Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 303-311    https://doi.org/10.1007/s11465-017-0428-z
RESEARCH ARTICLE
Multi-time scale dynamics in power electronics-dominated power systems
Xiaoming YUAN(), Jiabing HU, Shijie CHENG
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(332 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

Keywords power electronics      power systems      multi-time scale dynamics      mass-spring-damping model      self-stabilizing and en-stabilizing property      multi-time scale power system stabilizer     
Corresponding Author(s): Xiaoming YUAN   
Just Accepted Date: 07 June 2017   Online First Date: 19 July 2017    Issue Date: 04 August 2017
 Cite this article:   
Xiaoming YUAN,Jiabing HU,Shijie CHENG. Multi-time scale dynamics in power electronics-dominated power systems[J]. Front. Mech. Eng., 2017, 12(3): 303-311.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0428-z
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/303
Fig.1  Power converter-interfaced devices are increasingly being deployed in power system generation, transmission, and consumption
Fig.2  Multi-time scale controls for rotor speed, DC voltage, AC active current, reactive power, AC voltage, and AC reactive current in a typical, direct-driven wind turbine
Fig.3  Framework of dynamic problems encountered in semiconducting power systems
Fig.4  Phase and magnitude motion of back EMF reflect the motions of the tangential mass and the radial mass in the tangential and the radial directions, respectively
Fig.5  Mass-spring-damping model for the phase of the back EMF with DFIG at an electromechanical timescale. (a) Simplified diagram for the formation of the phase of the back EMF with DFIG; (b) the mass-spring-damping model for the phase of the back EMF with DFIG
Fig.6  DFIG reactive power control diagram and the mass-spring-damping representation of the motion of the magnitude of the back EMF. (a) Typical reactive power control diagram for wind turbines; (b) mass-spring-damping model for magnitude motion of the back EMF
Fig.7  Interaction mechanism among the back EMF of devices through the grid network
Fig.8  Corresponding damping ratios of inter-area modes with the variations of PLL gain in wind turbines
Fig.9  Corresponding damping ratios of inter-area modes with the variations of voltage controller gain in wind turbines
Fig.10  Block diagram that represents Eq. (2) how net damping and restoring forces are generated from speed or displacement deviation
1 Zhou X, Lu Z, Liu Y, et al.. Development models and key technologies of future grid in China. Proceedings of the CSEE, 2014, 34(29): 4999–5008 (in Chinese)
2 Haugland P. It’s time to connect: Technical description of HVDC light technology [R/OL].  2008. Retrieved from 
3 Wu B. High-Power Converters and AC Drives. New York: The Institute of Electrical and Electronics Engineers, Inc., 2006
4 Farmer R G. Power system dynamics and stability. In: Grigsby L L, ed. The Electric Power Engineering Handbook. Boca Raton: CRC Press, 2001
5 Kundur P, Paserba J, Ajjarapu V, et al.. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 2004, 19(2): 1387–1401
6 Anderson P M, Found A A. Power System Control and Stability. Ames: The Iowa State University Press, 1977
7 Kundur P. Power System Stability and Control. New York: McGraw-Hill, 1994
8 Hu H. Application of Nonlinear Dynamics. Beijing: Aviation Industry Press, 2000 (in Chinese)
9 Larsen E V, Delmerico R W. US Patent 5798633,  1998-08-25
10 Tang Y. Voltage Stability in Power Systems. Beijing: Science Press, 2011 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed