Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 357-366    https://doi.org/10.1007/s11465-017-0423-4
RESEARCH ARTICLE
Weak characteristic information extraction from early fault of wind turbine generator gearbox
Xiaoli XU, Xiuli LIU()
Key Laboratory of Modern Measurement & Control Technology (Ministry of Education), Beijing Information Science and Technology University, Beijing 100192, China
 Download: PDF(595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on µ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and µ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

Keywords wind turbine generator gearbox      µ-singular value decomposition      local mean decomposition      weak characteristic information extraction      early fault warning     
Corresponding Author(s): Xiuli LIU   
Just Accepted Date: 16 March 2017   Online First Date: 06 April 2017    Issue Date: 04 August 2017
 Cite this article:   
Xiaoli XU,Xiuli LIU. Weak characteristic information extraction from early fault of wind turbine generator gearbox[J]. Front. Mech. Eng., 2017, 12(3): 357-366.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0423-4
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/357
Fig.1  LMD algorithm flow chart
Fig.2  Pretreatment method flow chart
Fig.3  Time-domain waveform and frequency spectrum of source signal
Fig.4  Time-domain waveform and frequency spectrum of signal with noise
Fig.5  Relation between denoising order and cumulative contribution rate (CCR)
Fig.6  Waveform of the second part of signal
Fig.7  LMD decomposition result of the second part of signals
Fig.8  Correlation of three PF components with the second part of signals
Fig.9  Determination of delay time
Fig.10  Detemination of embedding dimension
Fig.11  Denoising order of phase space reconstruction
Fig.12  Signal after extraction of weak information with PF1
Processing methodSNR/dBRMSE
Weak characteristic information Extraction27.4920.063
SVD denoising26.8710.079
µ-SVD denoising27.4260.077
Tab.1  SNR and RMSE after treatment using different methods
Fig.13  Signal after extraction of weak information
Fig.14  Installation locations of sensors
ModelDiameter of inner ring/mmDiameter of outer ring/mmRolling body diameter/mmContact angle/(° )Number of rolling elements
620525.0012251.998888.1818009
Tab.2  Deep groove ball bearing specification information
Fig.15  Time-domain waveform of three kinds of faults. (a) Ball failure; (b) inner ring fault; (c) outer ring fault
Fig.16  Three kinds of fault signal spectrum. (a) Rolling body fault; (b) inner ring fault; (c) outer ring fault
Fig.17  Second part of the original signal and the PF component. (a) The second part of the original signal; (b) PF1; (c) PF2; (d) PF3; (e) PF4
Fig.18  Weak information of signal
Fig.19  Weak information spectrum
1 Wang G, He Z, Chen X, et al. Basic research on machinery fault diagnosis—What is the prescription. Journal of Mechanical Engineering, 2013, 49(1): 63–72 (in Chinese)
2 Xu X, Wang H. Large Rotating Machinery Running Trend Forecasting. Beijing: Science Press, 2011 (in Chinese)
3 Xu X, Jiang Z, Ren B, et al. Extract method of flue gas generator set state feature weak information based on Birgé-Massart threshold. Journal of Mechanical Engineering, 2012, 48(12): 7–12 (in Chinese)
4 Man Z, Wang W, Khoo S, et al. Optimal sinusoidal modeling of gear mesh vibration signals for gear diagnosis and prognosis. Mechanical Systems and Signal Processing, 2012, 33: 256–274
https://doi.org/10.1016/j.ymssp.2012.07.004
5 Lv Z, Zhang W, Xu J. A denoising method based singular spectrum and its application in machine fault diagnosis. Chinese Journal of Mechanical Engineering, 1999, 35(3): 85–88
6 Chen J, Zhang L, Duan L, et al. Diagnosis of liquid valve based on undecimated lifting scheme packet and singular value decomposition. Journal of Mechanical Engineering, 2011, 47(9): 72–77 (in Chinese) 
https://doi.org/10.3901/JME.2011.09.072
7 Liu Y, Zhang J, Lin J, et al. Application of improved LMD, SVD technique and RVM to fault diagnosis of diesel valve trains. Transactions of Tianjin University, 2015, 21(4): 304–311
https://doi.org/10.1007/s12209-015-2430-z
8 Yu Z, Sun Y, Jin W. A novel generalized demodulation approach for multi-component signals. Signal Processing, 2016, 118: 188–202
https://doi.org/10.1016/j.sigpro.2015.07.001
9 Zhao X, Ye B, Chen T. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe. Journal of Mechanical Engineering, 2010, 46(1): 100–108 (in Chinese) 
https://doi.org/10.3901/JME.2010.01.100
10 Zhong Z, Zhang B, Durrani T S, et al. Nonlinear signal processing for vocal folds damage detection based on heterogeneous sensor network. Signal Processing, 2016, 126(S1): 125–133
https://doi.org/10.1016/j.sigpro.2015.08.019
11 Zeng M, Yang Y, Zheng J, et al.μ-SVD based denoising method and its application to gear fault diagnosis. Journal of Mechanical Engineering, 2015, 51(3): 95–103 (in Chinese) 
https://doi.org/10.3901/JME.2015.03.095
12 Zhu S, Qiao Z, Yang Z. An improved method for the extraction of weak signal based on SVD and EMD. Measurement & Control Technology, 2014, 33(1): 60–62
13 Jiang W, Zheng Z, Zhu Y, et al. Demodulation for hydraulic pump fault signals based on local mean decomposition and improved adaptive multiscale morphology analysis. Mechanical Systems and Signal Processing, 2015, 58–59: 179–205
https://doi.org/10.1016/j.ymssp.2014.10.017
14 Sun W, Xiong B, Huang J, et al. Fault diagnosis of a rolling bearing using wavelet packet de-noising and LMD. Journal of Vibration and Shock, 2012, 31(18): 153–156 (in Chinese)
15 Morzfeld M, Ajavakom N, Ma F. Diagonal dominance of damping and the decoupling approximation in linear vibratory systems. Journal of Sound and Vibration, 2009, 320(1–2): 406–420
https://doi.org/10.1016/j.jsv.2008.07.025
16 Wu Z, Cheng J, Yu Y,et al. Adaptive characteristic-scale decomposition method and its application. China Mechanical Engineering, 2015, 42(23): 7–15 (in Chinese) 
https://doi.org/10.3901/JME.2015.18.007
17 Wang B, Ren Z, Wen B. Fault diagnoses method of rotating machines based on nonlinear. Chinese Journal of Mechanical Engineering, 2012, 48(5): 63–69
https://doi.org/10.3901/JME.2012.05.063
18 Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 1997, 110(1–2): 43–50
https://doi.org/10.1016/S0167-2789(97)00118-8
19 Miao L, Ren W, Hu Y,et al. Separating temperature effect from dynamic strain measurements of a bridge based on analytical mode decomposition method. China Mechanical Engineering, 2012, 31(21): 6–10 (in Chinese)
20 Wang H, Li X, Wang G, et al. Research on failure of wind turbine gearbox and recent development of its design and manufacturing technologies. China Mechanical Engineering, 2013, 24(11): 1542–1549 (in Chinese)
21 Vanhollebeke F, Peeters P, Helsen J, et al. Large scale validation of a flexible multibody wind turbine gearbox model. Journal of Computational and Nonlinear Dynamics, 2015, 10(4): 041006
https://doi.org/10.1115/1.4028600
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed