Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 348-356    https://doi.org/10.1007/s11465-017-0420-7
RESEARCH ARTICLE
Effects of elastic support on the dynamic behaviors of the wind turbine drive train
Shuaishuai WANG1, Caichao ZHU1(), Chaosheng SONG1, Huali HAN2
1. The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400030, China
2. CSIC (Chongqing) Haizhuang Windpower Equipment Co., Ltd., Chongqing 401122, China
 Download: PDF(621 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The reliability and service life of wind turbines are influenced by the complex loading applied on the hub, especially amidst a poor external wind environment. A three-point elastic support, which includes the main bearing and two torque arms, was considered in this study. Based on the flexibilities of the planet carrier and the housing, a coupled dynamic model was developed for a wind turbine drive train. Then, the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed. Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train. Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train. A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing, whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing. The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.

Keywords wind turbine drive train      elastic support      dynamic behavior      frequency response function     
Corresponding Author(s): Caichao ZHU   
Just Accepted Date: 09 February 2017   Online First Date: 01 March 2017    Issue Date: 04 August 2017
 Cite this article:   
Shuaishuai WANG,Caichao ZHU,Chaosheng SONG, et al. Effects of elastic support on the dynamic behaviors of the wind turbine drive train[J]. Front. Mech. Eng., 2017, 12(3): 348-356.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0420-7
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/348
Fig.1  Diagram of the transmission principle of the wind turbine drive train
ParameterValue?ParameterValue
Rated power2200 kW?Cut-in wind speed3 m/s
Transmission ratio1:115.24?Rated wind speed10 m/s
Design life20 years?Cut-out wind speed25 m/s
Number of blades3?Main shaft length2.9 m
Blade length39 m?Hub height80.6 m
Direction of rotationClockwise?Rated speed1790 r/min
Quality of blades38 t?Types of the generatorAsynchronous doubly-fed
Tab.1  Main structural parameters of the wind turbine drive train
StageGearNumber of teethModule/mmPressure angle/(° )Helix angle/(° )Transmission ratio
1stSun gear21158255.571
Planet gear37158255.571
Ring gear96158255.571
2ndWheel971110204.217
Pinion231110204.217
3rdWheel103810204.905
Pinion21810204.905
Tab.2  Gearbox parameters
ComponentMaterialDensity/(kg·m?3)Young’s modulus/GPaPoisson’s ratio
Hub and housingQT4007.01×1031610.274
CarrierQT7007.09×1031690.305
Gears and shaftsSteel7.85×1032160.310
Tab.3  Material parameters of the wind turbine drive train
Fig.2  Topology graph of the wind turbine drive train model
SymbolRepresentation?SymbolRepresentation
khmTorsional stiffness and damping of the hub?kcgTorsional stiffness and damping of the coupling
kmcStiffness and damping of the locking disk?kcBearing stiffness and damping of the planet carrier
kpcBearing stiffness and damping of planets?k1stBearing stiffness and damping of the spline shaft
kpsMeshing stiffness and damping sun-planet gear pair?k2ndBearing stiffness and damping of the middle stage shaft
kprMeshing stiffness and damping ring-planet gear pair?k3rdBearing stiffness and damping of high-the speed stage shaft
ksSpline stiffness and damping?kmBearing stiffness and damping of the main shaft
kwp1Meshing stiffness and damping middle stage gear pair?kt1/kt2Elastic supporting stiffness and damping of the torque arms
kwp2Meshing stiffness and damping high-speed stage gear pair?kgElastic supporting stiffness and damping of the generator
Tab.4  Symbols in the topological graph of the drive train
Fig.3  Dynamic model of the wind turbine drive train
Fig.4  FRFs between the hub center excitation and the planet carrier response for different elastic supporting stiffness of the torque arms. (a) Hub Tx to carrier x; (b) hub Tx to carrier z; (c) hub Tx to carrier ry; (d) hub Ty to carrier x; (e) hub Ty to carrier z; (f) hub Ty to carrier rz; (g) hub Fx to carrier z; (h) hub Fx to carrier ry; (i) hub Fx to carrier rz
Fig.5  FRFs between the hub center excitation and the main bearing response for different elastic supporting stiffness of the torque arms. (a) Hub Tx to main bearing z; (b) hub Tx to main bearing ry; (c) hub Ty to main bearing x; (d) hub Ty to main bearing ry; (e) hub Fx to main bearing y; (f) hub Fx to main bearing ry
Fig.6  FRFs between the hub center excitation and the planet carrier response for different main bearing stiffness. (a) Hub Tx to carrier x; (b) hub Tx to carrier z; (c) hub Tx to carrier ry; (d) hub Ty to carrier x; (e) hub Ty to carrier ry; (f) hub Ty to carrier rz; (g) hub Fx to carrier x; (h) hub Fx to carrier y; (i) hub Fx to carrier ry
Fig.7  FRFs between hub center excitation and main bearing response with different main bearing stiffness. (a) Hub Tx to main bearing y; (b) hub Tx to main bearing ry; (c) hub Tx to main bearing rz; (d) hub Ty to main bearing y; (e) hub Ty to main bearing z; (f) hub Ty to main bearing ry; (g) hub Fx to main bearing y; (h) hub Fx to main bearing ry; (i) hub Fx to main bearing rz
1 Guo Y, Keller J, Lacava W. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint. Office of Scientific & Technical Information Technical Reports NREL/CP-5000-55968. 2012
2 Guo Y, Bergua R, Dam J V, et al. Improving wind turbine drivetrain designs to minimize the impacts of non-torque loads. Wind Energy (Chichester, England), 2014, 18(12): 2199–2222 
https://doi.org/10.1002/we.1815
3 Helsen J, Peeters P, Vanslambrouck K, et al. The dynamic behavior induced by different wind turbine gearbox suspension methods assessed by means of the flexible multibody technique. Renewable Energy, 2014, 69(3): 336–346
https://doi.org/10.1016/j.renene.2014.03.036
4 Helsen J, Vanhollebeke F, Marrant B, et al. Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes. Renewable Energy, 2011, 36(11): 3098–3113
https://doi.org/10.1016/j.renene.2011.03.023
5 Jin X, Li L, Ju W, et al. Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines. Renewable Energy, 2016, 90: 336–351 
https://doi.org/10.1016/j.renene.2016.01.003
6 He Y, Huang W, Li C, et al.Multi flexible body dynamics modeling and simulation analysis of large scale wind turbine drive train. Journal  of  Mechanical  Engineering, 2014, 50(1): 61–69  (in Chinese)
7 Ericson T M, Parker R G. Experimental measurement of the effects of torque on the dynamic behavior and system parameters of planetary gears. Mechanism and Machine Theory, 2014, 74(74): 370–389
https://doi.org/10.1016/j.mechmachtheory.2013.12.018
8 Zhao M, Ji J. Nonlinear torsional vibrations of a wind turbine gearbox. Applied Mathematical Modelling, 2015, 39(16): 4928–4950
https://doi.org/10.1016/j.apm.2015.03.026
9 Wei S, Zhao J, Han Q, et al. Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renewable Energy, 2015, 78: 60–67
https://doi.org/10.1016/j.renene.2014.12.062
10 Yi P, Zhang C, Guo L, et al. Dynamic modeling and analysis of load sharing characteristics of wind turbine gearbox. Advances in Mechanical Engineering, 2015, 7(3): 1–16 
https://doi.org/10.1177/1687814015575960
11 Zhu C, Xu X, Liu H, et al. Research on dynamical characteristics of wind turbine gearboxes with flexible pins. Renewable Energy, 2014, 68(7): 724–732
https://doi.org/10.1016/j.renene.2014.02.047
12 Zhu C, Chen S, Liu H, et al. Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum. Journal of Mechanical Science and Technology, 2014, 28(6): 2033–2040 
https://doi.org/10.1007/s12206-014-0403-0
13 Zhai H, Zhu C, Song C, et al. Influences of carrier assembly errors on the dynamic characteristics for wind turbine gearbox. Mechanism and Machine Theory, 2016, 103: 138–147
https://doi.org/10.1016/j.mechmachtheory.2016.04.015
14 ISO. International Standard ISO 6336-1 Second Edition, 2007
15 SIMPACK. Retrieved from 
16 Link H, Lacava W, van Dam J, et al. Gearbox Reliability Collaborative Project Report: Findings from Phase 1 and Phase 2 Testing. Office of Scientific & Technical Information Technical Reports NREL/TP-5000-51885. 2011
17 Keller J, Guo Y, Lacava W, et al. Gearbox Reliability Collaborative Phase 1 and 2: Testing and Modeling Results; Preprint. Office of Scientific & Technical Information Technical Reports NREL/CP-5000-55207. 2012
18 LaCava W, van Dam J, Wallen R, et al. NREL Gearbox Reliability Collaborative: Comparing In-Field Gearbox Response to Different Dynamometer Test Conditions: Preprint. Office of Scientific & Technical Information Technical Reports NREL/CP-5000-51690. 2011
19 Helsen J.The dynamics of high power density gear units with focus on the wind turbine application. Dissertation for the Doctoral Degree. Louvain: Catholic University of Louvain, 2012
20 Keller J A, Guo Y, Sethuraman L.Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads. Office of Scientific & Technical Information Technical Reports NREL/TP-5000-65321. 2016
21 Huang W. Multibody system modeling and simulation analysis and research on dynamic characteristic of wind turbine. Dissertation for the Master’s Degree. Chongqing: Chongqing University, 2013 (in Chinese)
[1] Ye GAO, Wei SUN. Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload[J]. Front. Mech. Eng., 2019, 14(3): 358-368.
[2] Z. K. PENG, Z. Q. LANG, G. MENG. Evaluation of transmissibility for a class of nonlinear passive vibration isolators[J]. Front Mech Eng, 2012, 7(4): 401-409.
[3] Feng HU, Bo WU, Youmin HU, Tielin SHI. Identification of dynamic stiffness matrix of bearing joint region[J]. Front Mech Eng Chin, 2009, 4(3): 289-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed