|
|
Recent advancements in optical microstructure fabrication through glass molding process |
Tianfeng ZHOU1,Xiaohua LIU2,Zhiqiang LIANG1( ),Yang LIU2,Jiaqing XIE2,Xibin WANG1 |
1. Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China 2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibration-assisted molding technology.
|
Keywords
optical microstructure
microgroove
microlens
glass molding process
single-point diamond cutting
|
Corresponding Author(s):
Zhiqiang LIANG
|
Just Accepted Date: 12 January 2017
Online First Date: 15 February 2017
Issue Date: 21 March 2017
|
|
28 |
Liou A C, Chen R H. Injection molding of polymer micro-and sub-micron structures with high-aspect ratios. The International Journal of Advanced Manufacturing Technology, 2006, 28(11): 1097–1103
https://doi.org/10.1007/s00170-004-2455-2
|
29 |
Lee H, Hong S, Yang K, Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography. Microelectronic Engineering, 2006, 83(2): 323–327
https://doi.org/10.1016/j.mee.2005.09.006
|
30 |
Zhou T, Yan J, Yoshihara N, Study on nonisothermal glass molding press for aspherical lens. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2010, 4(5): 806–815
https://doi.org/10.1299/jamdsm.4.806
|
31 |
Katsuki Masahide. Transferability of glass lens molding. Proceedings of SPIE, 2nd international Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 2006, 61490M
https://doi.org/10.1117/12.674209
|
32 |
Aono Y, Negishi M, Takano J. Development of large-aperture aspherical lens with glass molding. Proceedings of SPIE, Advanced Optical Manufacturing and Testing Technology, 2000, 4231: 16–23
https://doi.org/10.1117/12.402759
|
33 |
Zhou T, Yan J, Yoshihara N, Shape compensation of the molding dies in glass molding press for aspherical lens. In: Proceed-ings of the 9th international conference on frontiers of design and manufacturing. 2010
|
34 |
Zhou T, Yan J, Kuriyagawa T. High-efficiency and ultra-precision glass molding of aspherical lens and microstructures. In: Proceedings of International Symposium on Ultraprecision Engineering and Nanotechnology. 2011
|
1 |
Zhou T, Yan J, Masuda J, Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process. Journal of Materials Processing Technology, 2009, 209(9): 4484–4489
https://doi.org/10.1016/j.jmatprotec.2008.10.030
|
2 |
Madanipour K, Tavassoly M T. Moiré fringes as two-dimensional autocorrelation of transmission function of linear gratings and its application for modulation transfer function measurement. Optics and Lasers in Engineering, 2010, 48(1): 43–47
https://doi.org/10.1016/j.optlaseng.2009.07.008
|
3 |
Morgan C J, Vallance R R, Marsh E R. Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining. Journal of Micromechanics and Microengineering, 2004, 14(12): 1687–1692
https://doi.org/10.1088/0960-1317/14/12/013
|
4 |
Fang F, Chen L. Ultra-precision cutting for ZKN7 glass. CIRP Annals—Manufacturing Technology, 2000, 49(1): 17–20
https://doi.org/10.1016/S0007-8506(07)62887-X
|
5 |
Nicholas D J, Boon J E. The generation of high precision aspherical surfaces in glass by CNC machining. Journal of Physics D: Applied Physics, 1981, 14(4): 593–600
https://doi.org/10.1088/0022-3727/14/4/013
|
6 |
Ono T, Matsumura T. Influence of tool inclination on brittle fracture in glass cutting with ball end mills. Journal of Materials Processing Technology, 2008, 202(1–3): 61–69
https://doi.org/10.1016/j.jmatprotec.2007.08.068
|
7 |
Bouzid S, Bouaouadja N. Effect of impact angle on glass surfaces eroded by sand blasting. Journal of the European Ceramic Society, 2000, 20(4): 481–488
https://doi.org/10.1016/S0955-2219(99)00140-5
|
8 |
Chen S, Kwok H S. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates. Optics Express, 2010, 18(1): 37–42
https://doi.org/10.1364/OE.18.000037
|
9 |
Chen M, Shen M, Zhu S, Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 °C. Corrosion Science, 2013, 73: 331–341
https://doi.org/10.1016/j.corsci.2013.04.022
|
10 |
Revzin A, Russell R J, Yadavalli V K, Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 2001, 17(18): 5440–5447
https://doi.org/10.1021/la010075w
|
11 |
Ehrfeld W, Lehr H. Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics. Radiation Physics and Chemistry, 1995, 45(3): 349–365
https://doi.org/10.1016/0969-806X(93)E0007-R
|
12 |
Totsu K, Fujishiro K, Tanaka S, Fabrication of three-dimensional microstructure using maskless gray-scale lithography. Sensors and Actuators A: Physical, 2006, 130–131: 387–392
https://doi.org/10.1016/j.sna.2005.12.008
|
13 |
Bassous E. Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon. IEEE Transactions on Electron Devices, 1978, 25(10): 1178–1185
https://doi.org/10.1109/T-ED.1978.19249
|
14 |
Jee S E, Lee P S, Yoon B J, Fabrication of microstructures by wet etching of anodic aluminum oxide substrates. Chemistry of Materials, 2005, 17(16): 4049–4052
https://doi.org/10.1021/cm0486565
|
15 |
Murakami K, Wakabayashi Y, Minami K, Cryogenic dry etching for high aspect ratio microstructures. In: Proceedings of An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, Micro Electro Mechanical Systems. IEEE, 1993
https://doi.org/10.1109/MEMSYS.1993.296953
|
16 |
Sökmen Ü, Stranz A, Fündling S, Capabilities of ICP-RIE cryogenic dry etching of silicon: Review of exemplary microstructures. Journal of Micromechanics and Microengineering, 2009, 19(10): 105005
https://doi.org/10.1088/0960-1317/19/10/105005
|
17 |
Reyntjens S, Puers R. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 2001, 11(4): 287–300
https://doi.org/10.1088/0960-1317/11/4/301
|
18 |
Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology, 2009, 261(3–4): 217–229
https://doi.org/10.1016/j.chemgeo.2008.05.019
|
19 |
Chao C, Shen S, Wu J. Fabrication of 3-D submicron glass structures by FIB. Journal of Materials Engineering and Performance, 2009, 18(7): 878–885
https://doi.org/10.1007/s11665-008-9318-1
|
20 |
Mailis S, Zergioti I, Koundourakis G, Etching and printing of diffractive optical microstructures by a femtosecond excimer laser. Applied Optics, 1999, 38(11): 2301–2308
https://doi.org/10.1364/AO.38.002301
|
21 |
Cao G, Konishi H, Li X. Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Materials Science and Engineering: A, 2008, 486(1–2): 357–362
https://doi.org/10.1016/j.msea.2007.09.054
|
22 |
Däschner W, Long P, Stein R, Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass. Applied Optics, 1997, 36(20): 4675–4680
https://doi.org/10.1364/AO.36.004675
|
23 |
Pang Y K, Lee J C W, Lee H F, Chiral microstructures (spirals) fabrication by holographic lithography. Optics Express, 2005, 13(19): 7615–7620
https://doi.org/10.1364/OPEX.13.007615
|
24 |
LinC H, Lee G B, Chang B W, A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. Journal of Micromechanics and Microengineering, 2002, 12(5): 590–597
https://doi.org/10.1088/0960-1317/12/5/312
|
25 |
Zhang C, Rentsch R, Brinksmeier E. Advances in micro ultrasonic assisted lapping of microstructures in hard-brittle materials: A brief review and outlook. International Journal of Machine Tools and Manufacture, 2005, 45(7–8): 881–890
https://doi.org/10.1016/j.ijmachtools.2004.10.018
|
26 |
Gottmann J, Hermans M, Ortmann J. Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE). Journal of Laser Micro/Nanoengineering, 2013, 8(1): 15–18
https://doi.org/10.2961/jlmn.2013.01.0004
|
27 |
Piotter V, Bauer W, Benzler T, Injection molding of components for microsystems. Microsystem Technologies, 2001, 7(3): 99–102
https://doi.org/10.1007/s005420100094
|
35 |
Zhou T, Yan J, Masuda J, Investigation on shape transferability in ultraprecision glass molding press for microgrooves. Precision Engineering, 2011, 35(2): 214–220
https://doi.org/10.1016/j.precisioneng.2010.09.011
|
36 |
Zhou T, Ji W, Kuriyagawa T. Comparing microgroove array forming with micropyramid array forming in the glass molding press. Key Engineering Materials, 2010, 447–448: 361–365
https://doi.org/10.4028/www.scientific.net/KEM.447-448.361
|
37 |
Pan C, Wu T, Chen M, Hot embossing of micro-lens array on bulk metallic glass. Sensors and Actuators A: Physical, 2008, 141(2): 422–431
https://doi.org/10.1016/j.sna.2007.10.040
|
38 |
Yan J, Zhou T, Masuda J, Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis. Precision Engineering, 2009, 33(2): 150–159
https://doi.org/10.1016/j.precisioneng.2008.05.005
|
39 |
Yan J, Oowada T, Zhou T, Precision machining of microstructures on electroless-plated NiP surface for molding glass components. Journal of Materials Processing Technology, 2009, 209(10): 4802–4808
https://doi.org/10.1016/j.jmatprotec.2008.12.008
|
40 |
Barbacki A, Kawalec M, Hamrol A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel. Journal of Materials Processing Technology, 2003, 133(1–2): 21–25
https://doi.org/10.1016/S0924-0136(02)00211-X
|
41 |
Cao D M, Jiang J, Meng W, Fabrication of high-aspect-ratio microscale Ta mold inserts with micro electrical discharge machining. Microsystem technologies, 2007, 13(5): 503–510
|
42 |
Bojorquez B, Marloth R T, Es-Said O S. Formation of a crater in the workpiece on an electrical discharge machine. Engineering Failure Analysis, 2002, 9(1): 93–97
https://doi.org/10.1016/S1350-6307(00)00028-5
|
43 |
Guu Y H, Hocheng H, Tai N H, Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites. Journal of Materials Science, 2001, 36(8): 2037–2043
https://doi.org/10.1023/A:1017539100832
|
44 |
Huang M, Chiang Y, Lin S, Fabrication of microfluidic chip using micro-hot embossing with micro electrical discharge machining mold. Polymers for Advanced Technologies, 2012, 23(1): 57–64
https://doi.org/10.1002/pat.1823
|
45 |
Reynaerts D, Meeusen W, Van Brussel H. Machining of three-dimensional microstructures in silicon by electro-discharge machining. Sensors and Actuators A: Physical, 1998, 67(1–3): 159–165
https://doi.org/10.1016/S0924-4247(97)01724-X
|
46 |
Yan J, Horikoshi A, Kuriyagawa T, Manufacturing structured surface by combining microindentation and ultraprecision cutting. CIRP Journal of Manufacturing Science and Technology, 2012, 5(1): 41–47
https://doi.org/10.1016/j.cirpj.2011.08.004
|
47 |
Takahashi M, Sugimoto K, Maeda R. Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching. Japanese Journal of Applied Physics, 2005, 44(7B): 5600
https://doi.org/10.1143/JJAP.44.5600
|
48 |
Marty F, Rousseau L, Saadany B, Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures. Microelectronics Journal, 2005, 36(7): 673–677
https://doi.org/10.1016/j.mejo.2005.04.039
|
49 |
Tanaka S, Rajanna K, Abe T, Deep reactive ion etching of silicon carbide. Journal of Vacuum Science & Technology B, 2001, 19(6): 2173–2176
https://doi.org/10.1116/1.1418401
|
50 |
Youn S W, Takahashi M, Goto H, Microstructuring of glassy carbon mold for glass embossing—Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining. Microelectronic Engineering, 2006, 83(11–12): 2482–2492
https://doi.org/10.1016/j.mee.2006.05.007
|
51 |
Wurtz M Ad. On the hydruret of copper. Philosophical Magazine Series 3, 1844, 25(164): 154–156
https://doi.org/10.1080/14786444408644956
|
52 |
Brenner A, Riddell G E. Nickel plating on steel by chemical reduction. Journal of Research of the National Bureau of Standards, 1946, 37(1): 31–34
https://doi.org/10.6028/jres.037.019
|
53 |
Brenner A, Riddell G E. Deposition of nickel and cobalt by chemical reduction. Journal of Research of the National Bureau of Standards, 1947, 39(5): 385–395
https://doi.org/10.6028/jres.039.024
|
54 |
Krishnan K H, John S, Srinivasan K N, An overall aspect of electroless Ni-P depositions—A review article. Metallurgical and Materials Transactions A, 2006, 37(6): 1917–1926
https://doi.org/10.1007/s11661-006-0134-7
|
55 |
Strafford K N, Datta P K, O’donnell A K. Electroless nickel coatings: Their application, evaluation & production techniques. Materials & Design, 1982, 3(6): 608–614
https://doi.org/10.1016/0261-3069(82)90004-8
|
56 |
Nakasuji T, Kodera S, Hara S, Diamond turning of brittle materials for optical components. CIRP Annals—Manufacturing Technology, 1990, 39(1): 89–92
https://doi.org/10.1016/S0007-8506(07)61009-9
|
57 |
Casstevens J M, Daugherty C E. Diamond turning optical surfaces on electroless nickel. Proceedings of SPIE, Precision Machining of Optics, 1978, 159: 109
|
58 |
Zhou T, Yan J, Liang Z, Development of polycrystalline Ni-P mold by heat treatment for glass microgroove forming. Precision Engineering, 2015, 39: 25–30
https://doi.org/10.1016/j.precisioneng.2014.07.002
|
59 |
Liu Y, Zhao W, Zhou T, Microgroove machining on crystalline nickel phosphide plating by single-point diamond cutting. International Journal of Advanced Manufacturing Technology (in press)
|
60 |
Guo Z, Keong K G, Sha W. Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. Journal of Alloys and Compounds, 2003, 358(1–2): 112–119
https://doi.org/10.1016/S0925-8388(03)00069-0
|
61 |
Chern G L. Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. International Journal of Machine Tools and Manufacture, 2006, 46(12–13): 1517–1525
https://doi.org/10.1016/j.ijmachtools.2005.09.006
|
62 |
Dornfeld D A, Kim J S, Dechow H, Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Annals—Manufacturing Technology, 1999, 48(1): 73–76
https://doi.org/10.1016/S0007-8506(07)63134-5
|
63 |
Guo Y B, Dornfeld D A. Finite element modeling of burr formation process in drilling 304 stainless steel. Journal of Manufacturing Science and Engineering, 2000, 122(4): 612–619
https://doi.org/10.1115/1.1285885
|
64 |
Jain A, Yi A Y. Numerical modeling of viscoelastic stress relaxation during glass lens forming process. Journal of the American Ceramic Society, 2005, 88(3): 530–535
https://doi.org/10.1111/j.1551-2916.2005.00114.x
|
65 |
Yi A Y, Jain A. Compression molding of aspherical glass lenses—A combined experimental and numerical analysis. Journal of the American Ceramic Society, 2005, 88(3): 579–586
https://doi.org/10.1111/j.1551-2916.2005.00137.x
|
66 |
Jain A, Firestone G C, Yi A Y. Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process. Journal of the American Ceramic Society, 2005, 88(9): 2409–2414
https://doi.org/10.1111/j.1551-2916.2005.00477.x
|
67 |
Jung W, Lee H J, Park K. Investigation of localized heating characteristics in selective ultrasonic imprinting. International Journal of Precision Engineering and Manufacturing, 2015, 16(9): 1999–2004
https://doi.org/10.1007/s12541-015-0260-5
|
68 |
Xie J, Zhou T, Liu Y, The effects of ultrasonic vibration in hot pressing for microgrooves. Materials Science Forum, 2016, 861: 121–126
|
69 |
Xie J, Zhou T, Liu Y, Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing. Precision Engineering, 2016, 46: 270–277
https://doi.org/10.1016/j.precisioneng.2016.05.007
|
70 |
Chen J, Chen Y, Li H, Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrasonics Sonochemistry, 2010, 17(1): 66–71
https://doi.org/10.1016/j.ultsonch.2009.05.005
|
71 |
Masuda J, Yan J, Tashiro T, Microstructural and topographical changes of Ni-P plated moulds in glass lens pressing. International Journal of Surface Science and Engineering, 2009, 3(1–2): 86–102
https://doi.org/10.1504/IJSURFSE.2009.024363
|
72 |
Masuda J, Yan J, Zhou T, Thermally induced atomic diffusion at the interface between release agent coating and mould substrate in a glass moulding press. Journal of Physics D: Applied Physics, 2011, 44(21): 215302
https://doi.org/10.1088/0022-3727/44/21/215302
|
73 |
Schmidt M S, Hübner J, Boisen A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Advanced Materials, 2012, 24(10): OP11–OP18
|
74 |
Guo C, Feng L, Zhai J, Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer. ChemPhysChem, 2004, 5(5): 750–753
https://doi.org/10.1002/cphc.200400013
|
75 |
Gao W, Araki T, Kiyono S, Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precision Engineering, 2003, 27(3): 289–298
https://doi.org/10.1016/S0141-6359(03)00028-X
|
76 |
Khorasaninejad M, Chen W T, Devlin R C, Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
https://doi.org/10.1126/science.aaf6644
|
77 |
Dunkel J, Wippermann F, Reimann A, Fabrication of microoptical freeform arrays on wafer level for imaging applications. Optics Express, 2015, 23(25): 31915–31925
https://doi.org/10.1364/OE.23.031915
|
78 |
Brückner A, Leitel R, Oberdörster A, Multi-aperture optics for wafer-level cameras. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2011, 10(4): 043010
https://doi.org/10.1117/1.3659144
|
79 |
Li L, Yi A Y. Design and fabrication of a freeform prism array for 3D microscopy. Journal of the Optical Society of America A, 2010, 27(12): 2613–2620
https://doi.org/10.1364/JOSAA.27.002613
|
80 |
Wippermann F C, Radtke D, Zeitner U, Fabrication technologies for chirped refractive microlens arrays. Proceedings of SPIE, Current Developments in Lens Design and Optical Engineering VII, 2006, 6288: 62880O
https://doi.org/10.1117/12.680585
|
81 |
Li L, Yi A Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera. Applied Optics, 2012, 51(12): 1843–1852
https://doi.org/10.1364/AO.51.001843
|
82 |
Li L, Yi A Y. Design and fabrication of a freeform microlens array for uniform beam shaping. Microsystem Technologies, 2011, 17(12): 1713–1720
https://doi.org/10.1007/s00542-011-1359-y
|
83 |
Duparré J, Wippermann F, Dannberg P, Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Optics Express, 2005, 13(26): 10539–10551
https://doi.org/10.1364/OPEX.13.010539
|
84 |
Scheiding S, Yi A Y, Gebhardt A, Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. Optics Express, 2011, 19(24): 23938–23951
https://doi.org/10.1364/OE.19.023938
|
85 |
Cheng D, Wang Y, Hua H, Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Applied Optics, 2009, 48(14): 2655–2668
https://doi.org/10.1364/AO.48.002655
|
86 |
Asobe M. Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Optical Fiber Technology, 1997, 3(2): 142–148
https://doi.org/10.1006/ofte.1997.0214
|
87 |
Sanghera J S, Aggarwal I D. Active and passive chalcogenide glass optical fibers for IR applications: A review. Journal of Non-Crystalline Solids, 1999, 256–257: 6–16
https://doi.org/10.1016/S0022-3093(99)00484-6
|
88 |
Zhang X, Guimond Y, Bellec Y. Production of complex chalcogenide glass optics by molding for thermal imaging. Journal of Non-Crystalline Solids, 2003, 326–327: 519–523
https://doi.org/10.1016/S0022-3093(03)00464-2
|
89 |
Aitken B G, Currie S C, Monahan B C, US Patent 7330634.<Date>2008-02-12</Date>
|
90 |
Liao M, Chaudhari C, Qin G, Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity. Optics Express, 2009, 17(24): 21608–21614
https://doi.org/10.1364/OE.17.021608
|
91 |
Brilland L, Smektala F, Renversez G, Fabrication of complex structures of holey fibers in chalcogenide glass. Optics Express, 2006, 14(3): 1280–1285
https://doi.org/10.1364/OE.14.001280
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|