Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (1) : 102-110    https://doi.org/10.1007/s11465-015-0329-y
RESEARCH ARTICLE
Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension
Weiwei ZHANG,Xiaosong WANG(),Zhongren WANG,Shijian YUAN
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(1397 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

Keywords cylinder-crown integrated hydraulic press (CCIHP)      adaptive macro genetic algorithms (AMGA)      strain-controlled fatigue test     
Corresponding Author(s): Xiaosong WANG   
Online First Date: 12 February 2015    Issue Date: 01 April 2015
 Cite this article:   
Weiwei ZHANG,Xiaosong WANG,Zhongren WANG, et al. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension[J]. Front. Mech. Eng., 2015, 10(1): 102-110.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0329-y
https://academic.hep.com.cn/fme/EN/Y2015/V10/I1/102
Fig.1  CCIHP. (a) Column-type; b) straight-side frame type; (c) cylinder-crown integrated structure
Fig.2  Design variables of cylinder-crown integrated structure
Fig.3  Contribution of variables on each objective: (a) The maximum principal stress; (b) the total weight
Variables/m Constraints Objectives
X1 X2 X3 X4 X5 R1 R2 R3 R6 R8 f/(mm·m-1) σm/MPa G/ton σmax/MPa
Initial 0.102 0.235 0.110 0.390 0.165 0.030 0.015 0.015 0.050 0.015 0.17 136.0 5.00 135.0
1 0.099 0.227 0.121 0.413 0.179 0.034 0.011 0.016 0.053 0.020 0.16 104.0 4.93 93.0
2 0.098 0.227 0.141 0.412 0.179 0.038 0.011 0.016 0.054 0.026 0.16 108.4 4.85 95.4
3 0.091 0.228 0.121 0.413 0.179 0.034 0.011 0.016 0.053 0.020 0.16 103.3 4.87 94.0
4 0.091 0.228 0.121 0.413 0.179 0.034 0.011 0.016 0.053 0.020 0.16 103.4 4.87 94.0
5 0.091 0.228 0.143 0.413 0.179 0.034 0.011 0.016 0.053 0.020 0.16 97.6 4.78 96.4
6 0.091 0.227 0.141 0.389 0.174 0.044 0.023 0.011 0.052 0.020 0.18 108.3 4.76 103.8
7 0.091 0.227 0.145 0.389 0.173 0.044 0.022 0.010 0.052 0.019 0.18 106.8 4.74 104.6
8 0.091 0.233 0.141 0.396 0.179 0.038 0.011 0.016 0.052 0.026 0.17 99.6 4.78 96.4
9 0.091 0.227 0.145 0.389 0.173 0.044 0.022 0.010 0.052 0.019 0.18 106.7 4.74 104.6
10 0.091 0.228 0.143 0.413 0.179 0.034 0.011 0.016 0.053 0.020 0.16 97.6 4.78 96.4
11 0.101 0.227 0.121 0.413 0.179 0.046 0.013 0.016 0.053 0.020 0.16 108.5 4.95 88.2
12 0.091 0.227 0.141 0.389 0.174 0.044 0.023 0.011 0.052 0.020 0.17 108.3 4.76 103.8
13 0.091 0.233 0.141 0.390 0.179 0.037 0.011 0.016 0.052 0.026 0.17 102.5 4.77 98.7
14 0.091 0.227 0.141 0.389 0.179 0.034 0.011 0.018 0.050 0.026 0.18 101.8 4.76 100.6
15 0.091 0.227 0.145 0.389 0.173 0.044 0.022 0.010 0.052 0.019 0.18 106.6 4.74 104.6
Tab.1  Solution set of multi-objective design optimization
Fig.4  Pareto frontier of multi-objective design optimization
Fig.5  Comparison of the maximum principal stress. (a) Before optimization; (b) after optimization
Fig.6  6300 kN cylinder-crown integrated structure. (a) Up view; (b) down view
Element C Si Mn P S Mg
Weight percent/wt.% 3.580 2.160 0.270 0.035 0.012 0.056
Tab.2  Chemical composition of QT500-7
Yield stress/MPa Tensile stress/MPa Elongation/% Young’s modulus/GPa Poisson’s ratio
375 560 9.7 167 0.273
Tab.3  Mechanical properties of QT500-7
Fig.7  Fatigue tests setup. (a) Fatigue machine; (b) specimen
Fig.8  Stress-strain hysteresis loops
Applied strain amplitude Plastic strain amplitude Fatigue life/cycle
±0.10% 0.000000 158643
±0.15% 0.000200 35001
±0.20% 0.000375 7001
±0.25% 0.000540 3013
±0.30% 0.000820 1230
±0.40% 0.001680 625
±0.55% 0.003000 326
±0.70% 0.004340 202
±0.75% 0.004790 178
Tab.4  Plastic strain range and fatigue life
Parameter Value
Fatigue strength coefficient, σ f /MPa 1117
Cyclic strength coefficient, K /MPa 689
Fatigue ductility coefficient, ? f ??0.445
Fatigue ductility exponent, c -0.604
Fatigue strength exponent, b -0.147
Cyclic-hardening exponent, n ??0.085
Tab.5  Fatigue properties of QT500-7
Fig.9  Predicted fatigue life of cylinder-crown integrated structure. (a) After optimization; (b) before optimization
Fig.10  6300 kN CCIHP
1 Geleji A. Forge Equipment, Rolling Mills and Accessories. Budapest: Akadémiai Kiadó, 1967
2 Mueller E. Hydraulic Forging Presses. Berlin: Springer, 1969
3 Altan T, Boulger F W, Becker J R, Forging Equipment, Materials and Practices. Columbus: Metals and Ceramics Information Center, 1973
4 Davis J R, Semiatin S L, American Society for Metals. ASM Metals Handbook, Volume 14: Forging and Forming. 9th ed. Ohio: ASM International, 1988
5 Altan T, Tekkaya E. Sheet Metal Forming: Fundamentals, Volume 1. Ohio: ASM International, 2012
6 Schuler Gmb H. Metal Forming Handbook. Berlin: Springer, 1998
7 Altan T, Ngaile G, Shen G S. Cold and Hot Forging: Fundamentals and Applications. Ohio: ASM International, 2004
8 Wang Z, Yuan S, Wang X, China Patent, 20100502688.5, 2011-<month>02</month>-<day>16</day> (in Chinese)
9 Zhang W, Wang Z, Wang X, Strength calculation of thick-walled hemispherical hydraulic cylinder and comparative analysis with cylindrical hydraulic cylinder. Chinese Journal of Mechanical Engineering, 2012, 48(24): 50–54 (in Chinese)
https://doi.org/10.3901/JME.2012.24.050
10 Zhang W, Wang X, Yuan S, Design and manufacturing of the cylinder-beam integrated hydraulic press. Applied Mechanics and Materials, 2013, 397–400: 157–161
https://doi.org/10.4028/www.scientific.net/AMM.397-400.157
11 Zhang W, Wang X, Wang Z, Mechanical analysis on the cylinder-crown integrated hydraulic press with a hemispherical cylinder. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering and Science, 2015, 229(3): 407–416
https://doi.org/10.1177/0954406214537800
12 Zhang W, Wang X, Wang Z, Structural optimization of cylinder-crown integrated hydraulic press with hemispherical hydraulic cylinder. Procedia Engineering, 2014, 81: 1663–1668
https://doi.org/10.1016/j.proeng.2014.10.209
13 Yu X. Design and Application of Hydraulic Press. Beijing: China Machine Press, 2009 (in Chinese)
14 Wu S. 150MN Hydraulic Press. Beijing: National Defense Industry Press, 2012 (in Chinese)
15 Williams C R , Lee Y L, Rilly J T. A practical method for statistical analysis of strain-life fatigue data. International Journal of Fatigue, 2003, 25(5): 427–436
https://doi.org/10.1016/S0142-1123(02)00119-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed