Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (4) : 373-379    https://doi.org/10.1007/s11465-015-0371-9
RESEARCH ARTICLE
FEM-based strain analysis study for multilayer sheet forming process
Rongjing ZHANG(),Lihui LANG,Rizwan ZAFAR
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
 Download: PDF(1228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fiber metal laminates have many advantages over traditional laminates (e.g., any type of fiber and resin material can be placed anywhere between the metallic layers without risk of failure of the composite fabric sheets). Furthermore, the process requirements to strictly control the temperature and punch force in fiber metal laminates are also less stringent than those in traditional laminates. To further explore the novel method, this study conducts a finite element method-based (FEM-based) strain analysis on multilayer blanks by using the 3A method. Different forming modes such as wrinkling and fracture are discussed by using experimental and numerical studies. Hydroforming is used for multilayer forming. The Barlat 2000 yield criteria and DYNAFORM/LS-DYNA are used for the simulations. Optimal process parameters are determined on the basis of fixed die-binder gap and variable cavity pressure. The results of this study will enhance the knowledge on the mechanics of multilayer structures formed by using the 3A method and expand its commercial applications.

Keywords finite element method (FEM)      strain analysis      multilayer sheet forming     
Corresponding Author(s): Rongjing ZHANG   
Online First Date: 25 November 2015    Issue Date: 03 December 2015
 Cite this article:   
Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR. FEM-based strain analysis study for multilayer sheet forming process[J]. Front. Mech. Eng., 2015, 10(4): 373-379.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0371-9
https://academic.hep.com.cn/fme/EN/Y2015/V10/I4/373
Fig.1  The 3A method for multilayer blank forming invented by Zafar et al. [1,2]
Parameter Value
Blanks quantity 3
Thickness/mm 0.5+0.5+0.5
Yield stress/MPa 110.30
Ultimate strength/MPa 196.11
Poison’s ratio 0.33
Ra)-valuesat 0°, 45°, 90° 0.78, 0.81, 1.10
Tab.1  Tensile properties of Al2014-O
Fig.2  Simulation setup for numerical study
Fig.3  Simulation and experimental forming of three layers at various cavity pressures at the same depth (37.50 mm). (a) Severe wrinkling at 25 MPa; (b) qualified part formed at 45 MPa; (c) fracture at 55 MPa
Fig.4  Effect of major and minor strains on failure modes
Fig.5  Effect of major strains in simulation and experiment at various cavity pressures at the same depth (37.5 mm). (a) Cavity pressure at 25 MPa; (b) cavity pressure at 45 MPa; (c) cavity pressure at 55 MPa
Fig.6  Surfaces with tensile and reverse tensile (compressive) loads
Fig.7  Relative nodal displacement between the three blank layers. (a) Nodal displacement at flange outer edge; (b) nodal displacement at 12 mm from flange outer edge; (c) nodal displacement at point inside die redius
1 Zafar  R, Lang  L, Zhang  R. Experimental and numerical evaluation of multilayer sheet forming process parameters for light weight structures using innovative methodology. International Journal of Material Forming, 2014, 1–13 
https://doi.org/doi:10.1007/s12289-014-1198-3
2 Zhang  R, Lang  L, Zafar  R,  Investigation into thinning and spring back of multilayer metal forming using hydro-mechanical deep drawing (HMDD) for lightweight parts. International Journal of Advanced Manufacturing Technology, 2015, 1–10 
https://doi.org/doi:10.1007/s00170-015-7415-5
3 Zhang  S. Developments in hydroforming. Journal of Materials Processing Technology, 1991, 91: 236–244
4 Kocańda A, Sadłowska H. Automotive component development by means of hydroforming: A review. Archives of Civil and Mechanical Engineering, 2008, 8(3): 55–72 
https://doi.org/doi:10.1016/S1644-9665(12)60163-0
5 Sinmazcelik  T, Avcu  E, Bora  M O,  A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design, 2011, 32: 3671–3685
6 Botelho  E C, Silva  R A, Pardini  L C,  A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research, 2006, 9(3): 247–256
7 Vogelesang  L B, Schijve J,  Fredell  R. Fibre-metal laminates: Damage tolerant aerospace materials. In: Demaid A, de Wit J H W, eds. Case Studies in Manufacturing with Advanced Materials Volume 2. Amsterdam: Elsevier, 1995, 259–260
8 Tohru  T, Takashi  M, Norio  O,  Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate. Engineering Fracture Mechanics, 1999, 63: 253–272
9 Carrillo  J G, Cantwell  W J. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite. Mechanics of Materials, 2009, 41: 828–838
10 Takamatsu  T, Shimokawa  T, Matsumura  T,  Evaluation of fatigue crack growth behavior of GLARE3 fiber/metal laminates using a compliance method. Engineering Fracture Mechanics, 2003, 70: 2603–2616
11 Homan  J J. Fatigue initiation in fibre metal laminates. International Journal of Fatigue, 2006, 28: 366–374
12 Long  A C. Composite Forming Technologies. Woodhead Publishing Limited and CRC Press LLC, 2007
13 Park  S Y, Choi  W J, Choi  H S. A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring. International Journal of Advanced Manufacturing Technology, 2010, 49: 605–613
14 Kumar  K V, Mir  S, Ahmad  A N K. Root cause analysis of heating rate deviations in autoclave curing of CFRP structures. International Journal of Innovative Research and Studies, 2013, 2(5): 369–378
15 Dmitriev  O S, Mischenco  S. Optimization of curing cycles for thick-wall products of the polymeric composite materials. In: Ataff B, ed. Advances in Composite Materials-Ecodesign and Analysis.  InTech, 2011, 141–160
16 Mohamed  R A, Wesley  J C. The high-velocity impact response of thermoplastic-matrix fibre-metal laminates. Journal of Strain Analysis for Engineering Design, 2012, 47(7): 432–443
17 Mosse  L, Compston  P, Cantwell  W, et al. The effect of process temperature on the formability of polypropylene based fibre-metal laminates. Composites Part A: Applied Science and Manufacturing, 2005, 36(8): 1158–1166 
https://doi.org/doi:10.1016/j.compositesa.2005.01.009
18 Mossea  L, Compston  P, Wesley  J C, et al. Stamp forming of polypropylene based fibre-metal laminates: The effect of process variables on formability. Journal of Materials Processing Technology, 2006, 172: 163–168
19 Huang  S F, Huang  K J. Stamp forming of locally heated thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 2002, 33(5): 669–676
https://doi.org/doi:10.1016/S1359-835X(02)00004-0
20 Kalyanasundaram  S, Dhar Malingam S, Venkatesan S, et al. Effect of process parameters during forming of self reinforced-PP based fiber metal laminate. Composite Structures, 2013, 97: 332–337 
https://doi.org/doi:10.1016/j.compstruct.2012.08.053
21 Hou  M. Stamp forming of continuous glass fibre reinforced polypropylene. Composites Part A: Applied Science and Manufacturing, 1997, 28(8): 695–702 
https://doi.org/doi:10.1016/S1359-835X(97)00013-4
[1] Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG. Dynamic analysis of a rig shafting vibration based on finite element[J]. Front Mech Eng, 2013, 8(3): 244-251.
[2] SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao. Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn[J]. Front. Mech. Eng., 2008, 3(2): 212-217.
[3] TANG Kelun, ZHANG Xiangwei, CHENG Siyuan, XIONG Hanwei, ZHANG Hong. Research on physical shape preserving curve reconstruction[J]. Front. Mech. Eng., 2007, 2(3): 305-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed