Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 37-47    https://doi.org/10.1007/s11465-018-0473-2
REVIEW ARTICLE
Novel technologies for the lost foam casting process
Wenming JIANG, Zitian FAN()
State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(916 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting techno- logy; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thin-wall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

Keywords LFC under vacuum and low pressure      vibration solidification      pressure solidification      expendable shell casting      bimetallic castings     
Corresponding Author(s): Zitian FAN   
Just Accepted Date: 13 September 2017   Online First Date: 30 October 2017    Issue Date: 23 January 2018
 Cite this article:   
Wenming JIANG,Zitian FAN. Novel technologies for the lost foam casting process[J]. Front. Mech. Eng., 2018, 13(1): 37-47.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0473-2
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/37
Fig.1  Schematic of the LFC under low pressure and vacuum
Fig.2  Comparison of Mg alloy motor castings obtained using different casting processes. (a) LFC under low pressure and vacuum; (b) LFC under gravity
Fig.3  Schematic of LFC under vibration solidification
Fig.4  Schematic of dendrite fragmentation mechanism. (a) Primary crystal; (b) dendritic growth; (c) dendrite fragmentation; (d) round grains
Fig.5  Optical microstructures of the LFC AZ91D alloys obtained using different amplitudes. (a) Without vibration; (b) 50 Hz, 0.11 mm vibration; (c) 50 Hz, 0.23 mm vibration; (d) 50 Hz, 0.34 mm vibration
Fig.6  Optical microstructures of the LFC ZL101 alloys obtained using different frequencies. (a) Without vibration; (b) 20 Hz, 0.23 mm vibration; (c) 40 Hz, 0.23 mm vibration; (d) 60 Hz, 0.23 mm vibration
Fig.7  Morphologies of the graphite of the QT500-7 ductile iron obtained using different frequencies. (a) Without vibration; (b) 50 Hz
Fig.8  Matrix microstructures of the QT500-7 ductile iron obtained using different frequencies. (a) Without vibration; (b) 50 Hz
Fig.9  Production line of the LFC under pressure solidification for Mercury Castings Company
Fig.10  Schematic of LFC under pressure solidification
Fig.11  Schematic of solidification area structure
Fig.12  Effect of pressure solidification on the pinhole defect of the A356 Al alloy LFC castings. (a) 0.0 MPa; (b) 0.2 MPa; (c) 0.4 MPa; (d) 0.6 MPa
Fig.13  Effect of pressure solidification on the shrinkage defect of the AZ91D Mg alloy LFC castings. (a) 0 MPa; (b) 0.6 MPa
Fig.14  Schematic of the expendable shell casting process under vacuum and low pressure
Fig.15  Simulation of the filling process of the expendable shell casting technology under vacuum and low pressure
Fig.16  Prediction of shrinkage defects
Fig.17  Schematic of defect formation during the LFC process
Fig.18  Intake manifold castings produced using different casting processes. (a) Foam pattern; (b) ceramic shell; (c) casting obtained with the novel casting process; (d) cross-section corresponding to (c); (e)casting obtained with the LFC process; (f) cross-section corresponding to (e)
Fig.19  Schematic of the preparation technology of bimetallic castings based on the LFC method
Fig.20  Formation mechanism of the interface layer of the Al/Mg bimetallic composites obtained by the LFC method. (a) Before the pouring; (b) foam decomposed; (c) molten pool generated; (d) mold filling completed; (e) elements diffused; (f) interface layer formed
Fig.21  Micrographs and phase compositions of the reaction layer of the Al/Mg bimetallic castings by the LFC method. (a) Optical micrograph; (b) scanning electron microscope (SEM) micrograph; (c) EDS analysis; (d) XRD pattern
Fig.22  Micrographs of the reaction layer of the Al/Al bimetallic castings by the LFC method. (a) Optical micrograph; (b–d) SEM micrographs
1 Huang N, Ye  S, Fan Z. Principle and Control of Lost Foam Casting. Wuhan: Huazhong University of Science and Technology Press, 2004
2 Huang T, Huang  N, Lv Z. Lost Foam Casting Technology. Beijing: Mechanical Industry Press, 2004
3 Charchi A, Rezaei  M, Hossainpour S, et al.Numerical simulation of heat transfer and fluid flow of molten metal in MMA–St copolymer lost foam casting process. Journal of Materials Processing Technology, 2010, 210(14): 2071–2080 doi:10.1016/j.jmatprotec.2010.07.028
4 Liu Z, Hu  J, Wang Q, et al.Evaluation of the effect of vacuum on mold filling in the magnesium EPC process. Journal of Materials Processing Technology, 2002, 120(1–3): 94–100
https://doi.org/10.1016/S0924-0136(01)01085-8
5 Geffroy P, Lakehal  M, Goñi J, et al.Thermal and mechanical behaviour of grey cast iron and ductile iron castings using magnetic molding and lost foam processes. Journal of Materials Processing Technology, 2009, 209(8): 4103–4111
https://doi.org/10.1016/j.jmatprotec.2008.10.002
6 Shayegh J, Hossainpour  S, Rezaei M, et al.Developing a new 2D model for heat transfer and foam degradation in EPS lost foam casting (LFC) process. International Communications in Heat and Mass Transfer, 2010, 37(9): 1396–1402
https://doi.org/10.1016/j.icheatmasstransfer.2010.07.015
7 Liu X, Bhavnani  S H, Overfelt  R A. Simulation of EPS foam decomposition in the lost foam casting process. Journal of Materials Processing Technology, 2007, 182(1–3): 333–342
https://doi.org/10.1016/j.jmatprotec.2006.08.023
8 Sands M, Shivkumar  S. EPS bead fusion effects on fold defect formation in lost foam casting of aluminum alloys. Journal of Materials Science, 2006, 41(8): 2373–2379
https://doi.org/10.1007/s10853-006-7077-7
9 Shin S R, Lee  Z H, Cho  G S, et al.Hydrogen gas pick-up mechanism of Al-alloy melt during lost foam casting. Journal of Materials Science, 2004, 39(5): 1563–1569
https://doi.org/10.1023/B:JMSC.0000016152.96919.6c
10 Fan Z, Jiang  W, Liu F, et al.. Status quo and development trend of lost foam casting technology. China Foundry, 2014, 11(4): 296–307
11 Fan Z, Dong  X, Huang N, et al.China Patent, ZL02115638.7,  2002-12-04 (in Chinese)
12 Fan Z, Ji  S. Low pressure lost foam process for casting magnesium alloys. Materials Science and Technology, 2005, 21(6): 727–734
https://doi.org/10.1179/174328405X43199
13 Li J, Zhao  Z, Fan Z, et al.. Study on typical hole defects in AZ91D magnesium alloy prepared by low pressure lost foam casting. China Foundry, 2013, 10(4): 232–236
https://doi.org/10.3969/j.issn.1672-6421.2013.04.006
14 Zhao Z. Study on microstructures and mechanical properties of aluminum (magnesium) alloy under vibration and pressure in lost foam casting process. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2010
15 Zhao Z, Fan  Z, Jiang W, et al.Microstructural evolution of Mg9AlZnY alloy with vibration in lost foam casting during semi-solid isothermal heat treatment. Transactions of Nonferrous Metals Society of China, 2010, 20(Suppl3): s768–s773 
https://doi.org/10.1016/S1003-6326(10)60579-1
16 Zhao Z, Fan  Z, Dong X, et al.. Influence of mechanical vibration on the solidification of a lost foam cast 356 alloy. China Foundry, 2010, 7(1): 24–29
17 Fan Z, Li  J, Tian X, et al.China Patent, CN200710168429.1,  2008-05-21
18 Jiang W, Chen  X, Wang B, et al. Effects of vibration frequency on microstructure, mechanical properties and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting. International Journal of Advanced Manufacturing Technology, 2016, 83(1–4): 167–175 
https://doi.org/10.1007/s00170-015-7586-0
19 Xiao B. Characteristics of microstructure and properties of cast iron produced by lost foam casting with vibration. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2013 
https://doi.org/10.7666/d.D608931
20 Xiao B, Fan  Z, Jiang W, et al.Microstructure and mechanical properties of ductile cast iron in lost foam casting with vibration. Journal of Iron and Steel Research International, 2014, 21(11): 1049–1054 
https://doi.org/10.1016/S1006-706X(14)60182-5
21 Zou W, Zhang  Z, Yang H, et al.Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting. China Foundry, 2016, 13(4): 248–255
https://doi.org/10.1007/s41230-016-6037-3
22 Fan Z, Zhao  Z, Tang B, et al.China Patent, CN200810197390.0,  2009-03-25
23 Zhao Z, Fan  Z, Tang B, et al.Influence of pressure solidification on AZ91D magnesium alloy feeding in lost foam casting process. International Journal of Cast Metals Research, 2011, 24(1): 13–21 
https://doi.org/10.1179/136404610X12816241546537
24 Jiang W, Fan  Z, Liu D, et al.Effects of process parameters on internal quality of castings during novel casting. Materials and Manufacturing Processes, 2012, 28(1): 48–55 
https://doi.org/10.1080/10426914.2012.681414
25 Ridder S D, Kou  S, Mehrabian R. Effect of fluid flow on macrosegregation in axi-symmetric ingots. Metallurgical Transactions B, 1981, 12(3): 435–447
26 Ashton M C, Sharman  S G, Brookes  A J. The replicast CS (ceramic s hell) process.  Materials & Design, 1984, 5(2): 66–75 
https://doi.org/10.1016/0261-3069(84)90159-6
27 Jiang W, Fan  Z, Liao D, et al.A new shell casting process based on expendable pattern with vacuum and low-pressure casting for aluminum and magnesium alloys. International Journal of Advanced Manufacturing Technology, 2010, 51(1–4): 25–34
https://doi.org/10.1007/s00170-010-2596-4
28 Jiang W, Fan  Z, Chen X, et al.Combined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting. Materials Science and Engineering A, 2014, 619(12): 228–237
https://doi.org/10.1016/j.msea.2014.09.102
29 Liao D, Fan  Z, Jiang W, et al.Study on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern. Journal of Materials Processing Technology, 2011, 211(9): 1465–1470
https://doi.org/10.1016/j.jmatprotec.2011.03.021
30 Jiang W, Fan  Z, Liu D, et al.Influence of process parameters on filling ability of A356 aluminium alloy in expendable pattern shell casting with vacuum and low pressure. International Journal of Cast Metals Research, 2012, 25(1): 47–52
https://doi.org/10.1179/1743133611Y.0000000014
31 Jiang W, Fan  Z, Liu D, et al.Influence of gas flowrate on filling ability and internal quality of A356 aluminum alloy castings fabricated using the expendable pattern shell casting with vacuum and low pressure. International Journal of Advanced Manufacturing Technology, 2013, 67(9–12): 2459–2468
https://doi.org/10.1007/s00170-012-4663-5
32 Jiang W, Fan  Z, Liao D, et al.Investigation of microstructures and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting process with vacuum and low pressure. Materials & Design, 2011, 32(2): 926–934
https://doi.org/10.1016/j.matdes.2010.08.015
33 Emami S M, Divandari  M, Hajjari E, et al.Comparison between conventional and lost foam compound casting of Al/Mg light metals. International Journal of Cast Metals Research, 2013, 26(1): 43–50
https://doi.org/10.1179/1743133612Y.0000000037
34 Guler K A, Kisasoz  A, Karaaslan A. Investigation of lost foam casted aluminum bimetal microstructures. Materials Testing, 2014, 56(9): 737–740
https://doi.org/10.3139/120.110625
35 Guler K A, Kisasoz  A, Karaaslan A. Fabrication of Al/Mg bimetal compound casting by lost foam technique and liquid-solid process. Materials Testing, 2014, 56(9): 700–702
https://doi.org/10.3139/120.110624
36 Divandari M, Vahid Golpayegani  A R. Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process. Materials & Design, 2009, 30(8): 3279–3285
https://doi.org/10.1016/j.matdes.2009.01.008
37 Mehdi Hejazi M,  Divandari M,  Taghaddos E. Effect of copper insert on the microstructure of gray iron produced via lost foam casting. Materials & Design, 2009, 30(4): 1085–1092 
https://doi.org/10.1016/j.matdes.2008.06.032
38 Choe K H, Park  K S, Kang  B H, et al.. Study of the interface between steel insert and aluminum casting in EFC. Journal of Materials Science and Technology, 2008, 24(1): 60–64
39 Xiao X, Ye  S, Yin W, et al.HCWCI/carbon steel bimetal liner by liquid-liquid compound lost foam casting. Journal of Iron and Steel Research International, 2012, 19(10): 13–19
https://doi.org/10.1016/S1006-706X(12)60145-9
40 Xiao X, Ye  S, Yin W, et al.. High Cr white cast iron/carbon steel bimetal liner by lost foam casting with liquid-liquid composite process. China Foundry, 2012, 9(2): 136–142
41 Jiang W, Li  G, Fan Z, et al.Investigation on the interface characteristics of Al/Mg bimetallic castings processed by lost foam casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47(5): 2462–2470 
https://doi.org/10.1007/s11661-016-3395-9
42 Jiang W, Fan  Z, Li G, et al.Effects of melt-to-solid insert volume ratio on the microstructures and mechanical properties of Al/Mg bimetallic castings produced by lost foam casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47(12): 6487–6497
https://doi.org/10.1007/s11661-016-3788-9
43 Li G, Jiang  W, Fan Z, et al.Effects of pouring temperature on microstructure, mechanical properties, and fracture behavior of Al/Mg bimetallic composites produced by lost foam casting process. International Journal of Advanced Manufacturing Technology, 2017, 91(1–4): 1355–1368
https://doi.org/10.1007/s00170-016-9810-y
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed