Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (3) : 263-276    https://doi.org/10.1007/s11465-015-0345-y
RESEARCH ARTICLE
An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow
Thiago ANTONINI ALVES(),Paulo H. D. SANTOS,Murilo A. BARBUR
Department of Mechanical Engineering, Federal University of Technology, Paraná, Brazil
 Download: PDF(3022 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this research, the temperatures of three-dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G+ with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients (g+) caused by the forced convection-conduction nature of the heaters’ cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a two-dimensional (2D) array by ANSYS/FluentTM 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients.

Keywords channel flow      conjugate forced convection-conduction cooling      conjugate influence coefficients      discrete heating      invariant descriptor      thermal management     
Corresponding Author(s): Thiago ANTONINI ALVES   
Online First Date: 07 September 2015    Issue Date: 23 September 2015
 Cite this article:   
Thiago ANTONINI ALVES,Paulo H. D. SANTOS,Murilo A. BARBUR. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow[J]. Front. Mech. Eng., 2015, 10(3): 263-276.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0345-y
https://academic.hep.com.cn/fme/EN/Y2015/V10/I3/263
Fig.1  Basic configuration used for the tests
Fig.2  Domain of the mathematical model
Fig.3  Three-dimensional non-uniform mesh (3D perspective)
Fig.4  Three-dimensional non-uniform mesh. (a) xy plane; (b) yz plane; (c) xz plane for y=0.16H
Fig.5  Streamlines around an array of 3D protruding heaters for Re=100 (perspective 3D view)
Fig.6  Streamlines around an array of 3D protruding heaters for Re=100. (a) xy plane for z=0; (b) xz plane for y=0.15H
Fig.7  Velocity profile around an array of 3D protruding heaters for Re=100. (a) xy plane for z=0; (b) xz plane for y=0.15H
Re Lrec/H
100 1.19
150 1.60
200 2.00
250 2.43
300 2.84
Tab.1  Length Lrec of the recirculation downstream Heater #3
Fig.8  Length of the recirculation downstream Heater #3
Fig.9  Average adiabatic Nusselt number for an adiabatic substrate and a single active heater
Re N u ad , 1 N u ad , 2 N u ad , 3
100 11.20 9.78 9.99
150 13.59 11.59 11.88
200 15.66 13.14 13.56
250 17.43 14.52 15.09
300 19.02 15.79 16.53
Tab.2  Average adiabatic Nusselt number for a single active heater
Heater C m
#1 1.2083 0.4833
#2 1.3095 0.4358
#3 1.2080 0.4575
Tab.3  Coefficients of Eq. (15) for ks/k=0
Fig.10  Isotherm maps for an adiabatic substrate and a single active heater. (a) Heater #1; (b) Heater #2; (c) Heater #3
Fig.11  Isotherm maps for an adiabatic substrate with all active heaters (1-1-1)
Test Active heater T1/°C T2/°C T3/°C
1 #1 (1-0-0) 151.75 44.95 27.80
2 #2 (0-1-0) 1.33 174.73 49.26
3 #3 (0-0-1) 0.00 1.11 171.50
4 All (1-1-1) 156.92 225.30 252.98
5 All (0.4-0.3-0.3) 62.63 72.20 78.74
6 All (0.5-0.3-0.2) 78.19 76.69 64.16
Tab.4  Temperature increase of each 3D protruding heater for Re=100 and ks/k=0
Fig.12  Conduction fraction (qcd/q) for Heater #2
Fig.13  Isotherm maps for a conductive substrate and single active heater. (a) Heater #1; (b) Heater #2; (c) Heater #3
Fig.14  Isotherm maps for a conductive substrate and all active heaters (1-1-1)
Test Active Heater ΔT1/°C ΔT2/°C ΔT3/°C
1 #1 (1-0-0) 62.60 22.49 13.40
2 #2 (0-1-0) 9.23 66.33 23.40
3 #3 (0-0-1) 1.35 9.62 66.47
4 All (1-1-1) 73.24 98.54 103.57
5 All (0.4-0.3-0.3) 28.24 31.81 32.41
6 All (0.5-0.3-0.2) 34.36 33.10 27.08
Tab.5  Temperature increase of each 3D protruding heater for Re=100 and ks/k=84
A Heat transfer area/m2
C Coefficient
cp Specific heat
g* Discrete superposition kernel function
g+ Conjugate influence coefficient
g−1 Element of G−1/(K·W−1)
G+ Matrix of conjugate influence coefficients
G−1 Matrix of inverse discrete Green’s function
h Convective heat transfer coefficient/(W·m−2·K−1)
H Channel height/ m
Hh Heater height/m
k Air thermal conductivity/(W·m−2·K−1)
kh Heater thermal conductivity/(W·m−2·K−1)
ks Substrate thermal conductivity/(W·m−2·K−1)
L Total channel length/m
Lh Block heater length/m
Ld Channel downstream length/m
Lu Channel upstream length/m
Ls Spacing between heaters/m
m Exponent
m ˙ Mass flow rate/(kg·s−1)
N Total number of heaters in the array
Nu Nusselt number
P Pressure/Pa
q Heat transfer rate/W
qcd Conductive heat transfer rate/W
qcv Convective heat transfer rate/W
qL Smaller heat generation rate/W
Re Reynolds number
S Source term/(W·m−3)
t Substrate thickness/m
T Temperature/K or °C
u x-velocity component/(m·s−1)
v y-velocity component/(m·s−1)
w z-velocity component/(m·s−1)
W Channel width/m
Wh Heater width/m
Ws Channel spanwise width/m
x Cartesian coordinate/m
y Cartesian coordinate/m
z Cartesian coordinate/m
ρ Specific mass/(kg·m−3)
µ Dynamic viscosity/(Pa·s)
Tab.6  Nomenclature
1 Ortega  A. Conjugate Heat Transfer in Forced Air Cooling of Electronic Components. In Kim  S J, Lee  S W, eds. Air Cooling Technology for Electronic Equipment. Boca Raton: CRC Press, 1996, 103–171
2 Nakayama  W. Forced convective/conductive conjugate heat transfer in microelectronic equipment. Annual Review of Heat Transfer, 1997, 8(8): 1–45
https://doi.org/10.1615/AnnualRevHeatTransfer.v8.30
3 Moffat  R J. What’s new in convective heat transfer? International Journal of Heat and Fluid Flow, 1998, 19(2): 90–101
https://doi.org/10.1016/S0142-727X(97)10014-5
4 Arvizu  D E, Moffat  R J. The use of superposition in calculating cooling requirements for circuit-board-mounted electronic components. In: Proceeding of 32nd Electronic Components Conference. San Diego, 1982, 133–144
5 Arvizu  D E, Ortega  A, Moffat  R J. Cooling Electronic Components: Forced Convection Experiments with an Air-Cooled Array. In: Oktay  S, Moffat  R J, eds. Electronics Cooling. New York: ASME, 1985
6 Moffat  R J, Anderson  A M. Applying heat transfer coefficient data to electronics cooling. Journal of Heat Transfer, 1990, 112(4): 882–890
https://doi.org/10.1115/1.2910495
7 Anderson  A M, Moffat  R J. The adiabatic heat transfer coefficient and the superposition kernel function: Part 1—Data for arrays of flatpacks for different flow conditions. Journal of Electronic Packaging, 1992, 114(1): 14–21
https://doi.org/10.1115/1.2905435
8 Anderson  A M, Moffat  R J. The adiabatic heat transfer coefficient and the superposition kernel function: Part 2—Modeling flatpack data as a function of channel turbulence. Journal of Electronic Packaging, 1992, 114(1): 22–28
https://doi.org/10.1115/1.2905437
9 Moffat  R J. hadiabatic and umax?′. Journal of Electronic Packaging, 2004, 126(4): 501–509
https://doi.org/10.1115/1.1827265
10 Eckert  E R G, Drake  R M. Analysis of Heat and Mass Transfer. New York: McGraw-Hill, 1972
11 Sparrow  E M, Ramsey  J W, Altemani  C A C. Experiments on in-line pin fin arrays and performance comparisons with staggered arrays. Journal of Heat Transfer, 1980, 102(1): 44–50
https://doi.org/10.1115/1.3244247
12 Garimella  S V, Eibeck  P A. Enhancement of single phase convective heat transfer from protruding elements using vortex generators. International Journal of Heat and Mass Transfer, 1991, 34(9): 2431–2433
https://doi.org/10.1016/0017-9310(91)90068-P
13 Kang  S S. The thermal wake function for rectangular electronic modules. Journal of Electronic Packaging, 1994, 116(1): 55–59
https://doi.org/10.1115/1.2905494
14 Molki  M, Faghri  M, Ozbay  O. A correlation for heat transfer and wake effect in the entrance region of an in-line array of rectangular blocks simulation electronic components. Journal of Heat Transfer, 1995, 117(1): 40–46
https://doi.org/10.1115/1.2822320
15 Nakayama  W, Park  S H. Conjugate heat transfer from a single surface-mounted block to forced convective air flow in a channel. Journal of Heat Transfer, 1996, 118(2): 301–309
https://doi.org/10.1115/1.2825845
16 Wirtz  R A. Forced Air Cooling of Low-Profile Package Arrays. In: Kim  S J, Lee  S W, eds. Air Cooling Technology for Electronic Equipment. Boca Raton: CRC Press, 1996, 81–101
17 Molki  R J, Faghri  M. Temperature of in-line array of electronic components simulated by rectangular blocks. Electronics Cooling, 2000, 6: 26–32
18 Rhee  J, Moffat  R J. Experimental estimate of the continuous one-dimensional kernel function in a rectangular duct with forced convection. Journal of Heat Transfer, 2006, 128(8): 811–818
https://doi.org/10.1115/1.2227039
19 Alves  T A, Altemani  C A C. Convective cooling of three discrete heat sources in channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, 30(3): 245–252
https://doi.org/10.1590/S1678-58782008000300010
20 Alves  T A, Altemani  C A C. Conjugate cooling of a discrete heater in laminar channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(3): 278–286
https://doi.org/10.1590/S1678-58782011000300003
21 Alves  T A, Altemani  C A C. Conjugate cooling of a protruding heater in a channel with distinct flow constraints. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering, 2013, 13(11): 9–25
22 Hacker  J M, Eaton  J K. Measurements of heat transfer in separated and reattaching flow with spatially varying thermal boundary conditions. International Journal of Heat and Fluid Flow, 1997, 18(1): 131–141
https://doi.org/10.1016/S0142-727X(96)00142-7
23 Batchelder  K A, Eaton  J K. Practical experience with the discrete Green’s function approach to convective heat transfer. Journal of Heat Transfer, 2001, 123(1): 70–76
https://doi.org/10.1115/1.1336509
24 Mukerji  D, Eaton  J K, Moffat  R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps. Journal of Heat Transfer, 2004, 126(2): 202–210
https://doi.org/10.1115/1.1650387
25 Mukerji  D, Eaton  J K. Discrete Green’s function measurements in a single passage turbine model. Journal of Heat Transfer, 2005, 127(4): 366–377
https://doi.org/10.1115/1.1844537
26 Booten  C, Eaton  J K. Discrete Green’s function measurements in internal flows. Journal of Heat Transfer, 2005, 127(7): 692–698
https://doi.org/10.1115/1.1924567
27 Booten  C, Eaton  J K. Discrete Green’s function measurements in a serpentine cooling passage. Journal of Heat Transfer, 2007, 129(12): 1686–1696
https://doi.org/10.1115/1.2767749
28 Davalath  J, Bayazitoglu  Y. Forced convection cooling across rectangular blocks. Journal of Heat Transfer, 1987, 109(2): 321–328
https://doi.org/10.1115/1.3248083
29 Anderson  A M. Decoupling convective and conductive heat transfer using the adiabatic heat transfer coefficient. Journal of Electronic Packaging, 1994, 116(4): 310–316
https://doi.org/10.1115/1.2905703
30 Alves  T A, Altemani  C A C. An invariant descriptor for heaters temperature prediction in conjugate cooling. International Journal of Thermal Sciences, 2012, 58: 92–101
https://doi.org/10.1016/j.ijthermalsci.2012.03.007
31 Bergman  L, Lavine  A S, Incropera  F P, . Fundamentals of Heat and Mass Transfer. New Jersey: John Wiley & Sons, 2012
32 Morris  G K, Garimella  S V. Thermal wake downstream of a three-dimensional obstacle. Experimental Thermal and Fluid Science, 1996, 12(1): 65–74
https://doi.org/10.1016/0894-1777(95)00073-9
33 Bar-Cohen  A, Watwe  A A, Prasher  R S. Heat Transfer in Electronic Equipment. In: Bejan  A, Kraus  A D, eds. Heat Transfer Handbook. New Jersey: John Wiley & Sons, 2003, 947–1027
34 Zeng  Y, Vafai  K. An investigation of convective cooling of an array of channel-mounted obstacles. Numerical Heat Transfer, 2009, 55(11): 967–982
https://doi.org/10.1080/10407780903012180
35 Ramadhyani  S, Moffatt  D F, Incropera  F P. Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. International Journal of Heat and Mass Transfer, 1985, 28(10): 1945–1952
https://doi.org/10.1016/0017-9310(85)90216-9
36 Patankar  S V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980
37 Leung  C W, Chen  S, Chan  T L. Numerical simulation of laminar forced convection in an air-cooled horizontal printed circuit board assembly. Numerical Heat Transfer, 2000, 37(4): 373–393
https://doi.org/10.1080/104077800274235
38 Nakamura  H, Igarashi  T, Tsutsui  T. Local heat transfer around a wall-mounted cube in the turbulent boundary layer. International Journal of Heat and Mass Transfer, 2001, 44(18): 3385–3395
https://doi.org/10.1016/S0017-9310(01)00009-6
39 Hwang  J Y, Yang  K S. Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow. Physics of Fluids, 2004, 16(7): 2382
https://doi.org/10.1063/1.1736675
40 Huang  P C, Yang  C F, Hwang  J J, . Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. International Journal of Heat and Mass Transfer, 2005, 48(3 − 4 ): 647–664
https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.041
41 Nakajima  M, Yanaoka  H, Yoshikawa  H, . Numerical simulation of three-dimensional separated flow and heat transfer around staggered surface-mounted rectangular blocks in a channel. Numerical Heat Transfer, 2005, 47(7): 691–708
https://doi.org/10.1080/10407780590911558
42 Yaghoubi  M, Velayati  E. Undeveloped convective heat transfer from an array of cubes in cross-stream direction. International Journal of Thermal Sciences, 2005, 44(8): 756–765
https://doi.org/10.1016/j.ijthermalsci.2005.02.003
43 Premachandran  B, Balaji  C. Conjugate mixed convection with surface radiation from a horizontal channel with protruding heat sources. International Journal of Heat and Mass Transfer, 2006, 49(19−20): 3568–3582
https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.044
44 ANSYS/FluentTM. Solving a conjugate heat transfer problem using ANSYS/FluentTM. 2011, Tutorial: 1–30
45 Barbur  M A. Numerical Validation of the Invariant Descriptor of Conjugate Forced Convection-Conduction Cooling of Protruding 3D Heaters in Channel Flow, Final Course Assignment. Ponta Grossa: Federal University of Technology-Paraná, Brazil, 2014, 81 (in Portuguese)
[1] Mao LI, Yuanzhi LIU, Xiaobang WANG, Jie ZHANG. Modeling and optimization of an enhanced battery thermal management system in electric vehicles[J]. Front. Mech. Eng., 2019, 14(1): 65-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed