Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 510-525    https://doi.org/10.1007/s11465-017-0460-z
REVIEW ARTICLE
Digital microfluidics: A promising technique for biochemical applications
He WANG1,2, Liguo CHEN1(), Lining SUN1
1. Robotics and Microsystems Center, Soochow University, Soochow 215006, China
2. School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, China
 Download: PDF(770 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.

Keywords digital microfluidics      electrowetting on dielectric      discrete droplet      biochemistry     
Corresponding Author(s): Liguo CHEN   
Just Accepted Date: 07 June 2017   Online First Date: 27 July 2017    Issue Date: 31 October 2017
 Cite this article:   
He WANG,Liguo CHEN,Lining SUN. Digital microfluidics: A promising technique for biochemical applications[J]. Front. Mech. Eng., 2017, 12(4): 510-525.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0460-z
https://academic.hep.com.cn/fme/EN/Y2017/V12/I4/510
Fig.1  DMF: (a) Side-view schematics of the parallel-plate (left) and single-plate (right) DMF devices; (b) photos of the TCC and L-junction reservoirs; (c) schematics of the twin-plate electrowetting configuration; (d) photo (upper left) of the fabricated single-plate electrowetting-on-dielectric device with island-ground electrode (IG-SEWOD) device, snapshots (lower left) of the droplet transport, and comparison of the droplet dynamic properties in the X-direction (upper right) and Y-direction (lower right) transport between the IG-SEWOD and floating EWOD device; (e) photo (left) of the inkjet-printed paper chip, and a series of frames (right) from a movie (I to VIII) that depicts the mixing process of the three droplets; (f) isometric-view schematic (left) and photo (right) of the inkjet printed, roll-coated paper DMF chip, as well as photo (middle) of a roll of inkjet-printed bottom plate placed on a mini roll coater to coat a layer of Cyanoresin CR-S cyanoethyl pullulan as the dielectric layer
Fig.2  DMF applications in chemical/enzymatic reactions and immunoassays. (a) Top-view (upper) and side-view (lower) schematics of the SPME-DMF interface; (b) photo (left) that overlooks the EWOD radiosynthesis chip positioned below a pivoting mirror, which directs light to either the video camera or Cerenkov camera inside a light tight box of a Cerenkov imaging system, schematic (top right) of the faster mixing process through the circulating-actuation of EWOD electrodes; and Cerenkov image (bottom right) after 30 s of the mixing based on EWOD actuation; (c) top-view schematic (left) of femtoliter droplets printed inside hydrophilic patches after a mother droplet moves across micro-patches, and scanning electron microscope image (right) of single MOF crystal arrays formed by the DMF technique; (d) schematic (top left) of the three-electrode design with two different sizes for the micromagnetic particle extraction, measured particle loss rates (top middle) with different starting particle numbers and comparison (top right) of the washing efficiency in the case of two different electrode-area ratios; and images (bottom) of a mother droplet that split into two daughter droplets with different sizes by the improved double-side EW method
Fig.3  Cell-based applications in DMF. (a) Frames (1)–(6) of a movie (left) show the driving protocol for generating a droplet with 150 mM (1 mM=1 mmol/L) IL. Repeating Frames (2)–(5) for the other IL concentrations to generate four droplets with different ionic liquid concentrations at 0, 37.5, 75, or 150 mM (Frame 6). Each droplet first captured a single cell and was then actuated into their respective culture regions. Photo (right) of a single S. cerevisiae cell incubated at four different concentrations of [C2mim][Cl]. (b) Photos (upper) of HeLa cells cultured on a hydrophilic region of a DMF device and a photo (inset) of cells on a contradional 96-well plate; photos (lower) of cells that undergo apoptosis before and after two sequential wash steps on the two devices. (c) Photos (upper) of gel discs on a finger (left) and on the DMF device without the upper plate (right); photos of a 3D cell culture: NIH-3T3 cells were cultured in 0.58 wt% agarose gel discs on DMF devices, and imaged through transparent windows on DMF devices utilizing bright field (left), fluorescence (middle) with calcein AM dye, and confocal fluorescence (right) with 4', 6-diamidino-2-phenylindole (shown in red) and phalloidin (shown in blue) microscopies
Fig.4  DMF applications in DNA-based and protein assays. (a) Photos of SYBR-Green added to double-stranded DNA and generated fluorescence light; photos (left and right) indicate the optical and fluorescent images, respectively. (b) Overview (left) of a DMF cartridge design, and POP assembly schematics (upper right) of DNA synthesis utilizing DMF. A droplet with a DNA template (gray) was mixed with the assembly droplet 1 (AD1), which contained the primers and assembly mixture to generate a droplet (gray) that contained assembly product 1 (AP1); the AP1 droplet was then mixed in sequence with the assembly droplet 2 (AD2), 3 (AD3), and 4 (AD4), which all contained the primers and assembly mixture until generating the full-length molecule (AP4) 2 (AD2). Scheme (lower right) of in vitro cloning by smPCR on DMF. (c) Top view of the integrated microfludics system and side view of the interface that connects the DMF hub and capillary (left); sequence of frames (right) from a movie that describes the automated library preparation process for a sample that contains human gDNA from peripheral blood mononuclear cells. (d) A series of images from a video (left) and schematic (right) that show the digestion process for a proteomic sample on a hydrogel disc microreactor (2 mm in diameter)
1 Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 1979, 26(12): 1880–1886
https://doi.org/10.1109/T-ED.1979.19791
2 Reyes D R, Iossifidis D, Auroux P A, et al. Micro total analysis system. 1. Introduction, theory, and technology. Analitical Chemistry, 2002, 74(12): 2623–2636
https://doi.org/ 10.1021/ac0202435
3 Mugele F, Baret J C. Electrowetting: From basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
https://doi.org/10.1088/0953-8984/17/28/R01
4 Pollack M G, Shenderov A D, Fair R B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2002, 2(2): 96–101
https://doi.org/10.1039/b110474h
5 Washizu M. Electrostatic actuation of liquid droplets for microreactor applications. IEEE Transactions on Industry Applications, 1998, 34(4): 732–737
https://doi.org/10.1109/28.703965
6 Cho S K, Fan S K, Moon H, et al. Towards digital microfluidic circuits: Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In: Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems. Las Vegas: IEEE, 2002, 32–35
https://doi.org/10.1109/MEMSYS.2002.984073
7 Cho S K, Moon H, Kim C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003, 12(1): 70–80
https://doi.org/10.1109/JMEMS.2002.807467
8 Berthier J. Microdrops and Digital Microfluidics. Norwich: William Andrew Inc., 2008
9 Wang W, Jones T B. Moving droplets between closed and open microfluidic systems. Lab on a Chip, 2015, 15(10): 2201–2212
https://doi.org/10.1039/C5LC00014A
10 Wheeler A R. Putting electrowetting to work. Science, 2008, 322(5901): 539–540
https://doi.org/10.1126/science.1165719
11 Hsieh T H, Fan S K. Dielectric droplet manipulations by electropolarization forces. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems. Piskataway: IEEE, 2008, 641–644
12 Jones T B, Wang K L, Yao D J. Frequency-dependent electromechanics of aqueous liquids: Electrowetting and dielectrophoresis. Langmuir, 2004, 20(7): 2813–2818 
https://doi.org/10.1021/la035982a
13 Mugele F, Baret J C. Electrowetting: From basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
https://doi.org/10.1088/0953-8984/17/28/R01
14 Gupta R, Sheth D M, Boone T K, et al. Impact of pinning of the triple contact line on electrowetting performance. Langmuir, 2011, 27(24): 14923–14929
https://doi.org/10.1021/la203320g
15 Chen L Q, Bonaccurso E. Electrowetting—From statics to dynamics. Advances in Colloid and Interface Science, 2014, 210: 2–12
https://doi.org/ 10.1016/j.cis.2013.09.007
16 Kang K H. How electrostatic fields change contact angle in electrowetting. Langmuir, 2002, 18(26): 10318–10322
https://doi.org/10.1021/la0263615
17 Peykov V, Quinn A, Ralston J. Electrowetting: A model for contact-angle saturation. Colloid & Polymer Science, 2000, 278(8): 789–793
https://doi.org/10.1007/s003960000333
18 Darhuber A A, Chen J Z, Davis J M, et al. A study of mixing in thermocapillary flows on micropatterned surfaces.  Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1818): 1037–1058 
https://doi.org/10.1098/rsta.2003.1361
19 Darhuber A A, Valentino J P, Troian S M. Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab on a Chip, 2010, 10(8): 1061–1071
https://doi.org/10.1039/b921759b
20 Heron S R, Wilson R, Shaffer S A, et al. Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. Analytical Chemistry, 2010, 82(10): 3985–3989
https://doi.org/10.1021/ac100372c
21 Jin H, Zhou J, He X, et al. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications. Scientific Reports, 2013, 3: 2140
https://doi.org/10.1038/srep02140
22 Pang H, Fu Y, Garcia-Gancedo L, et al. Enhancement of microfluidic efficiency with nanocrystalline diamond interlayer in the ZnO-based surface acoustic wave device. Microfluidics and Nanofluidics, 2013, 15(3): 377–386 
https://doi.org/10.1007/s10404-013-1155-3
23 Shilton R J, Mattoli V, Travagliati M, et al. Rapid and controllable digital microfluidic heating by surface acoustic waves. Advanced Functional Materials, 2015, 25(37): 5895–5901
https://doi.org/10.1002/adfm.201501130
24 Seemann R, Brinkmann M, Pfohl T, et al. Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601
https://doi.org/10.1088/0034-4885/75/1/016601
25 Gu H, Duits M H G, Mugele F. Droplets formation and merging in two-phase flow microfluidics. International Journal of Molecular Sciences, 2011, 12(12): 2572–2597
https://doi.org/10.3390/ijms12042572
26 Renaudot R, Agache V, Daunay B, et al. Optimization of liquid dielectrophoresis (LDEP) digital microfluidic transduction for biomedical applications. Micromachines, 2011, 2(4): 258–273
https://doi.org/10.3390/mi2020258
27 Renaudot R, Daunay B, Kumemura M, et al. Optimized micro devices for liquid-dielectrophoresis (LDEP) actuation of conductive solutions. Sensors and Actuators B: Chemical, 2013, 177: 620–626 
https://doi.org/10.1016/j.snb.2012.11.049
28 Timonen J V I, Latikka M, Leibler L, et al. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science, 2013, 341(6143): 253–257
https://doi.org/10.1126/science.1233775
29 Ng A H C, Choi K, Luoma R P, et al. Digital microfluidic magnetic separation for particle-based immunoassays. Analytical Chemistry, 2012, 84(20): 8805–8812
https://doi.org/10.1021/ac3020627
30 Witters D, Knez K, Ceyssens F, et al. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab on a Chip, 2013, 13(11): 2047–2054
https://doi.org/10.1039/c3lc50119a
31 Shi D, Bi Q, He Y, et al. Experimental investigation on falling ferrofluid droplets in vertical magnetic fields. Experimental Thermal and Fluid Science, 2014, 54: 313–320
https://doi.org/10.1016/j.expthermflusci.2014.01.010
32 Choi K, Ng A H C, Fobel R, et al. Digital microfluidics. Annual Review of Analytical Chemistry, 2012, 5(1): 413–440 
https://doi.org/10.1146/annurev-anchem-062011-143028
33 Kumar A, Williams S J, Chuang H S, et al. Hybrid opto-electric manipulation in microfluidics—Opportunities and challenges. Lab on a Chip, 2011, 11(13): 2135–2148
https://doi.org/10.1039/c1lc20208a
34 Takinoue M, Takeuchi S. Droplet microfluidics for the study of artificial cells. Analytical and Bioanalytical Chemistry, 2011, 400(6): 1705–1716
https://doi.org/10.1007/s00216-011-4984-5
35 Vergauwe N, Witters D, Atalay Y T, et al. Controlling droplet size variability of a digital lab-on-a-chip for improved bio-assay performance. Microfluidics and Nanofluidics, 2011, 11(1): 25–34
https://doi.org/10.1007/s10404-011-0769-6
36 Yaddessalage J B. Study of the capabilities of electrowetting on dielectric digital microfluidics (EWOD DMF) towards the high efficient thin-film evaporative cooling platform. Dissertation for the Doctoral Degree. Arlington: The University of Texas at Arlington, 2013
37 Elvira K S, Leatherbarrow R, Edel J, et al. Droplet dispensing in digital microfluidic devices: Assessment of long-term reproducibility. Biomicrofluidics, 2012, 6(2): 022003
https://doi.org/ 10.1063/1.3693592
38 Yafia M, Najjaran H. High precision control of gap height for enhancing principal digital microfluidics operations. Sensors and Actuators B: Chemical, 2013, 186: 343–352
https://doi.org/10.1016/j.snb.2013.06.029
39 Chang J H, Pak J J. Twin-plate electrowetting for efficient digital microfluidics. Sensors and Actuators B: Chemical, 2011, 160(1): 1581–1585
https://doi.org/10.1016/j.snb.2011.09.011
40 Cui W, Zhang M, Zhang D, et al. Island-ground single-plate electro-wetting on dielectric device for digital microfluidic systems. Applied Physics Letters, 2014, 105(1): 013509
https://doi.org/10.1063/1.4889895
41 Ko H, Lee J, Kim Y, et al. Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Advanced Materials, 2014, 26(15): 2335–2340 
https://doi.org/10.1002/adma.201305014
42 Fobel R, Kirby A E, Ng A H C, et al. Paper microfluidics goes digital. Advanced Materials, 2014, 26(18): 2838–2843
https://doi.org/10.1002/adma.201305168
43 Fobel R, Kirby A E, Wheeler A R. Paper microfluidics goes digital. In: Proceedings of 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS. Freiburg: Chemical and Biological Microsystems Society, 2013, 708–710
44 Dixon C, Kirby A E, Fobel R, et al. Paper digital microfluidics and paper spray ionization mass spectrometry. In: Proceedings of 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS. San Antonio: Chemical and Biological Microsystems Society, 2014, 2196–2198
45 Dixon C, Ng A H C, Fobel R, et al. An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab on a Chip, 2016, 16(23): 4560–4568
https://doi.org/10.1039/C6LC01064D
46 Yafia M, Shukla S, Najjaran H. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing. Journal of Micromechanics and Microengineering, 2015, 25(5): 057001
https://doi.org/10.1088/0960-1317/25/5/057001
47 Taniguchi T, Torii T, Higuchi T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab on a Chip, 2002, 2(1): 19–23
https://doi.org/10.1039/B108739H
48 Ito T, Torii T, Higuchi T. Electrostatic micromanipulation of bubbles for microreactor applications. In: Proceedings of IEEE the Sixteenth Annual International Conference on Micro Electro Mechanical System. Kyoto: IEEE, 2003, 335–338 
https://doi.org/10.1109/MEMSYS.2003.1189754
49 Sista R S, Eckhardt A E, Wang T, et al. Digital microfluidic platform for multiplexing enzyme assays: Implications for lysosomal storage disease screening in newborns. Clinical Chemistry, 2011, 57(10): 1444–1451
https://doi.org/10.1373/clinchem.2011.163139
50 Boles D J, Benton J L, Siew G J, et al. Droplet-based pyrosequencing using digital microfluidics. Analytical Chemistry, 2011, 83(22): 8439–8447
https://doi.org/10.1021/ac201416j
51 Choi K, Boyacı E, Kim J, et al. A digital microfluidic interface between solid-phase microextraction and liquid chromatography—Mass spectrometry. Journal of Chromatography A, 2016, 1444: 1–7 
https://doi.org/10.1016/j.chroma.2016.03.029
52 Keng P Y, Chen S, Ding H J, et al. Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 690–695
https://doi.org/ 10.1073/pnas.1117566109
53 Dooraghi A A, Keng P Y, Chen S, et al. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging. Analyst (London), 2013, 138(19): 5654–5664
https://doi.org/10.1039/c3an01113e
54 Witters D, Vergauwe N, Ameloot R, et al. Digital microfluidic high-throughput printing of single metal-organic framework crystals. Advanced Materials, 2012, 24(10): 1316–1320
https://doi.org/10.1002/adma.201104922
55 Shamsi M H, Choi K, Ng A H C, et al. A digital microfluidic electrochemical immunoassay. Lab on a Chip, 2014, 14(3): 547–554
https://doi.org/10.1039/C3LC51063H
56 Ng A H C, Lee M, Choi K, et al. Digital microfluidic platform for the detection of rubella infection and immunity: A proof of concept. Clinical Chemistry, 2015, 61(2): 420–429
https://doi.org/10.1373/clinchem.2014.232181
57 Miller E M, Ng A H C, Uddayasankar U, et al. A digital microfluidic approach to heterogeneous immunoassays. Analytical and Bioanalytical Chemistry, 2011, 399(1): 337–345
https://doi.org/10.1007/s00216-010-4368-2
58 Sista R S, Eckhardt A E, Srinivasan V, et al. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip, 2008, 8(12): 2188–2196
https://doi.org/10.1039/b807855f
59 Fair R B. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 2007, 3(3): 245–281
https://doi.org/10.1007/s10404-007-0161-8
60 Yoon J Y, Garrell R L. Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Analytical Chemistry, 2003, 75(19): 5097–5102 
https://doi.org/10.1021/ac0342673
61 Shah G J, Kim C J. Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics. Journal of Microelectromechanical Systems, 2009, 18(2): 363–375
https://doi.org/10.1109/JMEMS.2009.2013394
62 Barbulovic-Nad I, Au S H, Wheeler A R. A microfluidic platform for complete mammalian cell culture. Lab on a Chip, 2010, 10(12): 1536–1542
https://doi.org/10.1039/c002147d
63 Choi K, Ng A H C, Fobel R, et al. Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments. Analytical Chemistry, 2013, 85(20): 9638–9646
https://doi.org/10.1021/ac401847x
64 Huang C Y, Tsai P Y, Lee I C, et al. A highly efficient bead extraction technique with low bead number for digital microfluidic immunoassay. Biomicrofluidics, 2016, 10(1): 011901
https://doi.org/10.1063/1.4939942
65 Au S H, Shih S C C, Wheeler A R. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomedical Microdevices, 2011, 13(1): 41–50
https://doi.org/10.1007/s10544-010-9469-3
66 Shih S C C, Gach P C, Sustarich J, et al. A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab on a Chip, 2015, 15(1): 225–236
https://doi.org/10.1039/C4LC00794H
67 Eydelnant I A, Uddayasankar U, Li B, et al. Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab on a Chip, 2012, 12(4): 750–757
https://doi.org/10.1039/C2LC21004E
68 Bogojevic D, Chamberlain M D, Barbulovic-Nad I, et al. A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab on a Chip, 2012, 12(3): 627–634
https://doi.org/10.1039/C2LC20893H
69 Fiddes L K, Luk V N, Au S H, et al. Hydrogel discs for digital microfluidics. Biomicrofluidics, 2012, 6(1): 014112
https://doi.org/10.1063/1.3687381
70 George S M, Moon H. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels. Biomicrofluidics, 2015, 9(2): 024116
https://doi.org/10.1063/1.4918377
71 Au S H, Chamberlain M D, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. Lab on a Chip, 2014, 14(17): 3290–3299
https://doi.org/10.1039/C4LC00531G
72 Nejad H R, Chowdhury O Z, Buat M D, et al. Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms. Lab on a Chip, 2013, 13(9): 1823–1830
https://doi.org/10.1039/c3lc41292j
73 Valley J K, Ningpei S, Jamshidi A, et al. A unified platform for optoelectrowetting and optoelectronic tweezers. Lab on a Chip, 2011, 11(7): 1292–1297
https://doi.org/10.1039/c0lc00568a
74 Kumar P T, Toffalini F, Witters D, et al. Digital microfluidic chip technology for water permeability measurements on single isolated plant protoplasts. Sensors and Actuators B: Chemical, 2014, 199: 479–487
https://doi.org/10.1016/j.snb.2014.04.018
75 Schell W A, Benton J L, Smith P B, et al. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31(9): 2237–2245
https://doi.org/10.1007/s10096-012-1561-6
76 Hung P Y, Jiang P S, Lee E F, et al. Genomic DNA extraction from whole blood using a digital microfluidic (DMF) platform with magnetic beads. Microsystem Technologies, 2015, 21: 1–8
77 Yehezkel T B, Rival A, Raz O, et al. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics. Nucleic Acids Research, 2015, 44: 1–12
78 Welch E R F, Lin Y Y, Madison A, et al. Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnology Journal, 2011, 6(2): 165–176
https://doi.org/10.1002/biot.201000324
79 Kim H, Bartsch M S, Renzi R F, et al. Automated digital microfluidic sample preparation for next-generation DNA sequencing. Journal of Laboratory Automation, 2011, 16(6): 405–414
https://doi.org/10.1016/j.jala.2011.07.001
80 Kim H, Jebrail M J, Sinha A, et al. A microfluidic DNA library preparation platform for next-generation sequencing. PLoS One, 2013, 8(7): e68988
https://doi.org/ 10.1371/journal.pone.0068988
81 Wheeler A R, Moon H, Bird C A, et al. Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Analytical Chemistry, 2005, 77(2): 534–540
https://doi.org/10.1021/ac048754+
82 Wheeler A R, Moon H, Kim C J, et al. Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry, 2004, 76(16): 4833–4838
https://doi.org/10.1021/ac0498112
83 Luk V N, Fiddes L K, Luk V M, et al. Digital microfluidic hydrogel microreactors for proteomics. Proteomics, 2012, 12(9): 1310–1318
https://doi.org/10.1002/pmic.201100608
84 Aijian A P, Chatterjee D, Garrell R L. Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis. Lab on a Chip, 2012, 12(14): 2552–2559
https://doi.org/10.1039/c2lc21135a
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed