Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (4) : 367-372    https://doi.org/10.1007/s11465-015-0367-5
RESEARCH ARTICLE
A pre-compensation method of the systematic contouring error for repetitive command paths
D. L. ZHANG(),Y. H. CHEN,Y. P. CHEN
State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1034 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For a repetitive command path, pre-compensating the contouring error by modifying the command path is practical. To obtain the pre-compensation value with better accuracy, this paper proposes the use of a back propagation neural network to extract the function of systematic contouring errors. Furthermore, by using the extracted function, the contouring error can be easily pre-compensated. The experiment results verify that the proposed compensation method can effectively reduce contouring errors.

Keywords contouring error      pre-compensation      motion control system      back propagation (BP) neural network     
Corresponding Author(s): D. L. ZHANG   
Online First Date: 25 November 2015    Issue Date: 03 December 2015
 Cite this article:   
D. L. ZHANG,Y. H. CHEN,Y. P. CHEN. A pre-compensation method of the systematic contouring error for repetitive command paths[J]. Front. Mech. Eng., 2015, 10(4): 367-372.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0367-5
https://academic.hep.com.cn/fme/EN/Y2015/V10/I4/367
Fig.1  Contouring error estimation for a two-dimensional command path
Fig.2  Schematic diagram of the contouring error calculation
Fig.3  The contouring error vector of a two-dimensional system
Fig.4  Schematic diagram of the proposed pre-compensation method
Fig.5  Experiment setup
Fig.6  The curves used in the experiments. (a) Arc (velocity: 32 mm/s); (b) arbitrary curve (average velocity: 15 mm/s)
Fig.7  Pre-compensation results of the arc. (a) Contouring error and approximated systematic contouring error; (b) angle of the contouring error vector; (c) contouring error after pre-compensation
Fig.8  Pre-compensation results of the arbitrary curve. (a) Contouring error and approximated systematic contouring error; (b) angle of the contouring error vector; (c) contouring error after pre-compensation
1 Koren  Y. Cross-coupled biaxial computer control for manufacturing system. Journal of Dynamic Systems Measurement and Control, 1980, 102(4): 265–272
2 Su  K, Cheng  M. Contouring accuracy improvement using cross-coupled control and position error compensator. International Journal of Machine Tools & Manufacture, 2008, 48(12−13): 1444–1453
https://doi.org/10.1016/j.ijmachtools.2008.04.008
3 Huo  F, Poo  A N. Improving contouring accuracy by using generalized cross-coupled control. International Journal of Machine Tools & Manufacture, 2012, 63: 49–57
https://doi.org/10.1016/j.ijmachtools.2012.07.012
4 Lin  X, Jiang  S, Liu  X,  The CMM measurement path planning for blade surface based on the contour measurement. In: Proceedings of 2011 Second International Conference on Digital Manufacturing & Automation (ICDMA). Zhangjiajie: IEEE, 2011, 1228–1232 
https://doi.org/10.1109/ICDMA.2011.303
5 Hwang  J, Park  C H, Lee  C H,  Estimation and correction method for the two-dimensional position errors of a planar XY stage based on motion error measurements. International Journal of Machine Tools & Manufacture, 2006, 46(7−8): 801–810
https://doi.org/10.1016/j.ijmachtools.2005.07.021
6 Zhang  D, Yang  J, Chen  Y,  A two-layered cross coupling control scheme for a three-dimensional motion control system. International Journal of Machine Tools & Manufacture, 2015, 98: 12–20
https://doi.org/10.1016/j.ijmachtools.2015.08.001
7 Lie  T, Landers  R G. Predictive contour control with adaptive feed rate. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 669–679
https://doi.org/10.1109/TMECH.2011.2119324
8 Cheng  M, Lee  C. Motion controller design for contour following tasks based on real-time contour error estimation. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1686–1695
https://doi.org/10.1109/TIE.2007.894691
9 Zhang  K, Yuen  A, Altintas  Y. Pre-compensation of contour errors in five-axis CNC machine tools. International Journal of Machine Tools & Manufacture, 2013, 74: 1–11
https://doi.org/10.1016/j.ijmachtools.2013.07.003
10 Zhang  D, Chen  Y, Ai  W,  Precision motion control of permanent magnet linear motors. International Journal of Advanced Manufacturing Technology, 2007, 35(3−4): 301–308
https://doi.org/10.1007/s00170-006-0727-8
11 Yeh  S S, Hsu  P L. Estimation of the contouring error vector for the cross-coupled control design. IEEE/ASME Transactions on Mechatronics, 2002, 7(1): 44–51
https://doi.org/10.1109/3516.990886
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed