Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (1) : 116-131    https://doi.org/10.1007/s11465-017-0426-1
REVIEW ARTICLE
Mesoscale fabrication of a complex surface for integral impeller blades
Xibin WANG,Tianfeng ZHOU(),Lijing XIE,Li JIAO,Zhibing LIU,Zhiqiang LIANG,Pei YAN
Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(791 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Integral impeller is the most important component of a mini-engine. However, the machining of a mesoscale impeller with a complex integral surface is difficult because of its compact size and high accuracy requirement. A mesoscale component is usually manufactured by milling. However, a conventional milling tool cannot meet the machining requirements because of its size and stiffness. For the fabrication of a complex integral impeller, a micro-ball-end mill is designed in accordance with the non-instantaneous-pole envelope principle and manufactured by grinding based on the profile model of the helical groove and the mathematical model of the cutting edge curve. Subsequently, fractal theory is applied to characterize the surface quality of the integral impeller. The fractal theory-based characterization shows that the completed mesoscale integral impeller exhibits a favorable performance in terms of mechanical properties and morphological accuracy.

Keywords mesoscale fabrication      micro-milling tool      mesoscale milling      impeller blade     
Corresponding Author(s): Tianfeng ZHOU   
Just Accepted Date: 20 January 2017   Issue Date: 21 March 2017
 Cite this article:   
Xibin WANG,Tianfeng ZHOU,Lijing XIE, et al. Mesoscale fabrication of a complex surface for integral impeller blades[J]. Front. Mech. Eng., 2017, 12(1): 116-131.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0426-1
https://academic.hep.com.cn/fme/EN/Y2017/V12/I1/116
Fig.1  Simplified model of the micro-end milling tool
Fig.2  Influences of the structural parameters on natural frequency. The influence of the tool bit diameter (dt) on the (a) first order, (b) second order, and (c) third order frequencies; the influence of the length-diameter ratio of the tool bit Rt(Rt=Lt/dt) on the (d) first order, (e) second order, and (f) third order frequencies; the influence of the half-cone angle α on the (g) first order, (h) second order, and (i) third order frequencies
ParameterValue
Diameter of the ball-end mill, dt/mm0.5
Length-diameter ratio, Rt3
Half-cone angle, α/(° )15
Helix angle, β/(° )30
Rake angle, γn/(° )0
Relief angle, α0/(° )20
Tab.1  Geometric parameters of the micro-ball-end mill
Fig.3  Cutting edge curve of the micro-ball-end mill
Fig.4  Geometry of the micro-ball-end mill
Fig.5  Non-instantaneous center envelope principle for the grinding process: (a) Relative motion of the wheel and tool blank; (b) non-instantaneous center envelope
Fig.6  Projection drawings of the grinding wheel and the milling tool groove
Fig.7  Influences of the parameters of grinding wheel on the spiral grooved surface: (a) t2=0, f1=p/10, f2=0, a=p/8; (b) t2=1.5 mm, f1=p/10, f2=0, a=p/8; (c) t2=1.5 mm, f1=p/10, f2=p/12, a=p/8; (d) t2=1.5 mm, f1=p/6, f2=p/12, a=p/8; (e) t2=1.5 mm, f1=p/10, f2=0, a=p/6; (f) t2=0, f1=p/10, f2=0, a=p/6
Fig.8  Schematic of the grinding process of the rake face
Fig.9  Schematic of the grinding process of the primary clearance face
Fig.10  Orientation and position of the wheel in the workpiece coordinate system
Fig.11  Results of the grinding of the micro-ball-end mill: (a) End view; (b) side view
Value typeDiametera), dt/mmCore diameterb), dc/mmHelical anglec), β/(° )Relief angled), α0/(° )
Preset value0.5000.35030.00020.000
Actual value0.5010.35630.27420.698
Tab.2  Preset and actual values of some of the tool parameters
Fig.12  Relationships of the forces in slot milling
Fig.13  Local details in micro-cutting
Fig.14  Cutting cycle in the milling process
Machining orderTool diameter/mmSpindle speed/(r·min?1)Feed per tooth/(mm·min?1)Axial cutting depth/mmRadial cutting depth/mmAllowance/mm
Transition model machining1.012000210.100.101.00
Rough machining of flow path1.012000400.100.200.05
Finish machining of hub0.515000250.050.100.00
Finish machining of blade0.515000250.050.050.00
Tab.3  Cutting parameters of the mesoscale integral impeller
Fig.15  Geometric model of the mesoscale integral impeller
Fig.16  Simulated machining process of the mesoscale integral impeller
Fig.17  Machined mesoscale integral impeller
Fig.18  Calculation process of the fractal characterization method
Fig.19  Morphology of the mesoscale integral impeller: (a) Machined blade; (b) machined hub
1 Bristeau P J, Callou F, Vissière D, The navigation and control technology inside the AR.Drone micro UAV. In: Proceedings of the 18th World Congress: The International Federation of Automatic Control. Milano, 2011, 44(1), 1477–1484
https://doi.org/10.3182/20110828-6-IT-1002.02327
2 Euston M, Coote P, Mahony R, A complementary filter for attitude estimation of a fixed-wing UAV. In: Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008, 340–345
https://doi.org/10.1109/IROS.2008.4650766
3 Flynn E P. Low-cost approaches to UAV design using advanced manufacturing techniques. In: Proceedings of 2013 IEEE Integrated STEM Education Conference. Princeton: IEEE, 2013, 1–4
https://doi.org/10.1109/ISECon.2013.6525199
4 Allouche M. The integration of UAVs in airspace. Air & Space Europe, 2000, 2(1): 101–104
https://doi.org/10.1016/S1290-0958(00)80019-2
5 Dalamagkidis K, Valavanis K P, Piegl L A. On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences, 2008, 44(7–8): 503–519
https://doi.org/10.1016/j.paerosci.2008.08.001
6 de Oliveira F B, Rodrigues A R, Coelho R T, Size effect and minimum chip thickness in micro milling. International Journal of Machine Tools and Manufacture, 2015, 89: 39–54
https://doi.org/10.1016/j.ijmachtools.2014.11.001
7 Lai X, Li H, Li C, Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. International Journal of Machine Tools and Manufacture, 2008, 48(1): 1–14
https://doi.org/10.1016/j.ijmachtools.2007.08.011
8 Peng L, Lai X, Lee H, Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Materials Science and Engineering A, 2009, 526(1–2): 93–99
https://doi.org/10.1016/j.msea.2009.06.061
9 Özel T. Computational modelling of 3D turning: Influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. Journal of Materials Processing Technology, 2009, 209(11): 5167–5177
https://doi.org/10.1016/j.jmatprotec.2009.03.002
10 Son S M, Lim H S, Ahn J H. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. International Journal of Machine Tools and Manufacture, 2005, 45(4–5): 529–535
https://doi.org/10.1016/j.ijmachtools.2004.09.001
11 Ikawa N, Shimada S, Tanaka H. Minimum thickness of cut in micromachining. Nanotechnology, 1992, 3(1): 6–9
https://doi.org/10.1088/0957-4484/3/1/002
12 Lucca D A, Seo Y W, Komanduri R. Effect of tool edge geometry on energy dissipation in ultraprecision machining. CIRP Annals —Manufacturing Technology, 1993, 42(1): 83–86
https://doi.org/10.1016/S0007-8506(07)62397-X
13 Shaw M C. Precision finishing. CIRP Annals—Manufacturing Technology, 1995, 44(1): 343–348
https://doi.org/10.1016/S0007-8506(07)62339-7
14 Lee S W, Mayor R, Ni J. Dynamic analysis of a mesoscale machine tool. Journal of Manufacturing Science and Engineering, 2006, 128(1): 194–203
https://doi.org/10.1115/1.2123007
15 Vogler M P, DeVor R E, Kapoor S G. Microstructure-level force prediction model for micro-milling of multi-phase materials. Journal of Manufacturing Science and Engineering, 2003, 125(2): 202–210
https://doi.org/10.1115/1.1556402
16 Vogler M P, Kapoor S G, DeVor R E. On the modeling and analysis of machining performance in micro-end milling, Part II, cutting force prediction. Journal of Manufacturing Science and Engineering, 2004, 126(4): 695–705
https://doi.org/10.1115/1.1813471
17 Bissacco G, Hansen H, Slunsky J. Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Annals —Manufacturing Technology, 2008, 57(1): 113–116
18 Malekian M, Park S, Jun M. Modelling of dynamic micro-milling cutting forces. International Journal of Machine Tools and Manufacture, 2009, 49(7–8): 586–598
https://doi.org/10.1016/j.ijmachtools.2009.02.006
19 Blunt L, Jiang X. Advanced Techniques for Assessment Surface Topography. London: Kogan Page Science, 2003
20 Zhang J Z, Chen J C, Kirby E D. Surface roughness optimization in an end-milling operation using Taguchi design method. Journal of Materials Processing Technology, 2007, 184(1–3): 233–239
https://doi.org/10.1016/j.jmatprotec.2006.11.029
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed