Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (2) : 203-214    https://doi.org/10.1007/s11465-017-0421-6
RESEARCH ARTICLE
3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6
A. DAVOUDINEJAD(), P. PARENTI, M. ANNONI
Mechanical Engineering Department, Politecnico di Milano, Milan 20156, Italy
 Download: PDF(876 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Predictive models for machining operations have been significantly improved through numerous methods in recent decades. This study proposed a 3D finite element modeling (3D FEM) approach for the micro end-milling of Al6061-T6. Finite element (FE) simulations were performed under different cutting conditions to obtain realistic numerical predictions of chip flow, burr formation, and cutting forces. FE modeling displayed notable advantages, such as capability to easily handle any type of tool geometry and any side effect on chip formation, including thermal aspect and material property changes. The proposed 3D FE model considers the effects of mill helix angle and cutting edge radius on the chip. The prediction capability of the FE model was validated by comparing numerical model and experimental test results. Burr dimension trends were correlated with force profile shapes. However, the FE predictions overestimated the real force magnitude. This overestimation indicates that the model requires further development.

Keywords 3D finite element modeling      micro end-milling      cutting force      chip formation      burr formation     
Corresponding Author(s): A. DAVOUDINEJAD   
Just Accepted Date: 21 February 2017   Online First Date: 21 March 2017    Issue Date: 19 June 2017
 Cite this article:   
A. DAVOUDINEJAD,P. PARENTI,M. ANNONI. 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6[J]. Front. Mech. Eng., 2017, 12(2): 203-214.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0421-6
https://academic.hep.com.cn/fme/EN/Y2017/V12/I2/203
ItemNominal dimensionsActual dimensions
Tool manufacturerDormer
CodeS150.05
Tool materialCarbide
Flute number2
Diameter/µm500492
Cutting edge radius, re/mm3
Helix angle/(° )3027.26
Rake angle/(° )00
Relief angle/(° )87
Corner radius, rε/mm2022
Tab.1  Nominal and actual tool characteristics
Fig.1  (a) FEM simulation setup; (b) cutting edge magnification; (c) definition of tool engagement angle q (top view)
Fig.2  (a) Machine tool; (b) workpiece fixture on the dynamometer to measure the cutting forces; (c) workpiece machining area (top view)
Fig.3  Characterization of the tool geometry for modeling the micro end-mill: (a) Measuring positions along the mill axis; (b) mill and core diameters and cutting edge radius measured on Slice 2; (c) helix angle
TestDepth of cut, ap/μmWidth of cut, ae/μmFeed per tooth, fz/(μm·(tooth·revolution)−1)Cutting speed, vc/(m·min−1)Spindle speed, n/(r·min−1)
150125428.2718000
250125228.2718000
350125414.139000
450125214.139000
Tab.2  Experimental conditions
Fig.4  Frequency response functions (FRF) resulting from impact tests on the fixturing and force measurement system
Fig.5  (a) Schematic of the undeformed chip section along the periphery of tool; (b) schematic of the 3D undeformed chip geometry; (c) FEM chip formation for Test 2 (fz = 2 µm/(tooth·revolution); vc = 28.27 m/min); (d) experimental chip
Fig.6  Plastic strain distribution in the workpiece, chip, and burr at (a) Test 1 (fz=4 µm/(tooth·revolution); vc=28.27 m/min), (b) Test 2 (fz=2 µm/(tooth·revolution); vc=28.27 m/min), (c) Test 3 (fz=4 µm/(tooth·revolution); vc=14.13 m/min), and (d) Test 4 (fz=2 µm/(tooth·revolution); vc=14.13 m/min)
Fig.7  Chip formation and temperature distribution at different engagement angles: (a) Test 2 (fz=2 µm/(tooth·revolution); vc=28.27 m/min); (b) Test 3 (fz = 4 µm/(tooth·revolution); vc=14.13 m/min)
Fig.8  Temperature distribution along the cutting edge and chip in (a) Test 1 (fz=4 µm/(tooth·revolution); vc=28.27 m/min), (b) Test 2 (fz=2 µm/(tooth·revolution); vc=28.27 m/min), (c) Test 3 (fz=4 µm/(tooth·revolution); vc=14.13 m/min), and (d) Test 4 (fz=2 µm/(tooth·revolution); vc=14.13 m/min)
Fig.9  Top view of burr formation in (a) Test 1 (fz=4 µm/(tooth·revolution); vc=28.27 m/min), (b) Test 2 (fz=2 µm/(tooth·revolution); vc=28.27 m/min), (c) Test 3 (fz=4 µm/(tooth·revolution); vc=14.13 m/min), and (d) Test 4 (fz=2 µm/(tooth·revolution); vc=14.13 m/min)
Fig.10  Cutting force comparison for Test 1 (fz=4 µm/(tooth·revolution); vc=28.27 m/min; ap=0.05 mm). (a) Experimental cutting forces; (b) FEM cutting forces
Fig.11  Cutting force comparison for Test 3 (fz=4 µm/(tooth·revolution); vc=14.13 m/min; ap=0.05 mm). (a) Experimental cutting forces; (b) FEM cutting forces
aeWidth of cut
apDepth of cut
c0, c1, c2, c3, c4, c5Coefficients for the polynomial fit
fzFeed per tooth
Fx,Fy,FzCutting force components along the machine tool axes
g(ep)Isotropic strain hardening
MStrain rate sensitivity coefficient
NStrain hardening exponent
nSpindle speed
PTotal amount of acquired force points
reCutting edge radius
reCorner radius
tnUndeformed chip thickness
TTemperature
vcCutting speed
Γ(e)Strain rate sensitivity
epPlastic strain
 ε0pReference plastic strain
 ε˙Strain rate
 ε˙0Reference plastic strain rate
qTool engagement angle
Q(T)Fifth order polynomial function for thermal softening
mFriction coefficient
s0Initial yield stress
snNormal stress
tFrictional stress
  
1 Li H, Lai X, Li C, et al.. Development of meso-scale milling machine tool and its performance analysis. Frontiers of Mechanical Engineering in China, 2008, 3(1): 59–65
https://doi.org/10.1007/s11465-008-0005-6
2 Masuzawa T. State of the art of micromachining. CIRP Annals—Manufacturing Technology, 2000, 49(2): 473–488
https://doi.org/10.1016/S0007-8506(07)63451-9
3 Liu X, DeVor R E, Kapoor S G. An analytical model for the prediction of minimum chip thickness in micromachining. Journal of Manufacturing Science and Engineering, 2005, 128(2): 474–481
https://doi.org/10.1115/1.2162905
4 Bao W Y, Tansel I N. Modeling micro-end-milling operations. Part I: Analytical cutting force model. International Journal of Machine Tools and Manufacture, 2000, 40(15): 2155–2173
https://doi.org/10.1016/S0890-6955(00)00054-7
5 Arrazola P J, Özel T, Umbrello D, et al.. Recent advances in modelling of metal machining processes. CIRP Annals—Manufacturing Technology, 2013, 62(2): 695–718
https://doi.org/10.1016/j.cirp.2013.05.006
6 Maurel-Pantel A, Fontaine M, Thibaud S, et al.. 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simulation Modelling Practice and Theory, 2012, 22(3): 13–27
https://doi.org/10.1016/j.simpat.2011.10.009
7 Rubio L, De la Sen M, Longstaff A P, et al.. Analysis of discrete time schemes for milling forces control under fractional order holds. International Journal of Precision Engineering and Manufacturing, 2013, 14(5): 735–744
https://doi.org/10.1007/s12541-013-0097-8
8 Özel  T, Altan  T. Modeling of high speed machining processes for predicting tool forces, stresses and temperatures using FEM simulations. In: Proceedings of the CIRP International Workshop on Modeling of Machining Operations. Atlanta, 1998
9 Özel T, Altan T. Process simulation using finite element method prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. International Journal of Machine Tools and Manufacture, 2000, 40(5): 713–738
https://doi.org/10.1016/S0890-6955(99)00080-2
10 Liu K, Melkote S N. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. International Journal of Mechanical Sciences, 2007, 49(5): 650–660
https://doi.org/10.1016/j.ijmecsci.2006.09.012
11 Nasr M N A, Ng E G, Elbestawi M A. Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L. International Journal of Machine Tools and Manufacture, 2007, 47(2): 401–411
https://doi.org/10.1016/j.ijmachtools.2006.03.004
12 Afazov S M, Ratchev S M, Segal J. Modelling and simulation of micro-milling cutting forces. Journal of Materials Processing Technology, 2010, 210(15): 2154–2162
https://doi.org/10.1016/j.jmatprotec.2010.07.033
13 Özel T, Liu X, Dhanorker A. Modelling and simulation of micro-milling process. In: Proceedings of the 4th International Conference and Exhibition on Design and Production of Machines and Dies/Molds. 2007
14 Jin X, Altintas Y. Prediction of micro-milling forces with finite element method. Journal of Materials Processing Technology, 2012, 212(3): 542–552
https://doi.org/10.1016/j.jmatprotec.2011.05.020
15 Thepsonthi T, Özel T. Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: Effects of cBN coating on tool wear. Journal of Materials Processing Technology, 2013, 213(4): 532–542
https://doi.org/10.1016/j.jmatprotec.2012.11.003
16 Woon K S, Rahman M, Neo K S, et al.. The effect of tool edge radius on the contact phenomenon of tool-based micromachining. International Journal of Machine Tools and Manufacture, 2008, 48(12–13): 1395–1407
https://doi.org/10.1016/j.ijmachtools.2008.05.001
17 Wu H, Zhang S. 3D FEM simulation of milling process for titanium alloy Ti6Al4V. International Journal of Advanced Manufacturing Technology, 2014, 71(5–8): 1319–1326
https://doi.org/10.1007/s00170-013-5546-0
18 Yang K, Liang Y, Zheng K, et al.. Tool edge radius effect on cutting temperature in micro-end-milling process. International Journal of Advanced Manufacturing Technology, 2011, 52(9–12): 905–912
https://doi.org/10.1007/s00170-010-2795-z
19 Thepsonthi T, Özel T. 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear. Journal of Materials Processing Technology, 2015, 221: 128–145
https://doi.org/10.1016/j.jmatprotec.2015.02.019
20 Chen,  M, Ni  H, Wang  Z, et al.. Research on the modeling of burr formation process in micro-ball end milling operation on Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 2012, 62(9): 901–912
21 Advantedge T W.User manual for Third Wave AdvantEdge Version 6.2.011, USA
22 Man X, Ren D, Usui S, et al.. Validation of finite element cutting force prediction for end milling. Procedia CIRP, 2012, 1: 663–668
https://doi.org/10.1016/j.procir.2012.05.019
23 Davoudinejad A, Chiappini E, Tirelli S, et al.. Finite element simulation and validation of chip formation and cutting force in dry and cryogenic cutting of Ti-6Al-4V. Procedia Manufacturing, 2015, 1: 728–739
https://doi.org/10.1016/j.promfg.2015.09.037
24 Arrazola P J, Özel T. Investigations on the effects of friction modeling in finite element simulation of machining. International Journal of Mechanical Sciences, 2010, 52(1): 31–42
https://doi.org/10.1016/j.ijmecsci.2009.10.001
25 Özel T. The influence of friction models on finite element simulations of machining. International Journal of Machine Tools and Manufacture, 2006, 46(5): 518–530
https://doi.org/10.1016/j.ijmachtools.2005.07.001
26 Kim K W, Lee W Y, Sin H C. A finite element analysis for the characteristics of temperature and stress in micro-machining considering the size effect. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1507–1524
https://doi.org/10.1016/S0890-6955(98)00071-6
27 Al-Qutub A M, Khalil A, Saheb N, et al.. Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes. Wear, 2013, 297(1–2): 752–761
https://doi.org/10.1016/j.wear.2012.10.006
28 Bathurst S P, Kim S G. Designing direct printing process for improved piezoelectric micro-devices. CIRP Annals—Manufacturing Technology, 2009, 58(1): 193–196
https://doi.org/10.1016/j.cirp.2009.03.016
29 Annoni M, Pusterla N, Rebaioli L, et al.. Calibration and validation of a mechanistic micromilling force prediction model. Journal of Manufacturing Science and Engineering, 2015, 138(1): 011001
https://doi.org/10.1115/1.4030210
30 Hashimura M, Hassamontr J, Dornfeld D A. Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. Journal of Manufacturing Science and Engineering, 1999, 121(1): 13–19
https://doi.org/10.1115/1.2830566
31 Davoudinejad A. 3D finite element modeling of micro end-milling by considering tool run-out, temperature distribution, chip and burr formation. Dissertation for the Doctoral Degree. Milan: Polytechnic University of Milan, 2016
32 JohnsonG R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983, 541–547
33 Calamaz M, Coupard D, Girot F. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 2008, 48(3–4): 275–288
https://doi.org/10.1016/j.ijmachtools.2007.10.014
[1] Angelos P. MARKOPOULOS,Ioannis K. SAVVOPOULOS,Nikolaos E. KARKALOS,Dimitrios E. MANOLAKOS. Molecular dynamics modeling of a single diamond abrasive grain in grinding[J]. Front. Mech. Eng., 2015, 10(2): 168-175.
[2] Zhaoxu QI,Bin LI,Liangshan XIONG. Improved analytical model for residual stress prediction in orthogonal cutting[J]. Front. Mech. Eng., 2014, 9(3): 249-256.
[3] Surinder Kumar GILL, Meenu GUPTA, P. S. SATSANGI. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite[J]. Front Mech Eng, 2013, 8(2): 187-200.
[4] Meenu GUPTA, Surinder Kumar GILL. Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing[J]. Front Mech Eng, 2012, 7(4): 417-426.
[5] Genghuang HE, Xianli LIU, Fugang YAN. Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning[J]. Front Mech Eng, 2012, 7(3): 329-334.
[6] LI Xiwen, YANG Shuzi, YANG Mingjin, XIE Shouyong. Cutting Force Model for a Small-diameter Helical Milling Cutter[J]. Front. Mech. Eng., 2007, 2(3): 272-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed