Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (3) : 242-254    https://doi.org/10.1007/s11465-015-0350-1
REVIEW ARTICLE
Design of active orthoses for a robotic gait rehabilitation system
A. C. VILLA-PARRA1,2,*(),L. BROCHE3,D. DELISLE-RODRÍGUEZ1,4,R. SAGARÓ3,T. BASTOS1,A. FRIZERA-NETO1
1. Post-Graduate Program in Electrical Engineering, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil
2. Grupo de Investigación en Ingeniería Biomédica GIIB, Universidad Politécnica Salesiana, Cuenca 010105, Ecuador
3. Mechanical and Design Engineering Department, Universidad de Oriente, Santiago de Cuba 90500, Cuba
4. Center of Medical Biophysics, Universidad de Oriente, Santiago de Cuba 90500, Cuba
 Download: PDF(2285 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.

Keywords active orthosis      gait rehabilitation      electroencephalography      surface electromyography     
Corresponding Author(s): A. C. VILLA-PARRA   
Online First Date: 08 September 2015    Issue Date: 23 September 2015
 Cite this article:   
A. C. VILLA-PARRA,L. BROCHE,D. DELISLE-RODRÍGUEZ, et al. Design of active orthoses for a robotic gait rehabilitation system[J]. Front. Mech. Eng., 2015, 10(3): 242-254.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0350-1
https://academic.hep.com.cn/fme/EN/Y2015/V10/I3/242
Fig.1  Robotic system developed in Universidade Federal do Espírito Santo (Brazil) to assist gait rehabilitation
Criteria
Mechanical Structure Alignment with user’s joints
Adaptability to different users
Light weight and hardness/firmness
Inhibits non-physiological ranges of motion
Allows movements of daily living: Sitting, standing, walking up, down stairs
Easy to wear, safe, and ergonomic
Actuator Powerful (joint torques comparable to healthy individuals)
Low mechanical impedance*
Light weight and safe
Highly compliant and zero backlash
Compact design and efficient
Accuracy and repeatability in positioning
Tab.1  Design criteria for active orthoses
Fig.2  Forces at the joints, knee, and ankle
Fig.3  Representation of knee and ankle values during walking. (a) Joint angle and torque; (b) knee angle versus torque [15]
Fig.4  Block diagram of the acquisition wireless module. (a) EEG; (b) sEMG
Fig.5  (a) FSR locations; (b) gait-phase pattern recognized by the insole
Fig.6  Block diagram of the control approach
Fig.7  (a) Structure of CAD modeling; (b) stress distribution in the structure; (c) distribution of safety factor
Fig.8  (a) Plaster cast of a right leg to develop the positive (solid) mold; (b) the ankle foot orthosis in polypropylene plastic; (c) 1—Power supply and electric circuit; 2—Shank segment, which can be adjusted to different diameters; 3—Powered joint; 4—Potentiometer; 5—Foot segment and sensor insole; (d) AAFO modeling; (e) AAFO work positions
Fig.9  (a) Foot structure mesh; (b) stress distribution in the structure; (c) distribution of safety factor; (d) foot structure with a heel-off load
Parameter AKO AAFO
Length/mm 540.00 297.00
Width/mm 10.00 121.00
Height/mm 30.00 348.00
Weight/kg 2.80 1.01
DC power supply/V 6.00 26.00
Joint motion/(° ) 115–0 8–(−24)
Tab.2  Active orthoses specifications
Test rc Cb r 95% CI
EEG 1 vs. 2 0.9949 0.9982 0.9967 0.9907–0.9992
1 vs. 3 0.9612 0.9630 0.9981 0.9384–0.9841
2 vs. 3 0.9714 0.9769 0.9944 0.9524–0.9905
sEMG 1 vs. 2 0.9784 0.9942 0.9841 0.9617–0.9951
1 vs. 3 0.9834 0.9952 0.9882 0.9707–0.9962
2 vs. 3 0.9996 0.9999 0.9962 0.9938–0.9993
Tab.3  Concordance correlation coefficient of the frequency response tests intra-observer
Fig.10  Frequency response. (a) EEG channel; (b) sEMG channel
Fig.11  (a) EEG signal from the occipital lobe (alpha band); (b) sEMG signal from the tibial anterior muscle
Fig.12  Representation of the power spectra on the occipital lobe. (a) Power spectrum for visual stimulus of 6.4 Hz; (b) power spectrum for visual stimuli of 8.0 Hz
Fig.13  Representation of the ERD and ERS. (a) C3-FZ electrodes; (b) C4-FZ electrodes
Fig.14  Synchronized measurements. (a) Gait-phase acquisition; (b) knee trajectory; (c) rectus femoris sEMG; (d) gastrocnemius sEMG
1 Belda-Lois  J M, Mena-del Horno  S, Bermejo-Bosch  I,  Rehabilitation of gait after stroke: A review towards a top-down approach. Journal of Neuroengineering and Rehabilitation, 2011, 8(1): 66
https://doi.org/10.1186/1743-0003-8-66 pmid: 22165907
2 Shorter  K A, Xia  J, Hsiao-Wecksler  E T,  Technologies for powered ankle-foot orthotic systems: Possibilities and challenges. IEEE/ASME  Transactions  on  Mechatronics,  2013,  18(1):  337–347
https://doi.org/10.1109/TMECH.2011.2174799
3 Viteckova  S, Kutilek  P, Jirina  M. Wearable lower limb robotics: A review. Biocybernetics and Biomedical Engineering, 2013, 33(2): 96–105
https://doi.org/10.1016/j.bbe.2013.03.005
4 Prange  G B, Jannink  M J A, Groothuis-Oudshoorn  C G M,  Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 2006, 43(2): 171–184
https://doi.org/10.1682/JRRD.2005.04.0076 pmid: 16847784
5 Pons  J L, Moreno  J C, Brunetti  F J,  Lower-limb wearable exoskeleton. In: Kommu  S S, ed. Rehabilitation Robotics. Vienna: Itech Education and Publishing, 2007, 1: 648
6 Valadao  C, Lotério  F, Cardoso  V,  Robotic walker to assist and monitor physiotherapy sessions. In: Proceedings of the 1st International Workshop on Assistive Technologies. Vitória, 2015
7 Tausel  L, Cifuentes  C A, Rodriguez  C,  Human-walker interaction on slopes based on LRF and IMU sensors. In: Biomedical Robotics and Biomechatronics (2014 5th IEEE RAS EMBS International Conference). Sao Paulo: IEEE, 2014, 227–232
8 Hussain  S, Xie  S Q, Liu  G. Robot assisted treadmill training: Mechanisms and training strategies. Medical Engineering & Physics, 2011, 33(5): 527–533
https://doi.org/10.1016/j.medengphy.2010.12.010 pmid: 21216650
9 Low  K H, Yin  Y. An integrated lower exoskeleton system towards design of a portable active orthotic device. International Journal of Robotics and Automation, 2007, 22(1): 32–43
https://doi.org/10.2316/Journal.206.2007.1.206-1003
10 Hussain  S, Xie  S Q, Jamwal  P K. Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Transactions on Cybernetics, 2013, 43(3): 1025–1034
https://doi.org/10.1109/TSMCB.2012.2222374 pmid: 23193241
11 Bortole  M, Venkatakrishnan  A, Zhu  F,  The H2 robotic exoskeleton for gait rehabilitation after stroke: Early findings from a clinical study. Journal of Neuroengineering and Rehabilitation, 2015, 12(1): 54
https://doi.org/10.1186/s12984-015-0048-y pmid: 26076696
12 Yoshizawa  N. Active AFO with ankle joint brake friction control using force observer. In: Proceedings of Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. San Diego: IEEE, 2012, 1900–1903
https://doi.org/10.1109/EMBC.2012.6346324 pmid: 23366285
13 Onen  U, Botsali  F M, Kalyoncu  M,  Design and actuator selection of a lower extremity exoskeleton. IEEE/ASME Transactions on Mechatronics, 2013, 1: 1–10
14 Winter  D A. Biomechanics and Motor Control of Human Movement. 2nd ed. Hoboken: John Wiley & Sons, 2009
15 Pons  J L. Wearable Robots: Biomechatronic Exoskeletons. Hoboken: John Wiley & Sons, 2008
16 Madeti  B K, Chalamalasetti  S R, siva rao Bolla Pragada  S K S. Biomechanics of knee joint—A review. Frontiers of Mechanical Engineering, 2015, 10(2): 1–10 
https://doi.org/10.1007/s11465-014-0306-x
17 McGibbon  C A, Krebs  D E. Discriminating age and disability effects in locomotion: Neuromuscular adaptations in musculoskeletal pathology. Journal of Applied Physiology, 2004, 96(1): 149–160
https://doi.org/10.1152/japplphysiol.00422.2003 pmid: 12949019
18 Lobo-Prat  J, Kooren  P N, Stienen  A H,  Non-invasive control interfaces for intention detection in active movement-assistive devices. Journal of Neuroengineering and Rehabilitation, 2014, 11(1): 168
https://doi.org/10.1186/1743-0003-11-168 pmid: 25516421
19 Chaffin  B, Gunnar  B, Andersson  J,  Occupational biomechanics, 4th edition. Professional Safety, 2006, 51(8): 58
20 Kelly  B M, Spires  M C, Restrepo  J A. Orthotic and prosthetic prescriptions for today and tomorrow. Physical Medicine and Rehabilitation Clinics of North America, 2007, 18(4): 785–858
https://doi.org/10.1016/j.pmr.2007.08.001 pmid: 17967365
21 Mills  P M, Barrett  R S. Swing phase mechanics of healthy young and elderly men. Human Movement Science, 2001, 20(4–5): 427–446
https://doi.org/10.1016/S0167-9457(01)00061-6 pmid: 11750671
22 Pfurtscheller  G, Lopes da Silva  F H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 1999, 110(11): 1842–1857
https://doi.org/10.1016/S1388-2457(99)00141-8 pmid: 10576479
23 Merletti  R, Parker  P. Electromyography: Physiology, Engineering, and Noninvasive Applications. Hoboken: John Wiley & Sons, 2004
24 Wafai  L, Zayegh  A, Begg  R,  Asymmetry detection during pathological gait using a plantar pressure sensing system. In: Proceedings of 2013 7th IEEE GCC Conference and Exhibition (GCC). Doha: IEEE, 2013, 182–187
25 Lin  L I. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989, 45(1): 255–268
https://doi.org/10.2307/2532051 pmid: 2720055
26 Vijay  M. The Digital Signal Processing Handbook. Boca Raton: CRC Press, 2009
27 Lalitharatne  T D, Teramoto  K, Hayashi  Y,  Towards hybrid EEG-EMG-based control approaches to be used in bio-robotics applications: Current status, challenges and future directions. Paladyn Journal of Behavioral Robotics, 2013, 4: 147–154
28 Nymark  J R, Balmer  S J, Melis  E H,  Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. Journal of Rehabilitation Research and Development, 2005, 42(4): 523–534
https://doi.org/10.1682/JRRD.2004.05.0059 pmid: 16320147
29 Ishikura  T. Biomechanical analysis of weight bearing force and muscle activation levels in the lower extremities during gait with a walker. Acta Medica Okayama, 2001, 55(2): 73–82
pmid: 11332202
30 Martins  M, Elias  A, Cifuentes  C,  Assessment of walker-assisted gait based on principal component analysis and wireless inertial sensors. Revista Brasileira de Engenharia Biomédica, 2014, 30(3): 220–231
https://doi.org/10.1590/rbeb.2014.020
31 Browning  R C, Kram  R. Effects of obesity on the biomechanics of walking at different speeds. Medicine and Science in Sports and Exercise, 2007, 39(9): 1632–1641
https://doi.org/10.1249/mss.0b013e318076b54b pmid: 17805097
32 Chironis  N P, Sclater  N. Mechanisms and Mechanical Devices Sourcebook. 3rd ed. New York: McGraw-Hill, 2001
33 Veneman  J F. A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. International Journal of Robotics Research, 2006, 25(3): 261–281
https://doi.org/10.1177/0278364906063829
34 Karavas  N C, Tsagarakis  N G, Caldwell  D G. Design, modeling and control of a series elastic actuator for an assistive knee exoskeleton. In: Proceedings of 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo: IEEE, 2012, 1813–1819
35 Veneva  I. Intelligent device for control of active ankle-foot orthosis. Biomedical Engineering, 2010, 7: 100–105
https://doi.org/10.2316/Journal.216.2010.7.680-080
36 Cheung  J T M, Zhang  M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Medical Engineering & Physics, 2008, 30(3): 269–277
https://doi.org/10.1016/j.medengphy.2007.05.002 pmid: 17584519
37 Chin  R, Hsiao-Wecksler  E T, Loth  E,  A pneumatic power harvesting ankle-foot orthosis to prevent foot-drop. Journal of Neuroengineering and Rehabilitation, 2009, 6(19): 1–11
https://doi.org/10.1186/1743-0003-6-19
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed