Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 581-590    https://doi.org/10.1007/s11465-017-0454-x
RESEARCH ARTICLE
Single-chip 3D electric field microsensor
Biyun LING1,2, Yu WANG1,2, Chunrong PENG1, Bing LI1,2, Zhaozhi CHU1,2, Bin LI1,2, Shanhong XIA1()
1. State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(599 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a single-chip 3D electric field microsensor, in which a sensing element is set at the center to detect the Z-axis component of an electrostatic field. Two pairs of sensing elements with the same structure are arranged in a cross-like configuration to measure the X- and Y-axis electrostatic field components. An in-plane rotary mechanism is used in the microsensor to detect the X-, Y-, and Z-axis electrostatic field components simultaneously. The proposed microsensor is compact and presents high integration. The microsensor is fabricated through a MetalMUMPS process. Experimental results show that in the range of 0–50 kV/m, the linearity errors of the microsensor are within 5.5%, and the total measurement errors of the three electrostatic field components are less than 14.04%.

Keywords electric field microsensor      three-dimensional      single-chip      in-plane rotation     
Corresponding Author(s): Shanhong XIA   
Just Accepted Date: 07 June 2017   Online First Date: 27 July 2017    Issue Date: 31 October 2017
 Cite this article:   
Biyun LING,Yu WANG,Chunrong PENG, et al. Single-chip 3D electric field microsensor[J]. Front. Mech. Eng., 2017, 12(4): 581-590.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0454-x
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/581
Fig.1  Schematic of the 3D electric field microsensor
Fig.2  Simulation model for the response of the proposed microsensor to a 3D electrostatic field with different directions
Fig.3  Simulation results of the proposed microsensor’s response to the 3D electrostatic field with different directions. (a) Induced charge along each sensing axis with respect to ϕ when q is 30°; (b) induced charge along each sensing axis with respect to q when ϕ is 135°
Fig.4  Schematic of strip-type electrodes
Fig.5  Simulation results for the parameters of strip-type electrodes. (a) Induced charge on the sensing electrode versus wg1 with different wsn values; peak-to-peak values of induced charge on the sensing electrode (b) in vibration versus wsn with different wsh values; (c) in vibration versus wg1 with different wT values; (d) peak-to-peak value of induced charge per unit length on the sensing electrode in vibration versus wT
Sensing elementL/mmR/mmh/mmwsn/mmwsh/mmwe/mmwT/mm
X+, X−, Y+, Y1000250020101030110
Z70030020881860
Tab.1  Parameters of strip-type electrodes
Fig.6  Main steps of the MetalMUMPS process
Fig.7  SEM photos of the electric field microsensor
Fig.8  Schematic of the testing circuit of the 3D electric field microsensor. Vx, Vy, and Vz are the outputs of the X-, Y-, and Z-axis sensing components after testing
Fig.9  Schematic of the testing system
Fig.10  Uniaxial electrostatic field calibration for the proposed sensor. (a) X-axis; (b) Y-axis; (c) Z-axis
Electrostatic field directionX-axis sensitivity
/(mV·kV−1·m)
X-axis linearity/%Y-axis sensitivity
/(mV·kV−1·m)
Y-axis linearity/%Z-axis sensitivity
/(mV·kV−1·m)
Z-axis linearity/%
X direction0.1362.390.0453.520.0775.25
Y direction0.0532.610.1213.120.0672.17
Z direction0.0501.250.0443.130.1012.54
Tab.2  Sensitivities and linearities of the X-, Y- and Z-axis sensing components
Rotation angleApplied electric field/(kV·m−1)Output along the X-axis /mVOutput along the Y-axis /mVOutput along the Z-axis /mVCalculated electric field/(kV·m−1)Error/%
q1252.32.91.927.499.96
q2252.92.52.027.8211.28
q3252.52.22.428.5114.04
q4505.75.14.055.5911.18
q5504.85.93.956.5013.10
q6503.14.95.055.8811.76
Tab.3  Outputs of the sensor and calculated electric fields
1 Maruvada P S, Dallaire R D, Pedneault R. Development of field-mill instruments for ground-level and above-ground electric field measurement under HVDC transmission lines. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(3): 738–744
https://doi.org/10.1109/TPAS.1983.318035
2 Yang P, Chen B, Wen X, et al.A novel MEMS chip-based atmospheric electric field sensor for lightning hazard warning applications. In: Proceedings of IEEE Sensors. Busan: IEEE, 2015, 1–4
https://doi.org/10.1109/ICSENS.2015.7370268
3 Wooi C L, Abdul-Malek Z, Ahmad N A, et al.Statistical analysis of electric field parameters for negative lightning in Malaysia. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146: 69–80
https://doi.org/10.1016/j.jastp.2016.05.007
4 Kasaba Y, Hayakawa H, Ishisaka K, et al.Evaluation of DC electric field measurement by the double probe system aboard the Geotail spacecraft. Advances in Space Research, 2006, 37(3): 604–609 
https://doi.org/10.1016/j.asr.2005.05.006
5 Vaivads A, Eriksson A I, André M, et al.Low-frequency electric field and density fluctuation measurements on Solar Orbiter. Advances in Space Research, 2007, 39(9): 1502–1509 
https://doi.org/10.1016/j.asr.2006.10.011
6 Pedersen A, Cattell C A, Fälthammar C G, et al.Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites. Space Science Reviews, 1984, 37(3–4): 269–312 
https://doi.org/10.1007/BF00226365
7 Tant P, Bolsens B, Sels T, et al.Design and application of a field mill as a high-voltage DC meter. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1459–1464
https://doi.org/10.1109/TIM.2007.900157
8 Mathews S, Farrell G, Semenova Y. All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers. Sensors and Actuators A: Physical, 2011, 167(1): 54–59
https://doi.org/10.1016/j.sna.2011.01.008
9 Zhu T, Ou Z, Han M, et al.Propylene carbonate based compact fiber Mach-Zehnder interferometric electric field sensor. Journal of Lightwave Technology, 2013, 31(10): 1566–1572
https://doi.org/10.1109/JLT.2013.2254466
10 Toney J E, Tarditi A G, Pontius P, et al.Detection of energized structures with an electro-optic electric field sensor. IEEE Sensors Journal, 2014, 14(5): 1364–1369 
https://doi.org/10.1109/JSEN.2013.2295004
11 Hsu C H, Muller R S. Micromechanical electrostatic voltmeter. In: Proceedings of International Conference on Solid-State Sensors and Actuators. San Francisco: IEEE, 1991, 659–662
https://doi.org/10.1109/SENSOR.1991.148966
12 Horenstein M N, Stone P R. A micro-aperture electrostatic field mill based on MEMS technology. Journal of Electrostatics, 2001, 51–52: 515–521
https://doi.org/10.1016/S0304-3886(01)00048-1
13 Riehl P S, Scott K L, Muller R S, et al.Electrostatic charge and field sensors based on micromechanical resonators. Journal of Microelectromechanical Systems, 2003, 12(5): 577–589
https://doi.org/10.1109/JMEMS.2003.818066
14 Peng C, Chen X, Ye C, et al.Design and testing of a micromechanical resonant electrostatic field sensor. Journal of Micromechanics and Microengineering, 2006, 16(5): 914–919
https://doi.org/10.1088/0960-1317/16/5/006
15 Lundberg K H, Shafran J S, Kuang J, et al.A self-resonant MEMS-based electrostatic field sensor. In: Proceedings of the 2006 American Control Conference. Minneapolis: IEEE, 2006, 1221–1226
https://doi.org/10.1109/ACC.2006.1656384
16 Chen X, Peng C, Tao H, et al.Thermally driven micro-electrostatic fieldmeter. Sensors and Actuators A: Physical, 2006, 132(2): 677–682
https://doi.org/ 10.1016/j.sna.2006.02.044
17 Bahreyni B, Wijeweera G, Shafai C, et al.Analysis and design of a micromachined electric-field sensor. Journal of Microelectromechanical Systems, 2008, 17(1): 31–36
https://doi.org/10.1109/JMEMS.2007.911870
18 Ghionea S, Smith G, Pulskamp J, et al.MEMS electric-field sensor with lead zirconate titanate (PZT)-actuated electrodes. In: Proceedings of 2013 IEEE Sensors. Baltimore: IEEE, 2013, 1–4
https://doi.org/10.1109/ICSENS.2013.6688131
19 Yang P, Peng C, Fang D, et al.Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002
https://doi.org/ 10.1088/0960-1317/23/5/055002
20 Wang Y, Fang D, Feng K, et al.A novel micro electric field sensor with X-Y dual axis sensitive differential structure. Sensors and Actuators A: Physical, 2015, 229: 1–7
https://doi.org/10.1016/j.sna.2015.03.013
21 Gao Z, Yu Z, Zeng R, et al.Research on measuring methods and sensors of high voltage DC electric field. In: Proceedings of International Conference on Information Science, Electronics and Electrical Engineering (ISEEE). Sapporo: IEEE, 2014, 850–854
https://doi.org/10.1109/InfoSEEE.2014.6947787
22 Li C, Shen X, Zeng R. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal. Applied Optics, 2013, 52(31): 7580–7585
https://doi.org/10.1364/AO.52.007580
23 Wen X, Fang D, Peng C, et al.Three dimensional electric field measurement method based on coplanar decoupling structure. In: Proceedings of 2014 IEEE Sensors. Valencia: IEEE, 2014, 582–585
https://doi.org/10.1109/ICSENS.2014.6985065
24 Fang Y, Peng C, Fang D, et al.Micro 3-dimensional folding electric field sensor. Transducer and Microsystem Technologies, 2016, 35(5): 67–73 (in Chinese)
25 Yeh J A, Chen C, Lui Y. Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension. Journal of Micromechanics and Microengineering, 2005, 15(1): 201–206
https://doi.org/10.1088/0960-1317/15/1/028
26 Allen C, Ramaswamy M, Stafford J, et al.MetalMUMPs Design Handbook, Revision 4.0, 2006
[1] Chuang YUE, Jing LI, Liwei LIN. Fabrication of Si-based three-dimensional microbatteries: A review[J]. Front. Mech. Eng., 2017, 12(4): 459-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed