge, range 0-50 Kg
Speed indicatorDigital with non contact type speed sensor
Temperature sensorThermocouple, Type K
RotameterEngine cooling 40-400 LPH; Calorimeter
Injection pressure220 bar
Injection timing23 bTDC
Fuel spray angle120
Tab.2  Engine Specification
VariablesSymbolUnitLowHigh
1Blending ratioX1% V/V11.2533.75
2Load torqueX2N-m7.512.5
5Compression ratioX5V/V13.516.5
Tab.3  Variable constraints in response surface methodology
Exp. No.TypeX1X2X3BSFCa)BTEb)c)PmaxSqrt(CO)d)e) Sqrt(NOx)Log10 (HC)f)Sqrt (Smoke)g
1Factorial15.818.5114.100.60813.95540.19618514.5513.56
2Factorial29.188.5114.100.57217.63530.23418514.8613.97
3Factorial15.8111.4814.100.41823.97560.278213.743.9434.97
4Factorial29.1811.4814.100.43725.68530.27221045.6138.74
5Factorial15.818.5115.890.6847.638580.149170.515.0614.58
6Factorial29.188.5115.890.58316.86610.21918515.7514.94
7Factorial15.8111.4815.890.33929.98540.581252.546.8440.73
8Factorial29.1811.4815.890.36925.95560.351208.648.9241.72
9Axial11.2510150.49522.54510.26518511.7424.58
10Axial33.7510150.47822.76530.2618512.7324.95
11Axial22.57.5150.7857.5530.5279.6157
12Axial22.512.5150.29532.94520.65308.565.5446.53
13Axial22.51013.50.50324.57520.294214.513.0620.74
14Axial22.51016.50.52225.98660.317213.813.7523.85
15Center22.510150.945902.145075013.56
16Center22.510150.945902.145075013.56
17Center22.510150.945902.145075013.56
Tab.4  Experimental design for combination of input variables in the engine and their responses
Precision Indexvalues
ModelAdjusted-a)R2Predicted R2PRESSb)Adeq- precision
BSFC0.98720.94770.04632.891
BTE0.98020.9127272.5628.845
Sqrt(Pmax)0.97940.9180436.2123.227
Sqrt(CO)0.99010.95800.1533.556
Sqrt(NOx)0.97890.912518.1523.830
Log10HC0.95330.81442.0215.519
Sqrt(Smoke)0.99510.98000.5669.124
Tab.5  Precision index values of different response models
P a) - values
Model termsBSFCBTEPmaxSqrt(CO)Sqrt(NOx)Log10 (HC)Sqrt (Smoke)
X10.22500.13160.63340.70950.57360.84300.1097
X2<0.0001<0.00010.35080.00050.00280.0005<0.0001
X30.76210.82100.00210.12100.72580.82640.0007
X12<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
X22<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
X32<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
X1X20.02250.01380.66800.03350.15020.98910.2631
X1X30.45200.96950.21450.33380.58070.97820.3388
X2X30.00690.02570.13630.01080.22250.96980.0977
Tab.6  Probability values (p-values) of different performance and emission parameter models by Analysis of variance (ANOVA)
Fig.2  Surface variation of BSFC response model across blending ratio, load torque and compression ratio
Fig.3  Surface variation of BTE response model across blending ratio, load torque and compression ratio
Fig.4  Surface variation of Pmax response model across blending ratio, load torque and compression ratio
Fig.5  Surface variation of Sqrt(CO) response model across blending ratio, load torque and compression ratio
Fig.6  Surface variation of Sqrt(NOx) response model across blending ratio, load torque and compression ratio
Fig.7  Surface variation of Log10(HC) response model across blending ratio, load torque and compression ratio
Fig.8  Surface variation of Sqrt(Smoke) response model across blending ratio, load torque and compression ratio
Fig.9  NSGA-II flowchart.
Fig.10  (a) Variation of brake thermal efficiency against the blending ratio (b) Variation of brake thermal efficiency against the compression ratio. (c) Variation of brake thermal efficiency against load torque
S. No.ParameterTypeValue/probability
1.Population size-----------------100
2.Number of Generations-----------------500
3.CrossoverSimulated binary0.9
4.MutationPolynomial0.166
5.SelectionNon-dominated sorting and crowding distance---------
Tab.7  NSGA-II operators used in MATLAB code
S. No.X1X2X3BSFCBTEPmaxCONOxHCSmoke
1.11.2512.513.50.4313.468.71.277.1215.8126.11
2.11.8912.2813.760.1970.449.760.3343.422.13112.14
3.12.517.814.910.557.933.3910106.22.0442.77
4.17.358.8814.960.8528.3475.131.09331.13128.9649.44
5.18.517.9814.920.814.5562.230.58272.0836.8948.27
6.19.0811.6215.80.4336.1163.170.91313.08100.32104.82
7.19.1511.6215.920.3934.5660.690.78293.3773.11107.76
8.19.1611.8815.90.3132.7155.540.66279.2755.64115.64
9.21.3710.8814.760.7744.8783.491.83429.03609.4984.78
10.21.579.1515.020.9337.7885.911.76414.56386.2361.064
11.21.6210.715.630.7343.0382.61.65398.49384.5687.87
12.21.6411.1815.720.641.0775.571.87369.14252.03100.54
13.21.939.2315.040.9338.9586.921.82421.34430.763.02
14.21.9511.0915.890.5839.2473.81.18343.32175.85102.83
15.21.9710.9515.720.6641.8378.831.47378.58293.4296.17
16.22.0210.8715.850.6440.2577.341.31357.42218.4196.96
17.22.2810.2615.020.8745.9489.42.11452.66777.5377.06
18.22.4910.3814.990.8546.1788.852.1451.96783.8379.71
19.22.510.1615.040.8845.6889.752.11452.36766.7276.36
20.22.5210.5615.040.8346.3287.892.06449.4770.6783.35
21.22.6310.9815.640.6742.6479.881.55389.39347.298.44
22.22.649.9515.110.944.7190.082.09448.34707.673.99
23.28.6310.5815.50.6537.6375.681.08320.41175.38123.43
24.30.6611.4516.130.19220.0444.890.06139.948.70184.41
25.30.6912.2516.340.157.1719.930.0670.041.288229.82
26.31.4712.2116.350.184.99417.390.1256.71.07237.16
27.32.66212.4716.50.4236.681.420.6715.846.41276.22
28.33.757.513.50.1623.919.640.966.281.28158.5
29.33.757.513.60.11221.3714.730.7511.5648.97154.5
30.33.7512.516.50.511.78.531.045.3813.8294.46
Tab.8  Pareto optimum solution sets predicted by NSGA-II package
Error/%
No.X1X2X3BSFCBTEPmaxCONOxHCSmokeBSFCBTEPmaxCONOxHCSmoke
1.21.939.2315.040.9040.6887.851.85423.45433.7666.21-3.34.21.051.60.40.74.8
2.19.0811.6215.800.4537.7564.650.89315.6598.75102.564.44.32.28-2.20.8-1.5-2.2
3.18.517.9814.920.8115.6760.350.61269.5638.7850.652.41.2-3.14.9-0.94.84.6
4.17.358.8814.960.8729.4277.631.04333.25130.7550.742.23.63.2-4.80.641.32.5
5.22.6310.9815.640.6943.5482.761.59382.46349.399.292.82.063.42.5-1.80.60.8
Tab.9  Confirmatory experiments by randomly selecting the five solution sets.
1 ThiruvengadaraviK V, NandagopalJ, BaskaralingamP, BalaV S S, SivanesanS. Acid-catalyzed esterification of karanja (Pongamia Pinnata) oil with high free fatty acid for biodiesel production. Fuel, 2012, 98: 1-4
doi: 10.1016/j.fuel.2012.02.047
2 BalaV S S, ThiruvengadaraviK V, Sentil KumarP S, PremkumarM P, KumarV V, SankarS S, HariM. Removal of free fatty acid in Pongamia Pinnata (Karanja) oil using divinylbenzene-styrene copolymer resins for biodiesel production. Biomass and Bioenergy, 2012, 37: 335-341
doi: 10.1016/j.biombioe.2011.12.032
3 DhingraS, DubeyK K, BhushanG.Enhancement in Jatropha based biodiesel yield by process optimization using design of experiment approach. International Journal of Susainable Energy, 2013, (Published online)
doi: 10.1080/14786451.2013.777335
4 DhingraS, BhushanG, DubeyK K. Development of combined approach for improvement and optimization of Karanja (Pongamia pinnata) biodiesel using response surface methodology and genetic algorithm. Frontiers in Energy, 2013
doi: 10.1007/s11708-013-0267-5
5 BojanS G, ChelladuraiS, DurairajS K. Chelledurai, Durairaj S K. Response surface methodology for optimization of biodiesel production from high FFA Jatropha curcas oil. International Journal of Green Energy, 2011, 8(6): 607-617
doi: 10.1080/15435075.2011.600373
6 NabiN, RehmanM, AkhterS. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions.Applied Thermal Engineering, 2008, 29(11-12): 2265-2270
doi: 10.1016/j.applthermaleng.2008.11.009
7 GumusM A. Comprehensive experimental investigation of combustion and heat release characteristics of a biodiesel (hazelnut kernel oil methyl ester) fuelled direct injection compression ignition engine. Fuel, 2010, 89(10): 2802-2814
doi: 10.1016/j.fuel.2010.01.035
8 BalajiganeshN, Chandra Mohan ReddyB.Optimization of C.I Engine parameters using Artificial Neural. International Journal of Mechanical and Industrial Engineering, 2011, 1(2), ISSN No. 2231-6477
9 Kiani Deh KianiM, GhobadianB, TavakoliT, NikbakhtA M, NajafiG. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends. Energy, 2009, 4: 1-5
10 KaruppasamyK, Syed Abu ThaheerA, Ahmed BashaC, MannivannanA. The effect of biodiesel blends on single cylinder DI diesel engine and optimization using response surface methodology. European Journal of Scientific Research, 2012, 84(3): 365-376
11 De LucasA, DuranA, CarmonaM, LapuertaM. Modelling diesel particulate emissions with neural networks. Fuel, 2001, 80(4): 539-548
doi: 10.1016/S0016-2361(00)00111-3
12 KrijnsenH, Van KootenW, CalisH, VerbeekR, Venden BleekC. Evaluation of an artificial neural network for NO prediction from a transient diesel engine as a base for ANN would be well suited to inventory prediction from transient diesel engine as base for NOx control. Canadian Journal of Chemical Engineering, 2000, 78(2): 408-417
doi: 10.1002/cjce.5450780218
13 MudgalA, GopalkrishnanK, HallmarkS. Prediction of emissions from biodiesel fuelled transit buses using artificial neural networks. International Journal of Traffic and Transport Engineering, 2011, 1(2): 115-131
14 MuralidharanK, VasudevanD, SheebaK N. Performance emission and combustion characteristics of biodiesel fuelled variable compression ratio engine. Energy, 2011, 36(8): 5385-5393
doi: 10.1016/j.energy.2011.06.050
15 GanapathyT, GakharR P, MurugesanK. Optimization of performance parameters of diesel engine with jatropha biodiesel using response surface methodology. International Journal of Sustainable Energy, 2011, 30(sup1 S1): S76-S90
doi: 10.1080/14786451.2011.594889
16 KutiO A, XiangangW G, NishidaK, HuangZ H. Characteristics of ignition and combustion of biodiesel fuel spray injected by a common-rail injection system for a direct-injection diesel engine. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering, 2010, 224(12): 1581-1596
doi: 10.1243/09544070JAUTO1503
17 RamdhasA S, MuraleedharanC, JayarajS. Performance and emission evaluation of a diesel engine fuelled with methyl esters of rubber seed oil. Renewable Energy, 2005, 20: 1-12
18 LinG H, KuoC P. Effects of the injection timing on the engine performance and the exhaust emissions of a diesel engine fuelled by tyre-pyrolysis oil-diesel blends. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering, 2013, 227(8): 1153-1161
doi: 10.1177/0954407013478397
19 JindalS, SalviB L. Sustainability aspects and optimization of linseed biodiesel blends for compression gnition engine. Journal of Renewable and Sustainable Energy, 2012, 4(4): 043111
doi: 10.1063/1.4737922
20 MuralidharanK, VasudevanD, SheebaK N. Performance emission and combustion characteristics of biodiesel fuelled variable compression ratio engine. Energy, 2011, 36(8): 5385-5393
doi: 10.1016/j.energy.2011.06.050
21 DebK, AgarwalR B. Simulated Binary Crossover for Continuous Search Space. Complex Systems, 1995, 9: 115-148
22 RaghuwanshiM M, KakdeO G. Survey on multi-objective evolutionary and real coded genetic algorithms. Proceedings of the 8th Asia Pacīc Symposium on Intelligent and Evolutionary Systems, 2004, 150-161
23 BeyerH G, DebK. On Self-Adaptive Features in Real-Parameter Evolutionary Algorithm. IEEE Transactions on Evolutionary Computation, 2001, 5(3): 250-270
doi: 10.1109/4235.930314
24 SrinivasN, DebK. Multi-objective Optimization Using Non-dominated Sorting in Genetic Algorithms. Evolutionary Computation, 1994, 2(3): 221-248
doi: 10.1162/evco.1994.2.3.221
25 DebK, PratapA, AgarwalS, MeyarivanT. A Fast Elitist Multi- objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197
doi: 10.1109/4235.996017
26 GargM P, JainA, BhushanG. Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture
doi: 10.1177/0954405412462778
[1] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[2] Muhammad Farhan AUSAF,Liang GAO,Xinyu LI. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm[J]. Front. Mech. Eng., 2015, 10(4): 392-404.
[3] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part II: Case studies[J]. Front. Mech. Eng., 2015, 10(2): 145-153.
[4] Yimin ZHANG. Reliability-based robust design optimization of vehicle components, Part I: Theory[J]. Front. Mech. Eng., 2015, 10(2): 138-144.
[5] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed