|
|
Precision forging technology for aluminum alloy |
Lei DENG1, Xinyun WANG1( ), Junsong JIN1,2, Juchen XIA1 |
1. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2. Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China |
|
|
Abstract Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.
|
Keywords
precision forging
aluminum alloy
closed die forging
flow control forging
hybrid-forming technology
|
Corresponding Author(s):
Xinyun WANG
|
Just Accepted Date: 29 September 2017
Online First Date: 13 December 2017
Issue Date: 23 January 2018
|
|
61 |
Chen M, Chen S, Pei X, et al. Casting and forging compound process for producing steering knuckles of car. Special Casting & Nonferrous Alloys, 2012, 32(6): 518–521 (in Chinese)
|
62 |
Li T, Wang S, Zheng K, et al. Research progress on casting and forging combination forming technology for metal materials. Materials Review, 2014, 28(6): 119–123 (in Chinese)
|
63 |
Anyalebechi P N. Effect of process route on the structure, tensile, and fatigue properties of aluminum alloy automotive steering knuckles. Foundry Trade Journal International, 2011, 63(3): 32–43
|
64 |
Kim M S, Lim T S, Yoon K M, et al. Development of Cast-Forged Knuckle Using High Strength Aluminum Alloy. SAE Technical Paper 2011-01-0537. 2011
|
65 |
Chang F C, Hwang W S, Lee C H, et al. Forging condition for removing porosity in the hybrid casting and forging process of 7075 aluminum alloy casting. Materials Transactions, 2004, 45(6): 1886–1890
https://doi.org/10.2320/matertrans.45.1886
|
66 |
Wang S I, Seo M K, Cho J R, et al. A study on the development of large aluminum flange using the casting forging process. Journal of Materials Processing Technology, 2002, 130–131: 294–298
https://doi.org/10.1016/S0924-0136(02)00809-9
|
67 |
Kang S H, Lee J H, Kang S W, et al. Novel technology based on combined casting and partial forging for development of an aluminum alloy control arm. In: Proceedings of International Conference on Metal Forming. 2008, 539–546
|
1 |
Yoon H S, Kim E S, Kim M S, et al. Towards greener machine tools—A review on energy saving strategies and technologies. Renewable and Sustainable Energy Reviews, 2015, 48: 870–891
https://doi.org/10.1016/j.rser.2015.03.100
|
68 |
Kim H R, Seo M G, Bae W B. A study of the manufacturing of tie-rod ends with casting/forging process. Journal of Materials Processing Technology, 2002, 125–126: 471–476
https://doi.org/10.1016/S0924-0136(02)00323-0
|
69 |
Xiong Y, Ji Z, Xu L. Microstructure and properties of ADC12 aluminum alloy improved by casting-forging combined forming. Special Casting & Nonferrous Alloys, 2017, 37(2): 214–217 (in Chinese)
|
70 |
Wang X, Ouyang K, Xia J, et al. FEM analysis of drawing-thickening technology in stamping-forging hybrid process. Forging & Stamping Technology, 2009, 34(4): 73–78 (in Chinese)
|
2 |
Sun W, Chen X, Wang L. Analysis of energy saving and emission reduction of vehicles using light weight materials. Energy Procedia, 2016, 88: 889–893
https://doi.org/10.1016/j.egypro.2016.06.106
|
71 |
Li X, Chen J, Wu G, et al. Research of stamping-forging composite process of automobile clutch bush and its numerical simulation. China Metal Forming Equipment & Manufacturing Technology, 2006, 1: 49–51 (in Chinese)
|
72 |
Wang Z G, Yoshikawa Y, Osakada K. A new forming method of solid bosses on a cup made by deep drawing. CIRP Annals-Manufacturing Technology, 2013, 62(1): 291–294
https://doi.org/10.1016/j.cirp.2013.03.057
|
3 |
Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering A, 2000, 280(1): 102–107
https://doi.org/10.1016/S0921-5093(99)00674-7
|
4 |
Hirsch J. Recent development in aluminium for automotive applications. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995–2002
https://doi.org/10.1016/S1003-6326(14)63305-7
|
5 |
Ajeet Babu P K, Saraf M R, Voracious K C, et al. Influence of forging parameters on the mechanical behavior and hot forgeability of aluminium alloy. Materials Today: Proceedings, 2015, 2(4–5): 3238–3244
https://doi.org/10.1016/j.matpr.2015.07.132
|
6 |
Siegert K, Kammerer M, Keppler-Ott T, et al. Recent developments on high precision forging of aluminum and steel. Journal of Materials Processing Technology, 1997, 71(1): 91–99
https://doi.org/10.1016/S0924-0136(97)00153-2
|
7 |
Kopp R. Some current development trends in metal forming technology. Journal of Materials Processing Technology, 1996, 60(1–4): 1–9
https://doi.org/10.1016/0924-0136(96)02301-1
|
8 |
Nakano T. Modern applications of complex forming and multi action forming in cold forging. Journal of Materials Processing Technology, 1994, 46(1–2): 201–226
https://doi.org/10.1016/0924-0136(94)90111-2
|
9 |
Kim Y H, Ryou T K, Choi H J, et al. An analysis of the forging processes for 6061 aluminum-alloy wheels. Journal of Materials Processing Technology, 2002, 123(2): 270–276
https://doi.org/10.1016/S0924-0136(02)00087-0
|
10 |
Liu Y. Simulation research on forging process of aluminum alloy control arm. Thesis for the Master’s Degree. Jilin: Jilin University, 2014
|
11 |
Ma Z. Study on closed-die forging technology of forging aluminum alloy sheel. Forging & Stamping Technology, 2015, 40(8): 1–4 (in Chinese)
|
12 |
Li Z, Zhang W, Zhang S, et al. Die forging technology and forging die design for aluminium bearing cap. Die & Mould Manufacture, 2016, 16(2): 61–64 (in Chinese)
https://doi.org/10.3969/j.issn.1671-3508.2016.02.017
|
13 |
Park J J, Hwang H S. Preform design for precision forging of an asymmetric rib-web type component. Journal of Materials Processing Technology, 2007, 187–188: 595–599
https://doi.org/10.1016/j.jmatprotec.2006.11.034
|
14 |
Deng L, Xia J, Wang X, et al. Multi-directional precision forging for casing. China Mechanical Engineering, 2009, 20(7): 869–872 (in Chinese)
|
15 |
Li Q, Xia J, Deng L, et al. Optimization of multi-directional precision forging for aluminum alloy casing. Forging & Stamping Technology, 2010, 35(5): 24–28 (in Chinese)
|
16 |
Zhou X, Cao Q. Precision die design and improvement for large-scale double-drum shape aluminum hub. Forging & Stamping Technology, 2004, 29(1): 70–73 (in Chinese)
|
17 |
Chen S. Studies on forging forming, microstructure and properties of high-strength 7085 aluminum alloy. Dissertation for the Doctoral Degree. Changsha: Central South University, 2013 (in Chinese)
|
18 |
Shan D, Liu F, Xu W, et al. Experimental study on process of precision forging of an aluminium-alloy rotor. Journal of Materials Processing Technology, 2005, 170(1–2): 412–415
https://doi.org/10.1016/j.jmatprotec.2005.06.009
|
19 |
Chen L, Bi S, Wang Y, et al. Isothermal forging forming technology of 2A14 aluminium alloy. New Technology & New Process, 2013, (6): 30–32
https://doi.org/10.3969/j.issn.1003-5311.2013.06.011
|
20 |
Ye S. Studies on isothermal forging of 2A14 aluminum alloy wheels. Thesis for the Master’s Degree. Changsha: Central South University, 2014 (in Chinese)
|
21 |
Shan D, Wang Z, Lu Y, et al. Study on isothermal precision forging technology for cylindrical aluminium-alloy housing. Journal of Materials Processing Technology, 1997, 72(3): 403–406
https://doi.org/10.1016/S0924-0136(97)00202-1
|
22 |
Zhang Y, Jiang S, Zhao Y, et al. Isothermal precision forging of complex-shape rotating disk of aluminum alloy based on processing map and digitized technology. Materials Science and Engineering A, 2013, 580: 294–304
https://doi.org/10.1016/j.msea.2013.05.059
|
23 |
Petrov P, Perfilov V, Stebunov S. Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618. Journal of Materials Processing Technology, 2006, 177(1–3): 218–223
https://doi.org/10.1016/j.jmatprotec.2006.03.206
|
24 |
Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behaviour in hot deformation: Forging of Ti-6242. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 1984, 15(10): 1883–1892
https://doi.org/10.1007/BF02664902
|
25 |
Hu H, Wang X, Deng L. An approach to optimize size parameters of forging by combining hot-processing map and FEM. Journal of Materials Engineering and Performance, 2014, 23(11): 3887–3895
https://doi.org/10.1007/s11665-014-1182-6
|
26 |
Zheng T, Yang Q. Development of isothermal forging technology for aluminum wheel. Aluminium Fabrication, 1995, 18(3): 18–21
|
27 |
Shen G, Furrer D. Manufacturing of aerospace forgings. Journal of Materials Processing Technology, 2000, 98(2): 189–195
https://doi.org/ 10.1016/S0924-0136(99)00198-3
|
28 |
Liu R, Wang Z R, Liu H, et al. A study of the superplastic isothermal deformation behavior of aluminium alloy LY12. Journal of Materials Processing Technology, 1995, 53(3–4): 871–878
https://doi.org/ 10.1016/0924-0136(94)01762-P
|
29 |
Zhang D, Yang H, Sun Z. Analysis of local loading forming for titanium-alloy T-shaped components using slab method. Journal of Materials Processing Technology, 2010, 210(2): 258–266
https://doi.org/10.1016/j.jmatprotec.2009.09.008
|
30 |
Gao P F, Yang H, Fan X G, et al. Quick prediction of the folding defect in transitional region during isothermal local loading forming of titanium alloy large-scale rib-web component based on folding index. Journal of Materials Processing Technology, 2015, 219: 101–111
https://doi.org/10.1016/j.jmatprotec.2014.11.047
|
31 |
Yang H, Sun Z, Zhan M, et al. Advances in control of unequal deformation by locally loading and theories related to precision plastic forming. Journal of Plasticity Engineering, 2008, 15(2): 6–14 (in Chinese)
|
32 |
Wang X, Yukawa N, Yoshita Y, et al. Research on some basic deformations in free forging with robot and servo-press. Journal of Materials Processing Technology, 2009, 209(6): 3030–3038
https://doi.org/10.1016/j.jmatprotec.2008.07.012
|
33 |
Deng W, Yi Y, Zhan L, et al. Research on local loading process of large Al-alloy air die forgings. Hot Working Technology, 2011, 40(11): 29–32 (in Chinese)
|
34 |
Shan D, Xu W, Si C, et al. Research on local loading method for an aluminium-alloy hatch with cross ribs and thin webs. Journal of Materials Processing Technology, 2007, 187–188: 480–485
https://doi.org/10.1016/j.jmatprotec.2006.11.127
|
35 |
Kondo K, Ohga K. Precision cold die forging of a ring gear by divided flow method. International Journal of Machine Tools and Manufacture, 1995, 35(8): 1105–1113
https://doi.org/10.1016/0890-6955(95)90405-B
|
36 |
Xia J, Jin J, Deng L, et al. Mechanism of forging utilizing flow relief hole and forming load calculation. Journal of Plasticity Engineering, 2016, 23(1): 1–6 (in Chinese)
https://doi.org/10.3969/j.issn.1007-2012.2016.01.001
|
37 |
Xia J, Jin J, Deng L, et al. Theoretical calculation of key parameters in hollow divided flow forging. Journal of Plasticity Engineering, 2016, 23(3): 1–6 (in Chinese)
https://doi.org/10.3969/j.issn.1007-2012.2016.03.001
|
38 |
Cheng W, Chi C, Wang Y, et al. 3D FEM simulation of flow velocity field for 5052 aluminum alloy multi-row sprocket in cold semi-precision forging process. Transactions of Nonferrous Metals Society of China, 2015, 25(3): 926–935
https://doi.org/ 10.1016/S1003-6326(15)63681-0
|
39 |
Choi J C, Choi Y. Precision forging of spur gears with inside relief. International Journal of Machine Tools and Manufacture, 1999, 39(10): 1575–1588
https://doi.org/10.1016/S0890-6955(99)00015-2
|
40 |
Qian R. Multi-motion forming for spline gear based on exchanging axles. Forging & Stamping Technology, 2002, 27(1): 1–3 (in Chinese)
|
41 |
Kim Y H, Ryou T K, Choi H J, et al. An analysis of the forging processes for 6061 aluminum-alloy wheels. Journal of Materials Processing Technology, 2002, 123(2): 270–276
https://doi.org/10.1016/S0924-0136(02)00087-0
|
42 |
Xia J, Hu G, Wang X, et al. Study on flow control precision forming technology of airbag parts in car. Forging & Stamping Technology, 2004, 29(1): 1–3 (in Chinese)
|
43 |
Zhang Y, Xia J, Cheng J, et al. Analysis on hot extrusion process and FEA of airbag part in car. Journal of Plasticity Engineering, 2007, 14(2): 73–76 (in Chinese)
|
44 |
Xia J, Hu G, Wang X, et al. Process analysis and calculation of forces of flow control forming for multilayer cylinder parts. China Mechanical Engineering, 2004, 15(1): 91–93 (in Chinese)
|
45 |
Wang X, Wu Y, Xia J, et al. FE simulation and process analysis on forming of aluminum alloy multi-layer cylinder parts with flow control forming. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 452–456
|
46 |
Yoshimura H, Tanaka K. Precision forging of aluminum and steel. Journal of Materials Processing Technology, 2000, 98(2): 196–204
https://doi.org/10.1016/S0924-0136(99)00199-5
|
47 |
Zhang Y. Study on the hot extrusion forming and FEM simulation for multi-layer thin walls columnar parts. Thesis for the Master’s Degree. Wuhan: Huazhong University of Science and Technology, 2007 (in Chinese)
|
48 |
Tian Y, Xue K, Sun D, et al. Study on backpressure forming process of scroll. Journal of Mechanical Engineering, 2015, 51(16): 143–149(in Chinese)
https://doi.org/ 10.3901/JME.2015.16.143
|
49 |
Chan W, Fu M, Lu J, et al. Simulation-enabled study of folding defect formation and avoidance in axisymmetrical flanged components. Journal of Materials Processing Technology, 2009, 209(11): 5077–5086
https://doi.org/10.1016/j.jmatprotec.2009.02.005
|
50 |
Jin J, Wang X, Deng L, et al. A single-step hot stamping-forging process for aluminum alloy shell parts with nonuniform thickness. Journal of Materials Processing Technology, 2016, 228: 170–178
https://doi.org/10.1016/j.jmatprotec.2015.07.009
|
51 |
Osakada K, Wang X, Hanami S. Precision forging of spline by flashless die forging with axially driven die. CIRP Annals-Manufacturing Technology, 1997, 46(1): 209–212
https://doi.org/10.1016/S0007-8506(07)60810-5
|
52 |
Lee D J, Kim D J, Kim B M. New processes to prevent a flow defect in the combined forward-backward cold extrusion of a piston-pin. Journal of Materials Processing Technology, 2003, 139(1–3): 422–427
https://doi.org/ 10.1016/S0924-0136(03)00515-6
|
53 |
Hung J C, Hung C H. The influence of ultrasonic-vibration on hot upsetting of aluminum alloy. Ultrasonics, 2005, 43(8): 692–698
https://doi.org/10.1016/j.ultras.2005.03.001
|
54 |
Osakada K, Mori K, Altan T, et al. Mechanical servo press technology for metal forming. CIRP Annals-Manufacturing Technology, 2011, 60(2): 651–672
https://doi.org/10.1016/j.cirp.2011.05.007
|
55 |
Ishikawa T, Ishiguro T, Yukawa N, et al. Control of thermal contraction of aluminum alloy for precision cold forging. CIRP Annals-Manufacturing Technology, 2014, 63(1): 289–292
https://doi.org/10.1016/j.cirp.2014.03.008
|
56 |
Matsumoto R, Jeon J Y, Utsunomiya H. Shape accuracy in the forming of deep holes with retreat and advance pulse ram motion on a servo press. Journal of Materials Processing Technology, 2013, 213(5): 770–778
https://doi.org/10.1016/j.jmatprotec.2012.11.023
|
57 |
Matsumoto R, Hayashi K, Utsunomiya H. Experimental and numerical analysis of friction in high aspect ratio combined forward-backward extrusion with retreat and advance pulse ram motion on a servo press. Journal of Materials Processing Technology, 2014, 214(4): 936–944
https://doi.org/10.1016/j.jmatprotec.2013.11.017
|
58 |
Maeno T, Osakada K, Mori K. Reduction of friction in compression of plates by load pulsation. International Journal of Machine Tools and Manufacture, 2011, 51(7–8): 612–617
https://doi.org/10.1016/j.ijmachtools.2011.03.007
|
59 |
Fujikawa S, Kitamura Y, Shimamura S. Application of numerical methods for the aluminum casting/forging process. Journal of Materials Processing Technology, 1991, 27(1–3): 93–110
https://doi.org/10.1016/0924-0136(91)90046-H
|
60 |
Dedov S, Lehmann G, Kawalla R. Application of combined casting-forging process for production of durable lightweight aluminum parts. Key Engineering Materials, 2013, 554–557: 264–273
https://doi.org/10.4028/www.scientific.net/KEM.554-557.264
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|