Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 539-545    https://doi.org/10.1007/s11465-017-0427-0
RESEARCH ARTICLE
Flexible micro flow sensor for micro aerial vehicles
Rong ZHU(), Ruiyi QUE, Peng LIU
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
 Download: PDF(317 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

Keywords micro flow sensor      flexible sensor      surface flow sensing      aerodynamic parameter      micro aerial vehicle (MAV)     
Corresponding Author(s): Rong ZHU   
Online First Date: 17 April 2017    Issue Date: 31 October 2017
 Cite this article:   
Rong ZHU,Ruiyi QUE,Peng LIU. Flexible micro flow sensor for micro aerial vehicles[J]. Front. Mech. Eng., 2017, 12(4): 539-545.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0427-0
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/539
Fig.1  (a) Fabrication process of the hot-film flow sensor [15]; fabricated hot-film flow sensor unit and array: (b) Sensor unit with a strip shape, (c) sensor array, and (d) flexible PCB
Fig.2  Schematic view of the signal processing circuit of the hot-film flow sensor: (a) CC/CV mode and (b) CTD mode
Fig.3  Test results for the output of the flow sensor operated in the CTD mode with overheat ratios of 0.03 and 0.02 [16]
Fig.4  MAVs with the fabricated hot-film flow sensor: (a) Flexible wing of the MAV [16]; (b) prototype of the flexible-wing MAV; and (c) prototype of the blended-wing-body MAV [17]
Fig.5  Schematic view of the flight parameters and an MAV tested in a wind tunnel
Fig.6  Flight parameters deduced from the test data using the simplified differential algorithm: (a) Air speed; (b) angle of attack; and (c) angle of sideslip
Fig.7  Flight parameter measurements obtained using the neural network model [17]: (a) Air speed; (b) angle of attack; and (c) angle of sideslip
1 Van Putten A F P, Middelhoek S. Integrated silicon anemometer. Electronics Letters, 1974, 10(21): 425–426
https://doi.org/10.1049/el:19740339
2 Chen J, Fan Z, Zou J, et al. Two-dimensional micromachined flow sensor array for fluid mechanics studies. Journal of Aerospace Engineering, 2003, 16(2): 85–97
https://doi.org/10.1061/(ASCE)0893-1321(2003)16:2(85)
3 Van Baar J J, Wiegerink R J, Lammerink T S J, et al. Micromachined structures for the thermal measurements of fluid and flow parameters. Journal of Micromechanics and Microengineering, 2001, 11(4): 311–318 
https://doi.org/10.1088/0960-1317/11/4/304
4 Liu C, Huang J, Zhu Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles. Journal of Microelectromechanical Systems, 1999, 8(1): 90–99 
https://doi.org/10.1109/84.749408
5 Liu P, Zhu R, Que R. A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors (Basel), 2009, 9(12): 9533–9543 
https://doi.org/10.3390/s91209533
6 Xu Y, Jiang F, Newbern S, et al. Flexible shear-stress sensor skin and its application to unmanned aerial vehicle. Sensors and Actuators A: Physical, 2003, 105(3): 321–329 
https://doi.org/10.1016/S0924-4247(03)00230-9
7 Buder U, Petz R, Kittel M, et al. AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection. Sensors and Actuators A: Physical, 2008, 142(1): 130–137 
https://doi.org/10.1016/j.sna.2007.04.058
8 Lian Y, Shyy W, Viieru D, et al. Membrane wing aerodynamics for micro air vehicles. Progress in Aerospace Sciences, 2003, 39(6–7): 425–465 
https://doi.org/10.1016/S0376-0421(03)00076-9
9 Fang Z. Aircraft Flight Dynamics and Automatic Flight Control. Beijing: National Defense Industry Press, 1999 (in Chinese)
10 Hagen F W, Seidel H. Deutsche airbus flight test of Rosemount smart probe for distributed air data systems. IEEE Aerospace and Electric Systems Magazine, 1994, 9(4): 7–14 
https://doi.org/10.1109/62.277747
11 Callegari S, Talamelli A, Zagnoni M, et al. Aircraft angle of attack and air speed detection by redundant strip pressure sensors. In: Proceedings of IEEE Sensors. Vienna, 2004, 24–27
12 Callegari S, Zagnoni M, Golfarelli A, et al. Experiments on aircraft flight parameter detection by on-skin sensors. Sensors and Actuators A: Physical, 2006, 130–131: 155–165
https://doi.org/10.1016/j.sna.2005.12.026
13 Whitmore S A. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system. SAE Technical Paper 912142. 1991
14 Que R, Zhu R. A two-dimensional flow sensor with integrated micro thermal sensing elements and BP neural network. Sensors (Basel), 2014, 14(1): 564–574 
https://doi.org/10.3390/s140100564
15 Que R, Zhu R. A compact flexible thermal flow sensor for detecting two-dimensional flow vector. IEEE Sensors Journal, 2015, 15(3): 1931–1936
https://doi.org/10.1109/JSEN.2014.2367017
16 Zhu R, Liu P, Liu X, et al. A low-cost flexible hot-film sensor system for flow sensing and its application to aircraft. In: Proceedings of IEEE 22nd International Conference on Micro Electro Mechanical Systems. Sorrento, 2009, 527–530
17 Que R, Zhu R. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors, 2012, 12(8): 10920–10929 
https://doi.org/10.3390/s120810920
18 Bruun H H. Hot-wire Anemometry Principles and Signal Analysis. New York: Oxford University Press, 1995
19 Que R, Zhu R, Wei Q, et al. Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Measurement Science & Technology, 2011, 22(8): 085404
https://doi.org/10.1088/0957-0233/22/8/085404
20 Xu Y, Tai Y, Huang A, et al. IC-integrated flexible shear-stress sensor skin. Journal of Microelectromechanical Systems, 2003, 12(5): 740–747 
https://doi.org/10.1109/JMEMS.2003.815831
21 Choisnet J, Collot L, Hanson N. Method for determining aerodynamic parameters and method for detecting failure of a probe used for determining aerodynamic parameters. US Patent, 7051586, 2006-05-30
22 Zhang F, Zhu R, Liu P, et al. A novel micro air vehicle with flexible wing integrating with on-board electronic devices. In: Proceedings of 2008 IEEE International Conferences on Robotics, Automation and Mechatronics. IEEE, 2008, 252–257
https://doi.org/10.1109/RAMECH.2008.4681386
23 Zhang F, Zhu R, Zhou Z. Experiment research on aerodynamics of flexible wing MAV. Acta Aeronautica et Astronautica Sinica, 2008, 30(6): 1440–1446 (in Chinese)
24 Fei H, Zhu R, Zhou Z, et al. Aircraft flight parameters detection based on neural network using multiple hot-film flow speed sensors. Smart Materials and Structures, 2007, 16(4): 1239–1245
https://doi.org/10.1088/0964-1726/16/4/035
25 Clifford L. Neural Networks: Theoretical Foundations and Analysis. New York: IEEE, 1992
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed